
www.renesas.com

U
ser’s M

anual

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

User's Manual

CC-RX
Compiler

Target Revision

V2.00.00 - V3.03.00

Target Device

RX Family

Target CPU Cores:

RXv1, RXv2, RXv3

Rev.1.10 2020.11

© 2020 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of
these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or
other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system;
undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims
any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is
inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not
limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products
are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury,
injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety
design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging
degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas

Electronics Corporation. All trademarks and registered trademarks

are the property of their respective owners.

How to Use This Manual

This manual describes the role of the CC-RX compiler for developing applications and systems for RX family, and pro-
vides an outline of its features.

Readers This manual is intended for users who wish to understand the functions of the CC-RX and
design software and hardware application systems.

Purpose This manual is intended to give users an understanding of the functions of the CC-RX to
use for reference in developing the hardware or software of systems using these devices.

Organization This manual can be broadly divided into the following units.
1.GENERAL
2.COMMAND REFERENCE
3.OUTPUT FILES
4.COMPILER LANGUAGE SPECIFICATIONS
5.ASSEMBLY LANGUAGE SPECIFICATIONS
6.SECTION SPECIFICATIONS
7.LIBRARY FUNCTIONAL SPECIFICATION
8.STARTUP
9.FUNCTION CALL INTERFACE SPECIFICATIONS
10.MESSAGES
11.Usage Notes
A.QUICK GUIDE

How to Read This Manual It is assumed that the readers of this manual have general knowledge of electricity, logic
circuits, and microcontrollers.

Conventions Data significance: Higher digits on the left and lower digits on the right
Active low representation: XXX (overscore over pin or signal name)
Note: Footnote for item marked with Note in the text
Caution: Information requiring particular attention
Remarks: Supplementary information
Numeric representation: Decimal ... XXXX

Hexadecimal ... 0xXXXX

TABLE OF CONTENTS

1. GENERAL . 10

1.1 Overview . 10

1.2 Copyrights . 12

1.3 Special Features . 12

1.4 Limits . 12

1.4.1 Limits of Compiler . 12

1.4.2 Limits of Assembler . 13

1.5 License. 14

1.6 Standard and Professional Editions . 14

1.7 Free Evaluation Editions . 14

2. COMMAND REFERENCE . 16

2.1 Overview . 16

2.2 Input/Output Files. 16

2.3 Environment Variables . 18

2.4 Operating Instructions . 19

2.5 Options. 22

2.5.1 Compile Options . 22

2.5.2 Assembler Command Options . 171

2.5.3 Optimizing Linkage Editor (rlink) Options . 216

2.5.4 Library Generator Options . 303

3. OUTPUT FILES . 317

3.1 Assemble List File . 317

3.1.1 Source Information . 317

3.1.2 Object Information . 317

3.1.3 Statistics Information. 319

3.1.4 Compiler Command Specification Information . 320

3.1.5 Assembler Command Specification Information . 320

3.2 Link Map File . 320

3.2.1 Structure of Linkage List . 320

3.2.2 Option Information . 321

3.2.3 Error Information. 322

3.2.4 Linkage Map Information . 322

3.2.5 Symbol Information. 323

3.2.6 Symbol Deletion Optimization Information . 324

3.2.7 Cross-Reference Information . 325

3.2.8 Total Section Size . 326

3.2.9 Vector Information. 326

3.2.10 CRC Information . 327

3.2.11 CFI Information . 327

3.3 Library List . 328

3.3.1 Structure of Library List. 328

3.3.2 Option Information . 328

3.3.3 Error Information. 329

3.3.4 Library Information . 329

3.3.5 Module, Section, and Symbol Information within Library . 329

3.4 S-Type and HEX File Formats . 331

3.4.1 S-Type File Format . 331

3.4.2 HEX File Format . 333

4. COMPILER LANGUAGE SPECIFICATIONS . 335

4.1 Basic Language Specifications . 335

4.1.1 Unspecified Behavior . 335

4.1.2 Undefined Behavior . 335

4.1.3 Implementation-defined behavior of C90 . 337

4.1.4 Implementation-defined behavior of C99 . 342

4.1.5 Internal Data Representation and Areas . 352

4.1.6 Operator Evaluation Order . 365

4.1.7 Conforming Language Specifications . 366

4.2 Extended Language Specifications . 367

4.2.1 Macro Names . 367

4.2.2 Keywords . 369

4.2.3 #pragma Directive. 369

4.2.4 Using Extended Specifications . 371

4.2.5 Using a Keyword. 386

4.2.6 Intrinsic Functions. 387

4.2.7 Section Address Operators. 423

5. ASSEMBLY LANGUAGE SPECIFICATIONS. 424

5.1 Description of Source. 424

5.1.1 Description . 424

5.1.2 Names . 424

5.1.3 Coding of Labels. 425

5.1.4 Coding of Operation . 425

5.1.5 Coding of Operands . 426

5.1.6 Expression . 432

5.1.7 Coding of Comments . 434

5.1.8 Selection of Optimum Instruction Format . 434

5.1.9 Selection of Optimum Branch Instruction . 441

5.1.10 Substitute Register Names (for the PID Function) . 442

5.2 Directives . 443

5.2.1 Outline . 443

5.2.2 Link Directives . 444

5.2.3 Assembler Directives . 445

5.2.4 Address Directives . 447

5.2.5 Macro Directives . 454

5.2.6 Specific Compiler Directives . 461

5.3 Control Instructions . 462

5.3.1 Outline . 462

5.3.2 Assembler List Directive . 462

5.3.3 Conditional Assembly Directives . 462

5.3.4 Extended Function Directives . 464

5.4 Macro Names. 467

5.5 Reserved Words . 468

6. SECTION SPECIFICATIONS. 469

6.1 List of Section Names . 469

6.1.1 C/C++ Program Sections . 469

6.2 Assembly Program Sections . 473

6.3 Linking Sections. 474

7. LIBRARY FUNCTIONAL SPECIFICATION . 477

7.1 Supplied Libraries . 477

7.1.1 Terms Used in Library Function Descriptions . 477

7.1.2 Notes on Use of Libraries . 479

7.2 Header Files. 480

7.3 Reentrant Library . 481

7.4 Library Function . 488

7.4.1 <stddef.h>. 489

7.4.2 <assert.h>. 490

7.4.3 <ctype.h> . 492

7.4.4 <float.h> . 508

7.4.5 <limits.h> . 511

7.4.6 <errno.h> . 512

7.4.7 <math.h>. 513

7.4.8 <mathf.h> . 572

7.4.9 <setjmp.h> . 596

7.4.10 <stdarg.h>. 599

7.4.11 <stdio.h> . 604

7.4.12 <stdlib.h> . 654

7.4.13 <string.h> . 681

7.4.14 <complex.h> . 703

7.4.15 <fenv.h> . 727

7.4.16 <inttypes.h> . 739

7.4.17 <iso646.h> . 746

7.4.18 <stdbool.h> . 747

7.4.19 <stdint.h> . 748

7.4.20 <tgmath.h> . 750

7.4.21 <wchar.h> . 752

7.5 EC++ Class Libraries . 799

7.5.1 Stream Input/Output Class Library . 799

7.5.2 Memory Management Library. 836

7.5.3 Complex Number Calculation Class Library . 838

7.5.4 String Handling Class Library . 857

7.6 Unsupported Libraries . 876

8. STARTUP . 877

8.1 Overview . 877

8.2 File Contents . 877

8.3 Startup Program Creation . 877

8.3.1 Fixed Vector Table Setting . 878

8.3.2 Initial Setting . 878

8.3.3 Coding Example of Initial Setting Routine . 881

8.3.4 Low-Level Interface Routines . 882

8.3.5 Termination Processing Routine . 900

8.4 Coding Example. 902

8.5 Usage of PIC/PID Function . 914

8.5.1 Terms Used in this Section . 914

8.5.2 Function of Each Option . 915

8.5.3 Restrictions on Applications . 915

8.5.4 System Dependent Processing Necessary for PIC/PID Function . 915

8.5.5 Combinations of Code Generating Options . 916

8.5.6 Master Startup . 917

8.5.7 Application Startup . 917

9. FUNCTION CALL INTERFACE SPECIFICATIONS . 921

9.1 Function Calling Interface . 921

9.1.1 Rules Concerning the Stack . 921

9.1.2 Rules Concerning Registers . 921

9.1.3 Rules Concerning Setting and Referencing Parameters . 923

9.1.4 Rules Concerning Setting and Referencing Return Values . 925

9.1.5 Examples of Parameter Allocation . 925

9.2 Method for Mutual Referencing of External Names between Compiler and Assembler 927

9.2.1 Referencing Assembly-Language Program External Names in C/C++ Programs 928

9.2.2 Referencing C/C++ Program External Names (Variables and C Functions) from Assembly-Language Pro-
grams928

9.2.3 Referencing C++ Program External Names (Functions) from Assembly-Language Programs 929

10. MESSAGES . 930

10.1 GENERAL . 930

10.2 MESSAGE FORMATS . 930

10.3 MESSAGE TYPES . 930

10.4 MESSAGE NUMBERS . 930

10.5 MESSAGES. 930

10.5.1 Internal Errors . 931

10.5.2 Errors . 932

10.5.3 Fatal Errors . 974

10.5.4 Informations . 982

10.5.5 Warnings. 984

10.5.6 Standard Library Error Messages . 1002

11. Usage Notes . 1004

11.1 Notes on Program Coding . 1004

11.2 Notes on Compiling a C Program with the C++ Compiler . 1008

11.3 Notes on Options . 1008

11.4 Preventing E0562330 Errors in Cases Where Optimization by the Optimizing Linkage Editor is Enabled . 1009

11.5 Compatibility with an Older Version or Older Revision . 1011

11.5.1 V.1.01 and Later Versions (Compatibility with V.1.00) . 1011

11.5.2 V.2.00 and Later Versions (Compatibility with Versions between 1.00 and 1.02) 1012

11.5.3 V.2.03 and Later Versions (Compatibility with Versions between 1.00 and 2.02) 1013

11.5.4 V2.06 and Later Versions (Compatibility with V2.05 and earlier) . 1014

11.5.5 Version of Compiler Package . 1014

11.6 W0523041 message [C/C++ compiler] . 1015

11.7 Using MVTC or POPC instructions [Assembler] . 1015

11.8 Using the -delete option for linkage [Optimizing linkage editor] . 1015

11.9 Path names . 1015

A. QUICK GUIDE . 1016

A.1 Variables (C Language) . 1016

A.1.1 Changing Mapped Areas . 1016

A.1.2 Defining Variables Used at Normal Processing and Interrupt Processing . 1017

A.1.3 Generating a Code that Accesses Variables in the Declared Size . 1017

A.1.4 Performing const Declaration for Variables with Unchangeable Initialized Data 1018

A.1.5 Defining the const Constant Pointer . 1018

A.1.6 Referencing Addresses of a Section . 1019

A.2 Functions . 1019

A.2.1 Filling Assembler Instructions . 1019

A.2.2 Performing In-Line Expansion of Functions . 1019

A.2.3 Performing (Inter-File) In-Line Expansion of Functions . 1020

A.3 Using Microcomputer Functions . 1020

A.3.1 Processing an Interrupt in C Language . 1020

A.3.2 Using CPU Instructions in C Language . 1021

A.4 Variables (Assembly Language) . 1022

A.4.1 Defining Variables without Initial Values . 1022

A.4.2 Defining a cost Constant with an Initial Value. 1023

A.4.3 Referencing the Address of a Section . 1023

A.5 Startup Routine . 1023

A.5.1 Allocating Stack Areas . 1023

A.5.2 Initializing RAM. 1024

A.5.3 Transferring Variables with Initial Values from ROM to RAM . 1024

A.6 Reducing the Code Size . 1024

A.6.1 Data Structure. 1024

A.6.2 Local Variables and Global Variables . 1025

A.6.3 Offset for Structure Members . 1026

A.6.4 Allocating Bit Fields . 1028

A.6.5 Optimization of External Variable Accesses when the Base Register is Specified. 1029

A.6.6 Specified Order of Section Addresses by Optimizing Linkage Editor at Optimization of External Variable
Accesses1030

A.6.7 Interrupt . 1032

A.7 High-Speed Processing . 1032

A.7.1 Loop Control Variable . 1032

A.7.2 Function Interface. 1034

A.7.3 Reducing the Number of Loops . 1035

A.7.4 Usage of a Table. 1036

A.7.5 Branch . 1037

A.7.6 Inline Expansion . 1039

A.8 Modification of C Source . 1041

Revision Record . C - 1

R20UT3248EJ0110 Rev.1.10 Page 10 of 1053
Nov 01, 2020

CC-RX 1.　GENERAL

1. GENERAL

This chapter introduces the processing of compiling performed by the RX family C/C++ compiler, and provides an exam-
ple of program development.

1.1 Overview

The build tool is comprised of components provided by CC-RX. It enables various types of information to be configured
via a GUI tool, enabling you to generate load module file or library file from your source files, according to your objectives.

CC-RX is comprised of the four executable files listed below.
(1) ccrx: Compile driver
(2) asrx: Assembler Optimizer
(3) rlink: Optimizing linkage editor
(4) lbgrx: Library generator

Figure 1.1 illustrates the CC-RX processing flow.

CC-RX 1.　GENERAL

R20UT3248EJ0110 Rev.1.10 Page 11 of 1053
Nov 01, 2020

Figure 1.1 CC-RX Processing Flow

C/C99
source file
(.c)

C++
source file
(.cpp, .cc, .cp)

Assemblylan-
guage file
(.src)

Object module file
(.obj)

Load module file
(.abs)

File output after
preprocessing
(.p, .pp)

rcfrt, rcbackrx

Compile driver

Compiler
(Not executing
directly)

ccrx

Controller by the com-
pile driver

Library generator

lbgrx

User library file
(.lib)

Standard library
file
(.lib)

Optimizing linkage editor

rlink

Debugger

rlink Optimizing linkage editor

Stack information
file
(.sni)

Motorola S-format
file
(.mot)

Intel hex-format file
(.hex)

Binary file
(.bin)

CallWalker Stack display tool

Assemblylan-
guage file
(.src)

Object module file
(.obj)

asrx Assembler

R20UT3248EJ0110 Rev.1.10 Page 12 of 1053
Nov 01, 2020

CC-RX 1.　GENERAL

1.2 Copyrights

This software uses LLVM and Protocol Buffers.

- LLVM is copyright of University of Illinois at Urbana-Champaign.

- Protocol Buffers is copyright of Google Inc.

Other software components are copyright of Renesas Electronics Corporation.

1.3 Special Features

The RX family C/C++ compiler package (CC-RX) is equipped with the following special features.

(1) Language specifications in accordance with ANSI standard
The C, C99, and C++ language specifications conform to the ANSI standard. Coexistence with prior C language
specifications (K&R specifications) is also provided.

(2) Advanced optimization
Code size and speed priority optimization for the C compiler are offered.

(3) Improvement to description ability
C language programming description ability has been improved due to enhanced language specifications.

(4) High portability
The single CC-RX supports all microcontrollers. This makes it possible to use a uniform language specification,
and facilitates porting between microcontrollers.
In addition, the industry-standard DWARF2/3 format is used for debugging information.

1.4 Limits

1.4.1 Limits of Compiler

Table 1.1 shows the translation limits of the compiler.
Source programs must be created to fall within these translation limits.

Table 1.1 Translation Limits of Compiler

No. Classification Item Translation Limit

1 Startup Total number of macro names that can be specified using the
define option

Unlimited

2 Number of characters in a file name Unlimited (depends
on the OS)

3 Source program Number of characters in one line 32768

4 Number of source program lines in one file Unlimited

5 Total number of source program lines that can be compiled Unlimited

6 Preprocessing Nesting levels of files in an #include statement Unlimited

7 Total number of macro names in a #define statement Unlimited

8 Number of parameters that can be specified using a macro defi-
nition or macro call operation

Unlimited

9 Number of expansions of a macro name Unlimited

10 Nesting levels of conditional inclusion Unlimited

11 Total number of operators and operands that can be specified in
an #if or #elif statement

Unlimited

CC-RX 1.　GENERAL

R20UT3248EJ0110 Rev.1.10 Page 13 of 1053
Nov 01, 2020

Notes 1. For details, refer to section 8.3.2 Initial Setting.

Notes 2. Since the assembler's limit of number of characters in one line is applied to the length of a section name
when generating an object, the length that can be specified in #pragma section or the section option is
shorter than this limit.

1.4.2 Limits of Assembler

Table 1.2 shows the translation limits of the assembler.
Source programs must be created to fall within these translation limits.

12 Declaration Number of function definitions Unlimited

13 Number of external identifiers used for external linkage Unlimited

14 Number of valid internal identifiers used in one function Unlimited

15 Number of pointers, arrays, and function declarators that qualify
the basic type

16

16 Number of array dimensions 6

17 Size of arrays and structures 2147483647 bytes

18 Statement Nesting levels of compound statements Unlimited

19 Nesting levels of statements in a combination of repeat (while,
do, and for) and select (if and switch) statements

4096

20 Number of compound statements that can be written in one func-
tion

2048

21 Number of goto labels that can be specified in one function 2147483646

22 Number of switch statements 2048

23 Nesting levels of switch statements 2048

24 Number of case labels that can be specified in one switch state-
ment

2147483646

25 Nesting levels of for statements 2048

26 Expression Number of characters in a string 32766

27 Number of parameters that can be specified using a function def-
inition or function call operation

2147483646

28 Total number of operators and operands that can be specified in
one expression

About 500

29 Standard library Number of files that can be opened simultaneously in an open
function

Variable*1

30 Section Length of section name*2 8146

31 Number of sections that can be specified in #pragma section in
one file

2045

32 Maximum size of each section 4294967295 bytes

33 Output files Maximum number of characters per line of assembly source
code that can be output

8190

No. Classification Item Translation Limit

R20UT3248EJ0110 Rev.1.10 Page 14 of 1053
Nov 01, 2020

CC-RX 1.　GENERAL

Table 1.2 Translation Limits of Assembler

Note The limit may become a smaller value depending on the string length specified in the same line.

1.5 License

A license manager manages licenses to the compilers.
If you have a license, the compiler will operate as the Standard or Professional edition depending on the license you are

using.
Refer to section 1.6, Standard and Professional Editions, for more on the Standard and Professional editions.
If the license manager is not able to recognize a Standard or Professional license, the compiler operates as the free

evaluation edition.
Refer to section 1.7, Free Evaluation Editions, for more on the free evaluation edition.
For details of the licenses and the license manager, refer to the User's Manual of the License Manager.
Use V2.00 or later versions of the license manager for V2.06 and later versions of CC-RX.

1.6 Standard and Professional Editions

There are two editions of the compilers, the Standard and the Professional editions.
The Standard editions support an ANSI-compliant C-language specification, and also provide the essential features for

writing programs for embedded systems.
As well as the features of the Standard editions, the Professional editions have additional features which help to

improve the quality of the customer's programs and shorten development periods.
The additional features of Professional editions are available through compiler options, #pragma directives and libraries.
For descriptions of the options only available for the Professional editions, refer to section 2.5, Options, or the descrip-

tions of the individual options.
For descriptions of the #pragma directives that only the Professional editions support, refer to section 4.2.3, #pragma

Directive.

1.7 Free Evaluation Editions

The free evaluation editions have a trial period of 60 days from the day of the first building by the compiler over which
you can use features equivalent to those of the Professional editions.

After that period, the additional features of the Professional editions are no longer available, and a restriction becomes
applicable to the sizes produced by linkage.

No. Item Translation Limit

1 Number of characters in one line 32760

2 Symbol length Number of characters in one line*

3 Number of symbols Unlimited

4 Number of externally referenced symbols Unlimited

5 Number of externally defined symbols Unlimited

6 Maximum size for a section 0FFFFFFFFH bytes

7 Number of sections 65265 (with debugging information) or 65274
(without debugging information)

8 File include Nesting levels of 30

9 String length Number of characters in one line*

10 Number of characters in a file name Number of characters in one line*

11 Number of characters in an environment variable setting 2048 bytes

12 Number of macro definitions 65535

CC-RX 1.　GENERAL

R20UT3248EJ0110 Rev.1.10 Page 15 of 1053
Nov 01, 2020

- The restriction on the section sizes which can be allocated to the ROM area is up to 128 Kbytes in total. A linker error
occurs when the size exceeds 128 Kbytes.

The version number of the optimizing linkage editor is prefixed by W while a compiler is operating as an evaluation edi-
tion and by V when it is operating as a commercial edition.

Examples are given below.

- Version of a free evaluation edition:
Renesas Optimizing Linker W1.01.01 [25 Apr 2014]

- Version of a commercial edition:
Renesas Optimizing Linker V1.01.01 [25 Apr 2014]

We do not supply the following services for the evaluation editions.Consider purchasing a commercial edition if you
require them.

- Technical support

- E-mail delivery of items such as information on revisions

R20UT3248EJ0110 Rev.1.10 Page 16 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

2. COMMAND REFERENCE

This appendix describes the detailed specifications of each command included in the build tool.

2.1 Overview

The RX family C/C++ compiler generates a file executable in the target system from the source program written in C lan-
guage, C99 language, C++ language, or assembly language.

In this compiler, a single driver controls multiple phases from preprocessing to linkage.
The following describes processing in each phase.

(1) Compiler
This processes preprocessing directives, comments, and optimization for the C source program and generates an
assembly-language source file.

(2) Preprocessor
This processes the preprocessing directives in the source program.
Only when the -P option is specified, it outputs the preprocessed file.

(3) Parsing section
This parses the C source program and then converts it to the internal data representation for the compiler.

(4) Optimizing section
This optimizes the internal data representation converted from the C source program.

(5) Code generating section
This converts the internal data representation to an assembly-language source program.

(6) Assembler
This converts the assembly-language source program to machine-language instructions and generates a relocat-
able object module file.

(7) Optimizing linkage editor
This links object module files, link directive files, and library files and generates an object file (load module file)
executable in the target system.

2.2 Input/Output Files

The following shows the files input to and output from the RX family C/C++ compiler.

Table 2.1 Input/Output Files for the RX Family C/C++ Compiler

File Type Extension I/O Description

C source program file .c Input A source file written in C99 language.
This file is created by the user.

C++ source program file .cpp, .cp, and
.cc

Input A source file written in C++ language.
This file is created by the user.

Include file Optional Input A file referenced by the source file and written in C,
C99, C++, or assembly language.
This file is created by the user.

Preprocessor expansion
file for the C program

.p Output A file output as a result of preprocessing applied to an
input C-language or the C99-language source pro-
gram.
An ASCII image file.
This is output when the -output=prep option is speci-
fied.

Preprocessor expansion
file for the C++ program

.pp Output A file output as a result of preprocessing applied to an
input C++-language source program.
An ASCII image file.
This is output when the -output=prep option is speci-
fied.

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 17 of 1053
Nov 01, 2020

Assembly-source program
file

.src Output An assembly-language file generated from a C, C99,
or C++ source file through compilation.

.src Input A source file written in assembly language.

List file for the assembly
program

.lst Output A list file containing the assembly result information.
This is output when the -listfile option is specified.
The output contents are selected with the -show
option.

Relocatable object program
file

.obj Output An ELF-format file that contains the machine-language
information, the relocation information about the allo-
cation addresses of machine-language instructions,
and symbol information.

Absolute load module file .abs Output An ELF-format file for the object code generated as a
result of linkage.
This is an input file when a hex file is output.

Linkage list file .map Output A list file containing the linkage result information.
This is output when the -list option is specified.
The output contents are selected with the -show
option.

Library file .lib Output A file where multiple object module files are registered.

Library list file .lbp Output A list file containing the result information of generation
of the library.
This is output when the -list option is specified.
The output contents are selected with the -show
option.

Library backup file .lbk Output File type for saving the contents of original library files
before they are overwritten by the library generator.

Hex file (Motorola S-format
file)

.mot Output A Motorola S-format file in the hex format converted
from the load module file.

Hex file (Intel (expansion)
hex format file)

.hex Output An Intel (expansion) file in the hex format converted
from the load module file.

Hex file (binary format file) .bin Output A binary file in the hex format converted from the load
module file.

Stack information file .sni Output A stack information file.
This is output when the -stack option is specified.

Debugging information file .dbg Output A debugging information file.
This is output when the -sdebug option is specified.

Object file including a defi-
nition specified with a file
having extension td

.rti Output An object file including a definition specified with a file
having extension td.

Calling information file .cal Output A calling information file.
This is output by CallWalker.

External symbol assign-
ment information file

.bls Output An external symbol assignment information file.
This is output at linkage when the -map option is spec-
ified.

.bls Input An external symbol assignment information file.
This is specified as an input file for the -map option at
compilation.

File Type Extension I/O Description

R20UT3248EJ0110 Rev.1.10 Page 18 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

2.3 Environment Variables

Environment variables are listed below.

Table 2.2 Environment Variables

Jump table file (assembly
language)

.jmp Output An assembler source file for the jump table that
branches the external definition symbol.
This is output when the -jump_entries_for_pic option is
specified.

Symbol address file
(assembly language)

.fsy Output An assembler source file that describes the external
definition symbol in an assembler directive.
This is output when the -fsymbol option is specified.

C++ language function sup-
port file

.td, .ti, .pi, and

.ii
Output An information file that supports the C++ language

function.

Tool usage information file .ud
.udm

Output File which is output for collecting tool usage
information

No. Environment Variable Description Default When Specification is
Omitted

1 path Specifies a storage directory for
the execution file.

Specification cannot be omitted.

2 BIN_RX Specifies the directory in which
ccrx is stored.

<ccrx storage directory>
Specification cannot be omitted
when the lbgrx command is used.

3 ISA_RX *1 Selects an instruction-set archi-
tecture.
<Instruction-set architectures>
 RXV1
 RXV2
 RXV3 [V3.00.00 or later]

No value is set when the specifi-
cation is omitted.

4 INC_RX Specifies a directory in which an
include file of the compiler is
stored.

<ccrx storage directory>
\..\include

5 INC_RXA Specifies a directory in which an
include file of the assembler is
stored.

No value is set when the specifi-
cation is omitted.

6 TMP_RX Specifies a directory in which a
temporary file is generated.

%TEMP% when the ccrx com-
mand is used.

7 HLNK_LIBRARY1
HLNK_LIBRARY2
HLNK_LIBRARY3

Specifies a default library name
for the optimizing linkage editor.
Libraries which are specified by a
library option are linked first.
Then, if there is an unresolved
symbol, the default libraries are
searched in the order of 1, 2, 3.

No value is set when the specifi-
cation is omitted.

8 HLINK_TMP Specifies a folder in which the
optimizing linkage editor gener-
ates temporary files. If
HLNK_TMP is not specified, the
temporary files are created in the
current folder.

No value is set when the specifi-
cation is omitted.

File Type Extension I/O Description

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 19 of 1053
Nov 01, 2020

*1) When both ISA_RX and CPU_RX are defined, ISA_RX takes precedence.

2.4 Operating Instructions

This section describes how to operate the RX family C/C++ compiler.

The commands will take options from left to right on the command-line. When two or more options with conflicted mean-
ings are selected and it will take neither error nor warning, the right-side option will be enabled. This results are different
according to each options. For more details, please confirm each options' descriptions.

(1) Operating Tools

(a) Compiler (ccrx)
ccrx is the startup command for the compile driver.
Compilation, assemble, and linkage can be performed using this command.
When the extension of an input file is ".s", ".src", ".S", or ".SRC", the compiler interprets the file as an assem-
bly-language file (.src, .s) and initiates the assembler.
A file with an extension other than those above is compiled as a C/C++ source file (.c, .cpp).

Two or more input files can be specified at the same time. Cases where two or more C/C++ language source
files are specified as input files at the same time are referred to as "batch compilation."

[Command description format]

[] : Can be omitted
... : Pattern in proceeding [] can be repeated
{ } : Select from items delimited by the pipe symbol ("|")
 : One or more spaces

(b) Assembler (asrx)
asrx is the startup command for the assembler.
[Command description format]

(c) Optimizing Linkage Editor (rlink)
rlink is the startup command for the optimizing linkage editor.
The optimizing linkage editor has the following functions as well as the linkage processing.

9 HLINK_DIR Specifies an input file storage
folder for the optimizing linkage
editor. The search order for files
which are specified by the input
or library option is the current
folder, then the folder specified by
HLNK_DIR.
However, when a wild card is
used in the file specification, only
the current folder is searched.

No value is set when the specifi-
cation is omitted.

10 CPU_RX *1 Specifies the CPU type.
<CPU types>
 RX600
 RX200

No value is set when the specifi-
cation is omitted.

ccrx [<option> …][<file name>[<option> …] …]
 <option>: -<option>[=<suboption>[=<suboption>]][, …]

asrx [<option> …][<file name>[<option> …] …]
 <option>: -<option>[=<suboption>][, …]

No. Environment Variable Description Default When Specification is
Omitted

R20UT3248EJ0110 Rev.1.10 Page 20 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

- Optimizes relocatable files at linkage

- Generates and edits library files

- Converts files into Motorola S type files, Intel hex type files, and binary files
[Command description format]

(d) Library Generator (lbgrx)
lbgrx is the startup command for the library generator.
[Command description format]

(2) Command Description Examples

(a) Compilation, Assemble, and Linkage by One Command
Perform all steps below by a single command.

- Compile C/C++ source files (tp1.c and tp2.c) in ccrx.

- After compilation, assemble the files in asrx.

- After assemble, link the files in rlink to generate an absolute file (tp.abs).

[Command description]

Remarks 1. When the output type specification of the output option is changed to -output=sty, the file after
linkage will be generated as a Motorola S type file.

Remarks 2. An intermediate file generated during the absolute file generation process (assembly-language
file or relocatable file) is not saved. Only a file of the type specified by the output option is to be
generated.

Remarks 3. In order to specify assemble options and linkage options that are valid for only the assembler and
optimizing linkage editor in ccrx, use the -asmcmd, -lnkcmd, -asmopt, and -lnkopt options.

Remarks 4. Object files that are to be linked are allocated from address 0. The order of the sections is not
guaranteed. In order to specify the allocation address or section allocation order, specify options
for the optimizing linkage editor using the -lnkcmd and -lnkopt options.

(b) Compilation and Assemble by One Command
Perform all steps below by a single command, and initiate the linker with another command to generate tp.abs.

- Compile C/C++ source files (tp1.c and tp2.c) in ccrx.

- After compilation, assemble the files in asrx to generate relocatable files (tp1.obj and tp2.obj).

[Command description]

Remarks 1. When the -output=obj option is specified in ccrx, ccrx generates relocatable files.

Remarks 2. In order to change relocatable file names, their C/C++ source files have to be input in ccrx, one
file each.

Remarks 3. When the form option in rlink is changed to -form=sty, the file after linkage will be generated as
a Motorola S type file.

(c) Compilation, Assemble, and Linkage by Separate Commands
Individually perform each step below by a single command.

- Compile C/C++ source files (tp1.c and tp2.c) in ccrx to generate assembly-language files (tp1.src and
tp2.src).

rlink [<option> …][<file name>[<option> …] …]
 <option>: -<option>[=<suboption>][, …]

lbgrx [<option> …]
 <option>: -<option>[=<suboption>][, …]

ccrx -isa=rxv1 -output=abs=tp.abs tp1.c tp2.c

ccrx -isa=rxv1 -output=obj tp1.c tp2.c
rlink -form=abs -output=tp.abs -subcommand=cmd.sub tp1.obj tp2.obj

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 21 of 1053
Nov 01, 2020

- Assemble the assembly-language files (tp1.src and tp2.src) in asrx to generate relocatable files (tp1.obj and
tp2.obj).

- Link the relocatable files (tp1.obj and tp2.obj) in rlink to generate an absolute file (tp.abs).
[Command description]

Remark When the -output=src option is specified in ccrx, ccrx generates assembly-language files.

(d) Assemble and Linkage by One Command
Perform all steps below by a single command.

- Assemble assembly-language files (tp1.src and tp2.src) in asrx.

- After assemble, link the files in rlink to generate an absolute file (tp.abs).

[Command description]

Remark Object files that are to be linked are allocated from address 0. The order of the sections is not
guaranteed. In order to specify the allocation address or section allocation order, specify options
for the optimizing linkage editor using the -lnkcmd and -lnkopt options.

(e) Assemble and Linkage by Separate Commands
Individually perform each step below by a single command.

- Assemble assembly-language files (tp1.src and tp2.src) in asrx to generate relocatable files (tp1.obj and
tp2.obj).

- Link the relocatable files (tp1.obj and tp2.obj) in rlink to generate an absolute file (tp.abs).

[Command description 1]

[Command description 2]

(f) Create a List File of Existing Libraries
Create a list of lib1.lib with the name of lib1.lbp.

[Command description]

ccrx -isa=rxv1 -output=src tp1.c tp2.c
asrx tp1.src tp2.src
rlink -form=abs -output=tp.abs -subcommand=cmd.sub tp1.obj tp2.obj

ccrx -isa=rxv1 -output=abs=tp.abs tp1.src tp2.src

ccrx -isa=rxv1 -output=obj tp1.src tp2.src
rlink -form=abs -output=tp.abs -subcommand=cmd.sub tp1.obj tp2.obj

asrx -isa=rxv1 tp1.src tp2.src
rlink -form=abs -output=tp.abs -subcommand=cmd.sub tp1.obj tp2.obj

rlink -form=library -list -library=lib1.lib

R20UT3248EJ0110 Rev.1.10 Page 22 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

2.5 Options

This section describes the options for the RX family C/C++ compiler in each processing phase.
Compile phase: Refer to 2.5.1 Compile Options.
Assembly phase: Refer to 2.5.2 Assembler Command Options.
Link phase: Refer to 2.5.3 Optimizing Linkage Editor (rlink) Options.
Library generation phase: Refer to 2.5.4 Library Generator Options.

2.5.1 Compile Options

The types and explanations for options of the compile phase are shown below.

Classification Option Description

Source Options -lang Specifies the language to assume in compiling the source
file.

-include Specifies the names of folders that hold include files.

-preinclude Specifies the names of files to be included at the head of
each compiling unit.

-define Specifies macro definitions.

-undefine Specifies disabling of predefined macros.

-message Information-level messages are output.

-nomessage Specifies the numbers of information-level messages to
be disabled.

-change_message Changes the levels of compiler output messages.

-no_warning [V2.08.00 or
later]

Disables the output of warnings and information-level
messages.

-file_inline_path Specifies the names of folders that hold files for inter-file
inline expansion.

-comment Selects permission for comment (/* */) nesting.

-truncated_address_initializer
[V3.01.00 or later]

Allows 1-byte or 2-byte type external variables in C
source files to be initialized by address values.

-check Checks compatibility with an existing program.

-misra2004 [Professional Edi-
tion only]

Checks the source code against the MISRA-C: 2004
rules.

-misra2012 [Professional Edi-
tion only] [V2.04.00 or later]

Checks the source code against the MISRA-C: 2012
rules.

-ignore_files_misra [Profes-
sional Edition only]

Selects files that will not be checked against the MISRAC:
2004 rules or MISRA-C: 2012 rules.

-check_language_extension
[Professional Edition only]

Enables complete checking against the MISRA-C: 2004
rules or MISRA-C: 2012 rules for parts of the code where
this would otherwise be suppressed due to use of an
extended specification.

-misra_intermodule [Profes-
sional Edition only] [V3.01.00
or later]

Checks the source code in multiple files against the
MISRA-C:2012 rules.

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 23 of 1053
Nov 01, 2020

Object Options -output Selects the output file type.

-noline Selects the non-output of #line in preprocessor expan-
sion.

-debug Debugging information is output to the object files.

-nodebug Debugging information is not output to the object files.

-g_line [V3.02.00 or later] Enhances source debugging information during optimiza-
tion.

-section Changes section names to be changed.

-stuff Variables are allocated to sections that match their align-
ment values.

-nostuff Alignment values of variables are ignored in allocating the
variables to sections.

-instalign4 Instructions at branch destinations are aligned with 4-byte
boundaries.

-instalign8 Instructions at branch destinations are aligned with 8-byte
boundaries.

-noinstalign Instructions at branch destinations have no specific
alignment.

-nouse_div_inst Generates code in which no DIV, DIVU, FDIV or DDIV
instructions are used for division and modular division.

-create_unfilled_data [To be supported by V2.03 and later versions]
Makes spaces created by .OFFSET unfilled.

-stack_protector/
-stack_protector_all [Profes-
sional Edition only] [V2.04.00
or later]

This option generates a code for detection of stack
smashing.

-avoid_cross_boundary_prefe
tch [V2.07.00 or later]

Prevents the reading of data across 4-byte boundaries in
prefetching for string manipulation instructions.

-insert_nop_with_label
[V2.08.00 or later]

This option inserts a local label and nop instruction.

-control_flow_integrity [Pro-
fessional Edition only]
[V2.08.00 or later]

This option generates code for the detection of illegal indi-
rect function calls.

List Options -listfile A source list file is output.

-nolistfile A source list file is not output.

-show Specifies the contents of the source list file.

Classification Option Description

R20UT3248EJ0110 Rev.1.10 Page 24 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

Optimize Options
(1/2)

-optimize Selects the optimization level.

-goptimize Outputs additional information for inter-module optimiza-
tion.

-speed Optimization is with emphasis on execution performance.

-size Optimization is with emphasis on code size.

-loop Specifies a maximum number for loop-expansion.

-inline Inline expansion is processed automatically.

-noinline Inline expansion is not processed automatically.

-file_inline Specifies a file for inter-file inline expansion.

-case Selects the method of expansion for switch statements.

-volatile External variables are handled as if they are all volatile
qualified.

-novolatile External variables are handled as if none of them have
been declared volatile.

-const_copy Enables constant propagation of const qualified external
variables.

-noconst_copy Disables constant propagation of const qualified external
variables.

-const_div Divisions and remainders of integer constants are
converted into instruction sequences.

-noconst_div Divisions and remainders of integer constants are not
converted into instruction sequences.

-library Selects the method for the execution of library functions.

-scope Selects division of the ranges for optimization into multiple
sections before compilation.

-noscope Selects non-division of the ranges for optimization into
multiple sections before compilation.

-schedule Pipeline processing is considered in scheduling instruc-
tions.

-noschedule Scheduling is not applied to instruction execution.

-map All access to external variables is optimized.

-smap Access to external variables is optimized as defined in the
file to be compiled.

-nomap Access to external variables is not optimized.

-approxdiv Division of floating-point constants is converted into multi-
plication.

-enable_register Variables with the register storage class specification are
given preference for allocation to registers.

Classification Option Description

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 25 of 1053
Nov 01, 2020

Optimize Options
(2/2)

-simple_float_conv Part of the type conversion processing between the float-
ing-point type and the integer type is omitted.

-fpu Single-precision floating-point processing instructions are
used.

-nofpu Single-precision floating-point processing instructions are
not used.

-dpfpu [V3.01.00 or later] Double-precision floating-point processing instructions
are used.

-nodpfpu [V3.01.00 or later] Double-precision floating-point processing instructions
are not used.

-tfu [V3.01.00 or later] Selects how the trigonometric function unit is to be used.

-alias Optimization is performed in consideration of the types of
data indicated by pointers.

-float_order The orders of operations in floating-point expressions are
modified for optimization.

-branch_chaining [V3.03.00
or later]

The branch instruction size is reduced for optimization.

-nobranch_chaining
[V3.03.00 or later]

The branch instruction size is not reduced for optimiza-
tion.

-ip_optimize Selects global optimization.

-merge_files The results of compiling multiple source files are output to
a single object file.

-whole_program Makes the compiler perform optimization on the assump-
tion that all source files have been input.

Classification Option Description

R20UT3248EJ0110 Rev.1.10 Page 26 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

Microcontroller Options -isa Selects the instruction-set architecture.

-cpu Selects the microcontroller type.

-endian Selects the endian type.

-round Selects the rounding method for floating-point constant
operations.

-denormalize Selects the operation when denormalized numbers are
used to describe floating-point constants.

-dbl_size Selects the precision of the double and long double
types.

-int_to_short Replaces the int type with the short type and the
unsigned int type with the unsigned short type.

-signed_char Variables of the char type are handled as signed char.

-unsigned_char Variables of the char type are handled as unsigned char.

-signed_bitfield The sign bits of bit-fields are taken as signed.

-unsigned_bitfield The sign bits of bit-fields are taken as unsigned.

-auto_enum Selects whether or not the sizes for enumerated types are
automatically selected.

-bit_order Selects the order of bit-field members.

-pack Specifies one as the boundary alignment value for struc-
ture members and class members.

-unpack Aligns structure members and class members to the
alignment boundaries for the given data types.

-exception Enables the exception handling function.

-noexception Disables the exception handling function.

-rtti Selects enabling or disabling of C++ runtime type informa-
tion (dynamic_cast or typeid).

-fint_register Selects a general register for exclusive use with the fast
interrupt function.

Microcontroller Options -branch Selects the maximum size or no maximum size for
branches.

-base Specifies the base registers for ROM and RAM.

-patch Selects avoidance or non-avoidance of a problem specific
to the CPU type.

-pic Enables the PIC function.

-pid Enables the PID function.

-nouse_pid_register The PID register is not used in code generation.

-save_acc The contents of ACC are saved and restored in interrupt
functions.

Classification Option Description

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 27 of 1053
Nov 01, 2020

Assemble and Linkage
Options

-asmcmd Specifies a subcommand file for asrx options.

-lnkcmd Specifies a subcommand file for rlink options.

-asmopt Specifies asrx options.

-lnkopt Specifies rlink options.

Other Options -logo Selects the output of copyright information.

-nologo Selects the non-output of copyright information.

-euc The character codes of input programs are interpreted as
EUC codes.

-sjis The character codes of input programs are interpreted as
SJIS codes.

-latin1 The character codes of input programs are interpreted as
ISO-Latin1 codes.

-utf8 The character codes of input programs are interpreted as
UTF-8 codes.

-big5 The character codes of input programs are interpreted as
BIG5 codes.

-gb2312 The character codes of input programs are interpreted as
GB2312 codes.

-outcode Selects the character coding for an output assembly-lan-
guage file.

-subcommand Specifies a file for including command options.

Classification Option Description

R20UT3248EJ0110 Rev.1.10 Page 28 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

< Compile Options / Source Options >

The following source options are available.

- -lang

- -include

- -preinclude

- -define

- -undefine

- -message

- -nomessage

- -change_message

- -no_warning [V2.08.00 or later]

- -file_inline_path

- -comment

- -truncated_address_initializer [V3.01.00 or later]

- -check

- -misra2004 [Professional Edition only]

- -misra2012 [Professional Edition only] [V2.04.00 or later]

- -ignore_files_misra [Professional Edition only]

- -check_language_extension [Professional Edition only]

- -misra_intermodule [Professional Edition only] [V3.01.00 or later]

Source Options

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 29 of 1053
Nov 01, 2020

-lang

< Compile Options / Source Options >

[Format]

- [Default]
If this option is not specified, the compiler will compile the program file as a C++ source file when the extension is
cpp, cc, or cp, and as a C (C89) source file for any other extensions. However, if the extension is src or s, the pro-
gram file is handled as an assembly-language file regardless of whether this option is specified.

[Description]

- This option specifies the language of the source file.

- When the lang=c option is specified, the compiler will compile the program file as a C (C89) source file.

- When the lang=cpp option is specified, the compiler will compile the program file as a C++ source file.

- When the lang=ecpp option is specified, the compiler will compile the program file as an Embedded C++ source file.

- When the lang=c99 option is specified, the compiler will compile the program file as a C (C99) source file.

[Remarks]

- The Embedded C++ language specification does not support a catch, const_cast, dynamic_cast, explicit, muta-
ble, namespace, reinterpret_cast, static_cast, template, throw, try, typeid, typename, using, multiple inheri-
tance, or virtual base class. If one of these classes is written in the source file, the compiler will display an error
message.

- Always specify the lang=ecpp option when using an EC++ library.

- In batch compilation (when multiple C/C++ language source files are input to the compiler at the same time), the indi-
vidual C or C++ language source files must be in the same language. Thus, separate the C and C++ language source
files in accord with the languages to be specified and then perform batch compilation by specifying this option for the
group in each of the languages.

-lang= { c | cpp | ecpp | c99 }

R20UT3248EJ0110 Rev.1.10 Page 30 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-include

< Compile Options / Source Options >

[Format]

[Description]

- This option specifies the name of the path to the folder that stores the include file.

- Multiple path names can be specified by separating them with a comma (,).

- Searching for files with names enclosed in "<" and ">" proceeds in order of the folders specified by the include option,
the folders specified by environment variable INC_RX.

- Searching for files with names enclosed in double quotation marks ("") proceeds in order of the storage folder of the
file for which the #include statement is made, the folders specified by the include option, the folders specified by envi-
ronment variable INC_RX.

- If two or more folders are specified in the include option, searching proceeds in order of specifications of the path-
names for the folders on the command line (from left to right).

[Remarks]

- If this option is specified for more than one time, all specified path names are valid.

-include=<path name>[,...]

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 31 of 1053
Nov 01, 2020

-preinclude

< Compile Options / Source Options >

[Format]

[Description]

- This option includes the specified file contents at the head of the compiling unit.

- If the file name is specified by its relative path, the folder is searched in the following order:

- [V3.01.00 or earlier]

- Folder with the compilation unit

- Folder specified by the include option

- Folder specified by environment variable INC_RX

- [V3.02.00 or later]

- Folder that started the compiler

- Multiple file names can be specified by separating them with a comma (,).

[Remarks]

- If this option is specified for more than one time, all specified files will be included.

-preinclude=<file name>[,...]

R20UT3248EJ0110 Rev.1.10 Page 32 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-define

< Compile Options / Source Options >

[Format]

[Description]

- This option provides the same function as #define specified in the source file.

- <string> can be defined as a macro name by specifying <macro name>=<string>.

- When only <macro name> is specified as a suboption, the macro name is assumed to be defined. Names or integer
constants can be written in <string>.

[Remarks]

- If the macro name specified by this option has already been defined in the source file by #define, #define takes prior-
ity.

- If this option is specified for more than one time, all specified macro names are valid.

-define=<sub>[,...]
 <sub>: <macro name> [= <string>]

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 33 of 1053
Nov 01, 2020

-undefine

< Compile Options / Source Options >

[Format]

[Description]

- This option invalidates the predefined macro of <macro name>.

- Multiple macro names can be specified by separating them with a comma (,).

[Remarks]

- Refer to the Macro Names section, in the COMPILER LANGUAGE SPECIFICATIONS chapter, for specifiable pre-
defined macros of the compiler.

- If this option is specified for more than one time, all specified macro names will be undefined.

-undefine=<sub>[,...]
 <sub>: <macro name>

R20UT3248EJ0110 Rev.1.10 Page 34 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-message

< Compile Options / Source Options >

[Format]

- [Default]
No information-level messages will be output.

[Description]

- This option outputs the information-level messages.

[Remarks]

- Message output from the assembler or optimizing linkage editor cannot be controlled by this option. Message output
from the optimizing linkage editor can be controlled by using the lnkcmd option to specify the message or nomes-
sage option of the optimizing linkage editor.

-message

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 35 of 1053
Nov 01, 2020

-nomessage

< Compile Options / Source Options >

[Format]

[Description]

- With no sub-options, this disables the output of information-level messages.

- When error numbers are specified as sub-options, only the output of the information-level messages with the speci-
fied numbers will be disabled. Other information-level messages will be output.

- A range of error numbers to be disabled can be specified by using a hyphen (-), that is, in the form of <error num-
ber>-<error number>.

- Error numbers are specified by the five lower-order digits (i.e. five digits from the right) of message numbers without
the prefix "M" (information).
Example: To change the level of information message M0523009
-nomessage=23009

[Remarks]

- Message output from the assembler or optimizing linkage editor cannot be controlled by this option. Message output
from the optimizing linkage editor can be controlled by using the lnkcmd option to specify the message or nomes-
sage option of the optimizing linkage editor.

- If the nomessage option is specified for more than one time, output for all specified error numbers will be disabled.

- This option is only specifiable for messages with number 0510000 to 0549999 (including the component number).

- This option can also be used to suppress the output of warnings in the range from 0520000 to 0529999. Specify the
numbers of the warnings that you wish to suppress. To suppress the output of other warnings, use
-change_message to change them to information-level messages.

-nomessage [= <error number> [- <error number>][,...]

R20UT3248EJ0110 Rev.1.10 Page 36 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-change_message

< Compile Options / Source Options >

[Format]

[Description]

- This option changes the message level of information-level and warning-level messages.

- Multiple error numbers can be specified by separating them with a comma (,).

- Error numbers are specified by the five lower-order digits (i.e. five digits from the right) of the message numbers with-
out the prefix "M" (information) or "W" (warning).
Example: To change the level of information message M0523009
-change_message=error=23009

- Although this option may change the types of some messages (e.g. error (E) or warning (W)), the meaning of the
message indicated by the component or message number remains the same.

[Example]

- Warning-level messages with the specified error numbers are changed to information-level messages.

- Information-level messages with the specified error numbers are changed to warning-level messages.

- Information-level and warning-level messages with the specified error numbers are changed to error-level messages.

- All warning-level messages are changed to information-level messages.

- All information-level messages are changed to warning-level messages.

- All information-level and warning-level messages are changed to error-level messages.

[Remarks]

- The output of messages which have been changed to information-level messages can be disabled by the nomes-
sage option.

- Message output from the assembler or optimizing linkage editor cannot be controlled by this option. Message output
from the optimizing linkage editor can be controlled by using the lnkcmd option to specify the message or nomes-
sage option of the optimizing linkage editor.

- If this option is specified for more than one time, all specified error numbers are valid.

-change_message = <sub>[,...]
 <sub>: <error level>[=<error number>[- <error number>][,...]]
 <error level>: { information | warning | error }

change_message=information=error number

change_message=warning=error number

change_message=error=error number

change_message=information

change_message=warning

change_message=error

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 37 of 1053
Nov 01, 2020

- Only the levels of warning and information messages can be controlled by this option. Specification of the option for a
message not at these levels is ignored.

- This option is not usable to control the level of MISRA2004 detection messages (labeled M) that appear when the
misra2004 option has been specified.

R20UT3248EJ0110 Rev.1.10 Page 38 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-no_warning [V2.08.00 or later]

< Compile Options / Source Options >

[Format]

[Description]

- This option is used to suppress the output of warnings or information-level messages with the numbers specified by
<number>. You cannot use this option to suppress the output of any messages by the assembler or optimizing link-
age editor.

- You can specify this option more than once. Each specification will be effective.

- Separate all parameters with commas (,). Do not enter any white space before or after a comma.

- Entering white space before or after a comma, omitting parameters, or entering characters that are not numbers will
lead to a compilation error.

- The values specifiable as parameters are the last five digits of message numbers of warnings and information-level
messages (51000 to 54999). Any other specified numbers, including those that are not actually message numbers,
will be ignored.

- Specification of the numbers of error messages will be ignored because the output of error messages cannot be
suppressed. This applies to any messages at the error level, including those having levels changed by the
-change_message=error option.

- This option is also usable in combination with the -nomessage option. In such cases, both options are effective, even
if they include specifications of the same message.

-no_warning={ <number> | <number>-<number> }[,{ <number> | <number>-<number> }]...

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 39 of 1053
Nov 01, 2020

-file_inline_path

< Compile Options / Source Options >

[Format]

[Description]

- This option is not available in V.2.00. Any specification of this option will simply be ignored and will not lead to an error
due to compatibility with former versions.

-file_inline_path=<path name>[,...]

R20UT3248EJ0110 Rev.1.10 Page 40 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-comment

< Compile Options / Source Options >

[Format]

[Description]

- When comment=nest is specified, nested comments are allowed to be written in the source file.

- When comment=nonest is specified, writing nested comments will generate an error.

- The default for this option is comment=nonest.

[Example]

- When comment=nest is specified, the compiler handles the above line as a nested comment; however, when com-
ment=nonest is specified, the compiler assumes (1) as the end of the comment.

-comment = { nest | nonest }

/* This is an example of /* nested */ comment */
 (1)

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 41 of 1053
Nov 01, 2020

-truncated_address_initializer [V3.01.00 or later]

< Compile Options / Source Options >

[Format]

[Description]

- The warning message W0520069 is output instead of error E0520069 in response to detection of a code that initial-
izes a 1-byte type or 2-byte type external variable or static variable by an address value. This is only applicable to
C-language source files.

[Remarks]

- The upper bytes of an address are truncated. Therefore, the original address value will not be retained when the
upper bytes are not 0.

- If casting into 1-byte or 2-byte type is followed by casting into a larger type, an error will occur.

- If the variable to be initialized is a bit field member, an error will occur.

- This option is invalid when code is in the C++ language or Embedded C++ language.

-truncated_address_initializer

R20UT3248EJ0110 Rev.1.10 Page 42 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-check

< Compile Options / Source Options >

[Format]

[Description]

- This option checks the specified options and source file parts which will affect the compatibility when this compiler
uses a C/C++ source file that has been coded for the R8C and M16C family C compilers, H8, H8S, and H8SX family
C/C++ compilers, and SuperH family C/C++ compilers.

- For check=nc, the compatibility with the R8C and M16C family C compilers is checked. Checking will be for the fol-
lowing options and types:

- Options: signed_char, signed_bitfield, bit_order=left, endian=big, and dbl_size=4

- inline, enum type, #pragma BITADDRESS, #pragma ROM, #pragma PARAMETER, and asm()

- Assignment of a constant outside the signed short range to the int or signed int type or assignment of a constant
outside the unsigned short range to the int or unsigned int type while -int_to_short is not specified

- Assignment of a constant outside both of the signed short and unsigned short ranges to the long or long long type

- Comparison expression between a constant outside the signed short range and the int, short, or char type (except
the signed char type)

- For check=ch38, the compatibility with the H8, H8S, and H8SX family C/C++ compilers is checked. Checking will be
for the following options and types:

- Options: unsigned_char, unsigned_bitfield, bit_order=right, endian=little, and dbl_size=4

- __asm and #pragma unpack

- Comparison expression with a constant greater than the maximum value of signed long

- Assignment of a constant outside the signed short range to the int or signed int type or assignment of a constant
outside the unsigned short range to the int or unsigned int type while -int_to_short is not specified

- Assignment of a constant outside both of the signed short and unsigned short ranges to the long or long long type

- Comparison expression between a constant outside the signed short range and the int, short, or char type (except
the signed char type)

- For check=shc, the compatibility with the SuperH family C/C++ compilers is checked. Checking will be for the follow-
ing options and types:

- Options: unsigned_char, unsigned_bitfield, bit_order=right, endian=little, dbl_size=4, and round=nearest

- #pragma unpack

- volatile qualified variables

- Confirm the following notes for the displayed items.

- Options: The settings which are not defined in the language specification and depend on implementation differ in
each compiler. Confirm the settings of the options that were output in a message.

- Extended specifications: There is a possibility that extended specifications will affect program operation. Confirm the
descriptions on the extended specifications that were output in a message.

-check = { nc | ch38 | shc }

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 43 of 1053
Nov 01, 2020

[Remarks]

- When dbl_size=4 is enabled, the results of type conversion related to floating-point numbers and the results of library
calculation may differ from those in the R8C and M16C family C compilers, H8, H8S, and H8SX family C/C++ compil-
ers, and SuperH family C/C++ compilers. When dbl_size=4 is specified, this compiler handles double type and long
double type as 32 bits, but the R8C and M16C family C compilers (fdouble_32), H8, H8S, and H8SX family C/C++
compilers (double=float), and SuperH family C/C++ compilers (double=float) handle only double type as 32 bits.

- The result of a binary operation (addition, subtraction, multiplication, division, comparison, etc.) with unsigned int
type and long type operands may differ from that in the SuperH family C/C++ compilers. In this compiler, the types of
the operands are converted to the unsigned long type before operation. However, in the SuperH family C/C++ com-
pilers (only when strict_ansi is not specified), the types of the operands are converted to the signed long long type
before operation.

- The data size of reading from and writing to a volatile qualified variable may differ from that in the SuperH family C/
C++ compilers. This is because a volatile qualified bit field may be accessed in a size smaller than that of the decla-
ration type in this compiler. However, in the SuperH family C/C++ compilers, a volatile qualified bit field is accessed in
the same size as that of the declaration type.

- This option does not output a message regarding allocation of structure members and bit field members. When an
allocation-conscious declaration is made, refer to the Internal Data Representation and Areas section of the COM-
PILER LANGUAGE SPECIFICATIONS chapter.

- In the R8C and M16C family C compilers (fextend_to_int is not specified), the generated code has been evaluated
without performing generalized integer promotion by a conditional expression. Accordingly, operation of such a code
may differ from a code generated by this compiler.

R20UT3248EJ0110 Rev.1.10 Page 44 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-misra2004 [Professional Edition only]

< Compile Options / Source Options >

[Format]

[Description]

- This option enables checking against the MISRA-C:2004 rules and to select specific rules to be used.

- When misra2004=all, the compiler checks the source code against all of the rules that are supported.

- When misra2004=apply=<rule number>[,<rule number>,...], the compiler checks the source code against the rules
with the selected numbers.

- When misra2004=ignore=<rule number>[,<rule number>,...], the compiler checks the source code against the
rules other than those with the selected numbers.

- When misra2004=required, the compiler checks the source code against the rules of the "required" type.

- When misra2004=required_add=<rule number>[,<rule number>,...], the compiler checks the source code against
the rules of the "required" type and the rules with the selected numbers.

- When misra2004=required_remove=<rule number>[,<rule number>,...], the compiler checks the source code
against the rules other than those with the selected numbers among the rules of the "required" type.

- When misra2004=<filename>, the compiler checks the source code against the rules with the numbers written in the
specified file. One rule number is written per line in the file. Each rule number must be specified by using decimal val-
ues and a period (".").

- When checking of a line of code against the MISRA-C:2004 rules leads to detection of a violation, a message in the
following format will appear.

<Filename> (<line number>): M0523028 <Rule number>: <Message>

- When -misra2004=<filename> is used more than once, only the last specification is valid.

[Remarks]

- The -misra2004 option can be specified more than once. However, if multiple types exist, only the type written last
and consecutive specifications of the same type are valid.
... -misra2004=ignore=2.2 -misra2004=apply=2.3
-misra2004=required_add=4.1 -misra2004=apply=4.2
-misra2004=apply=5.2 ...
In this example, ignore, apply, and required_add are specified, but only apply (used in the last two cases) is valid.
The compiler will check the source code against rules 4.2 and 5.2.

- When the number of an unsupported rule is specified for <rule number>, the compiler detects error F0523031 and
stops the processing.

- When the file specified in misra2004=<filename> cannot be opened, the compiler detects error F0523029. When
rule numbers are not extractable from the specified file, the compiler detects error F0523030. Processing by the com-
piler stops in both cases.

- This option is ignored when cpp, c99, or ecpp is selected for the lang option or when output=prep is specified at the
same time.

- This option supports the MISRA-C: 2004 rules listed below.

-misra2004 = {
 all
 | apply=<rule number>[,...]
 | ignore=<rule number>[,...]
 | required
 | required_add=<rule number>[,...]
 | required_remove=<rule number>[,...]
 | <filename> }

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 45 of 1053
Nov 01, 2020

[Required]
2.2 2.3
4.1 4.2
5.2 5.3 5.4
6.1 6.2 6.4 6.5
7.1
8.1 8.2 8.3 8.5 8.6 8.7 8.11 8.12
9.1 9.2 9.3
10.1 10.2 10.3 10.4 10.5 10.6
11.1 11.2 11.5
12.3 12.4 12.5 12.7 12.8 12.9 12.10 12.12
13.1 13.3 13.4
14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10
15.1 15.2 15.3 15.4 15.5
16.1 16.3 16.5 16.6 16.9
18.1 18.4
19.3 19.6 19.8 19.11 19.14 19.15
20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.11 20.12
[Not required]
5.5 5.6
6.3
11.3 11.4
12.1 12.6 12.11 12.13
13.2
17.5
19.7 19.13

- For source programs that use extended functions such as #pragma, checking against these rules will be suppressed
under some conditions. For details, refer to the section on the check_language_extension option.

- MISRA diagnostic messages displayed by the misra2004 option cannot be controlled by the change_message
option.

- The source code cannot be simultaneously checked against the MISRA-C: 2012 rules.

R20UT3248EJ0110 Rev.1.10 Page 46 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-misra2012 [Professional Edition only] [V2.04.00 or later]

< Compile Options / Source Options >

[Format]

[Description]

- This option enables checking against the MISRA-C:2012 rules and to select specific rules to be used.

- When misra2012=all, the compiler checks the source code against all of the rules that are supported.

- When misra2012=apply=<rule number>[,<rule number>,...], the compiler checks the source code against the rules
with the selected numbers.

- When misra2012=ignore=<rule number>[,<rule number>,...], the compiler checks the source code against the
rules other than those with the selected numbers.

- When misra2012=required, the compiler checks the source code against the rules of the "mandatory" and "required"
types.

- When misra2012=required_add=<rule number>[,<rule number>,...], the compiler checks the source code against
the rules of the "mandatory" and "required" types and the rules with the selected numbers.

- When misra2012=required_remove=<rule number>[,<rule number>,...], the compiler checks the source code
against the rules other than those with the selected numbers among the rules of the "required" type.

- When misra2012=<filename>, the compiler checks the source code against the rules with the numbers written in the
specified file. One rule number is written per line in the file. Each rule number must be specified by using decimal val-
ues and a period (".").

- When checking of a line of code against the MISRA-C:2012 rules leads to detection of a violation, a message in the
following format will appear.

<Filename> (<line number>): M0523086 <Rule number>: <Message>

- When -misra2012=<filename> is used more than once, only the last specification is valid.

[Remarks]

- The -misra2012 option can be specified more than once. However, if multiple types exist, only the type written last
and consecutive specifications of the same type are valid.
... -misra2012=ignore=3.1
-misra2012=required_add=4.1 -misra2012=apply=4.2
-misra2012=apply=5.2 ...
In this example, ignore, apply, and required_add are specified, but only apply (used in the last two cases) is valid.
The compiler will check the source code against rules 4.2 and 5.2.

- When the number of an unsupported rule is specified for <rule number>, the compiler detects error F0523031 and
stops the processing.

- When the file specified in misra2012=<filename> cannot be opened, the compiler detects error F0523029. When
rule numbers are not extractable from the specified file, the compiler detects error F0523030. Processing by the com-
piler stops in both cases.

- This option is ignored when cpp or ecpp is selected for the lang option or when output=prep is specified at the same
time.

-misra2012 = {
 all
 | apply=<rule number>[,...]
 | ignore=<rule number>[,...]
 | required
 | required_add=<rule number>[,...]
 | required_remove=<rule number>[,...]
 | <filename> }

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 47 of 1053
Nov 01, 2020

- If this option is specified together with lang=c99, checking against C90/C99 common rules is performed in the scope
of C99.

- For source programs that use extended functions such as #pragma, checking against these rules are suppressed
under some conditions. For details, refer to the section on the check_language_extension option.

- MISRA diagnostic messages displayed by the misra2012 option cannot be controlled by the change_message
option.

- Checking the source code cannot be simultaneously checked against the MISRA-C:2004 rules.

- In V3.02.00 and later versions, this option supports the MISRA-C: 2012 rules listed below.
2.2 2.6 2.7
3.1 3.2
4.1 4.2
5.1(*2) 5.2 5.3 5.4 5.5 5.6(*2) 5.7(*2) 5.8(*2) 5.9(*2)

6.1 6.2
7.1 7.2 7.3 7.4
8.1 8.2 8.3(*2) 8.4 8.5(*3) 8.6(*3) 8.8 8.9 8.11 8.12 8.13 8.14
9.1 9.2 9.3 9.4 9.5
10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8
11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9
12.1 12.2 12.3 12.4 12.5
13.1 13.2 13.3 13.4 13.5 13.6
14.2 14.3 14.4
15.1 15.2 15.3 15.4 15.5 15.6 15.7
16.1 16.2 16.3 16.4 16.5 16.6 16.7
17.1 17.3 17.4 17.5 17.6 17.7 17.8
18.4 18.5 18.7
19.2
20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.11 20.12 20.13 20.14
21.1 21.2 21.3 21.4 21.5 21.6 21.7 21.8(*1) 21.9 21.10 21.11 21.12

*1) Checking is in accord with to MISRA C:2012, Amendment 1 (getenv is not checked).
*2) If the -misra_intermodule option is specified, analysis can be performed over multiple files.
*3) This rule is valid only when the -misra_intermodule option is specified.

[Example]

- In this example, tree types of -misra2012 option (ignore, apply, and required_add) are specified, but only apply in
the last two consecutive specifications is valid. As a result, the compiler checks the source code against rules 4.2 and
5.2.

-misra2012=ignore=3.1
-misra2012=required_add=4.1 -misra2012=apply=4.2
-misra2012=apply=5.2

R20UT3248EJ0110 Rev.1.10 Page 48 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-ignore_files_misra [Professional Edition only]

< Compile Options / Source Options >

[Format]

[Description]

- This option selects source files that will not be checked against the MISRA-C:2004 rules or MISRA-C:2012 rules.

[Remarks]

- If the option is specified more than once in the command line, all specifications are valid.

- This option is ignored when the misra2004 or misra2012 option has not been specified.

- <filename> is ignored when the specified file is not to be compiled.

-ignore_files_misra=<filename>[,<filename>,...]

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 49 of 1053
Nov 01, 2020

-check_language_extension [Professional Edition only]

< Compile Options / Source Options >

[Format]

[Description]

- This option enables complete checking against the MISRA-C: 2004 rules or MISRA-C: 2012 rules for parts of the
code where they would otherwise be suppressed due to proprietary extensions from the C language specification.

- With the default misra2004 option and misra2012 option, the compiler does not proceed with checking against the
MISRA-C: 2004 rules and MISRA-C: 2012 rules under the condition given below. To enable complete checking, spec-
ify the check_language_extension option when specifying the misra2004 option or misra2012 option.

- A function has no prototype declaration (MISRA-C:2004 rule 8.1, MISRA-C:2012 rule 8.4) and #pragma entry
or #pragma interrupt is specified for it.

[Example]

- A function vfunc, for which #pragma interrupt is specified, has no prototype declaration. The message on rule 8.1 is
not displayed unless the check_language_extension option is specified.

[Remarks]

This option is ignored when the misra2004 or misra2012 option has not been specified.

-check_language_extension

#pragma interrupt vfunc
extern void service(void);
void vfunc(void)
{
 service();
}

R20UT3248EJ0110 Rev.1.10 Page 50 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-misra_intermodule [Professional Edition only] [V3.01.00 or later]

< Compile Options / Source Options >

[Format]

- Interpretation when omitted
None (checking of source code in multiple files against the MISRA-C:2012 rules is disabled)

[Description]

- This option saves symbol information of multiple files in <file name> and checks source code in these files against the
MISRA-C:2012 rules. If <file name> does not exist, a new file will be created. If <file name> exists, symbol information
will be added to the file.

- This option is only valid when the -misra2012 option is specified. A warning is output and this option will be ignored if
the -misra2012 option is not specified.

- An error will occur if <file name> is omitted.

- This option is applied to rules whose valid range of analysis is the system. Source code will be checked against the
following MISRA-C:2012 rules.

5.1 5.6 5.7 5.8 5.9
8.3 8.5 8.6

[Example]

- To check source code in multiple files a.c, b.c, and c.c against the MISRA-C:2012 rules, describe as:

[Remarks]

- .{c|a|f} cannot be specified as the extension of <file name>. If specified, an error will occur. Correct operation is not
guaranteed if <file name> is same as the name of another input or output file.

- If there are many files to be checked and the symbol information to be stored in <file name> is huge, the compilation
speed gets slower.

- If any of the source files is modified after <file name> was created, recompilation will update the information of <file
name>. If any of the source files is deleted or its file name is changed, delete <file name> and recheck source code
against the MISRA-C:2012 rules because the information of <file name> cannot be updated.

- An error will occur if this option is specified in the Standard edition of the compiler.

-misra_intermodule=<file name>

> ccrx -isa=rxv3 -misra2012=all -misra_intermodule=test.mi a.c b.c c.c

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 51 of 1053
Nov 01, 2020

< Compile Options / Object Options >

The following object options are available.

- -output

- -noline

- -debug

- -nodebug

- -g_line [V3.02.00 or later]

- -section

- -stuff

- -nostuff

- -instalign4

- -instalign8

- -noinstalign

- -nouse_div_inst

- -create_unfilled_data

- -stack_protector/-stack_protector_all [Professional Edition only] [V2.04.00 or later]

- -avoid_cross_boundary_prefetch [V2.07.00 or later]

- -insert_nop_with_label [V2.08.00 or later]

- -control_flow_integrity [Professional Edition only] [V2.08.00 or later]

Object Options

R20UT3248EJ0110 Rev.1.10 Page 52 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-output

< Compile Options / Object Options >

[Format]

- [Default]
The default for this option is output=obj.

[Description]

- This option specifies the output file type.

- The suboptions and output files are shown in the following table.

- If no <file name> is specified, a file will be generated with an extension, that is shown in the following table, appended
to the source file name input at the beginning.

Table 2.3 Suboption Output Format

Note Relocatable files are files output from the assembler.
Absolute files, Intel hex type files, and Motorola S type files are files output from the optimizing linkage
editor.

[Remarks]

- An intermediate file used to generate a file of the specified type is not generated.

-output = <sub> [=<file name>]
 <sub>: { prep | src | obj | abs | hex | sty }

Suboption Output File Type Extension When File Name is Not Specified

prep Source file after preprocessed C (C89, C99) source file: p
C++ source file: pp

src Assembly-language file src

obj Relocatable file obj

abs Absolute file abs

hex Intel hex type file hex

sty Motorola S type file mot

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 53 of 1053
Nov 01, 2020

-noline

< Compile Options / Object Options >

[Format]

[Description]

- This option disables #line output during preprocessor expansion.

[Remarks]

- This option is validated when the output=prep option has not been specified.

-noline

R20UT3248EJ0110 Rev.1.10 Page 54 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-debug

< Compile Options / Object Options >

[Format]

- [Default]
The default for this option is -nodebug.

[Description]

- When the debug option is specified, debugging information necessary for C-source debugging is output. The debug
option is valid even when an optimize option is specified.

-debug

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 55 of 1053
Nov 01, 2020

-nodebug

< Compile Options / Object Options >

[Format]

- [Default]
The default for this option is -nodebug.

[Description]

- When the nodebug option is specified, no debugging information is output.

-nodebug

R20UT3248EJ0110 Rev.1.10 Page 56 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-g_line [V3.02.00 or later]

< Compile Options / Object Options >

[Format]

[Description]

- This option is valid only when the -debug option is specified at the same time.

- This option enhances debugging information to enable more accurate single-step execution at the source level during
debugging when optimization is performed.

- An increase in debugging information might cause a delay in single-step execution.

[Example]

-g_line

ccrx a.c -isa=rxv3 -debug -g_line

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 57 of 1053
Nov 01, 2020

-section

< Compile Options / Object Options >

[Format]

[Description]

- This option specifies the section name.

- section=P=<section name> specifies the section name of a program area.

- section=C=<section name> specifies the section name of a constant area.

- section=D=<section name> specifies the section name of an initialized data area.

- section=B=<section name> specifies the section name of an uninitialized data area.

- section=L=<section name> specifies the section name of a literal area.

- section=W=<section name> specifies the section name of a switch statement branch table area.

- <section name> must be alphabetic, numeric, underscore (_), or $. The first character must not be numeric.

[Remarks]

- The default for this option is section=P=P,C=C,D=D,B=B,L=L,W=W.

- In the same way as in V. 1.00, if you want to output the literal area in the C section rather than output a separate L
section, select section=L=C.

- Except for changing the L section to the same section name as that of the C section, the same section name cannot
be specified for the sections for different areas.

- For the translation limit of the section name length, refer to Translation Limits.

-section = <sub>[,...]
 <sub>: { P = <section name> |
 C = <section name> |
 D = <section name> |
 B = <section name> |
 L = <section name> |
 W = <section name> }

R20UT3248EJ0110 Rev.1.10 Page 58 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-stuff

< Compile Options / Object Options >

[Format]

[Description]

- When the stuff option is specified, all variables are allocated to 4-byte, 2-byte, or 1-byte boundary alignment sections
depending on the alignment value (see Table 2.4).

- [V3.01.00 or later] When the dpfpu option is specified, double type and long double type variables are allocated to
8-byte boundary alignment sections.

Table 2.4 Correspondences between Variables and Their Output Sections When stuff Option is Specified

Notes 1. When the variable type is double or long double with the dpfpu option specified

Notes 2. Cases other than note 1

- C, D, and B are the section names specified by the section option or #pragma section. W is the section name spec-
ified by the section option. The data contents allocated to each section are output in the order they were defined.

-stuff

Variable Type Alignment Value for Variable Section to Which Variable Belongs

const qualified variables 4 C_8*1

C*2

2 C_2

1 C_1

Initialized variables 4 D_8*1

D*2

2 D_2

1 D_1

Uninitialized variables 4 B_8*1

B*2

2 B_2

1 B_1

switch statement branch table 4 W

2 W_2

1 W_1

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 59 of 1053
Nov 01, 2020

[Example]

[Remarks]

- The -stuff option has no effect for sections other than B, D, C, and W.

int a;
char b=0;
const short c=0;
struct {
 char x;
 char y;
} ST;

 .SECTION C_2,ROMDATA,ALIGN=2
 .glb _c
_c:
 .word 0000H
 .SECTION D_1,ROMDATA
 .glb _b
_b:
 .byte 00H
 .SECTION B,DATA,ALIGN=4
 .glb _a
_a:
 .blkl 1
 .SECTION B_1,DATA
 .glb _ST
_ST
 .blkb 2

R20UT3248EJ0110 Rev.1.10 Page 60 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-nostuff

< Compile Options / Object Options >

[Format]

[Description]

- When the nostuff option is specified, the compiler allocates the variables belonging to the specified <section type> to
4-byte boundary alignment sections. When <section type> is omitted, variables of all section types are applicable.

- C, D, and B are the section names specified by the section option or #pragma section. W is the section name spec-
ified by the section option. The data contents allocated to each section are output in the order they were defined.

[Example]

[Remarks]

- The nostuff option cannot be specified for sections other than B, D, C, and W.

-nostuff [= <section type>[,...]]
 <section type>: { B | D | C | W }

int a;
char b=0;
const short c=0;
struct {
 char x;
 char y;
} ST;

 .SECTION C,ROMDATA,ALIGN=4
 .glb _c
_c:
 .word 0000H
 .SECTION D,ROMDATA,ALIGN=4
 .glb _b
_b:
 .byte 00H
 .SECTION B,DATA,ALIGN=4
 .glb _a
_a:
 .blkl 1

 .glb _ST
_ST
 .blkb 2

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 61 of 1053
Nov 01, 2020

-instalign4

< Compile Options / Object Options >

[Format]

[Description]

- This option aligns instructions at branch destinations.

- When the instalign4 option is specified, the instruction at the location address is aligned to the 4-byte boundary.

- Instruction alignment is performed only when the instruction at the specified location exceeds the address which is a
multiple of the alignment value (4)*1.

- The following three types of branch destination can be selected by specifying the suboptions of -instalign4*2.

- No specification:Head of function and case and default labels of switch statement
inmostloop: Head of each inmost loop, head of function, and case and default labels of switch statement
loop: Head of each loop, head of function, and case and default labels of switch statement

- When this option is selected, the alignment value of the program section is changed from 1 to 4 (for instalign4) or 8
(for instalign8).

- This option aims to efficiently operate the instruction queues of the RX CPU and improve the speed of program exe-
cution by aligning the addresses of branch destination instructions.
This option has specifications targeting the following usage.

- instalign4: When attempting to improve the speed of CPUs with a 32-bit instruction queue (mainly RX200 Series)

Notes 1. This is when the instruction size is equal to or smaller than the alignment value. If the instruction size is
greater than the alignment value, alignment is performed only when the number of exceeding points is
two or more.

Notes 2. Alignment is adjusted only for the branch destinations listed above; alignment of the other destinations is
not adjusted. For example, when loop is selected, alignment of the head of a loop is adjusted but align-
ment is not adjusted at the branch destination of an if statement that is used in the loop but does not gen-
erate a loop.

- If an object module file or a standard library that has been generated through compilation without using this option is
specified for linkage, the warning W0561322 will be output at linkage but program execution will have no problem.

-instalign4[={loop|inmostloop}]

R20UT3248EJ0110 Rev.1.10 Page 62 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-instalign8

< Compile Options / Object Options >

[Format]

[Description]

- This option aligns instructions at branch destinations.

- When the instalign8 option is specified, the instruction at the location address is aligned to the 8-byte boundary.

- Instruction alignment is performed only when the instruction at the specified location exceeds the address which is a
multiple of the alignment value (8)*1.

- The following three types of branch destination can be selected by specifying the suboptions of -instalign4 and
-instalign8*2.

- No specification:Head of function and case and default labels of switch statement
inmostloop: Head of each inmost loop, head of function, and case and default labels of switch statement
loop: Head of each loop, head of function, and case and default labels of switch statement

- When these options are selected, the alignment value of the program section is changed from 1 to 4 (for instalign4)
or 8 (for instalign8).

- These options aim to efficiently operate the instruction queues of the RX CPU and improve the speed of program exe-
cution by aligning the addresses of branch destination instructions.
This option has specifications targeting the following usage.

- instalign8: When attempting to improve the speed of CPUs with a 64-bit instruction queue (mainly RX600 Series)

Notes 1. This is when the instruction size is equal to or smaller than the alignment value. If the instruction size is
greater than the alignment value, alignment is performed only when the number of exceeding points is
two or more.

Notes 2. Alignment is adjusted only for the branch destinations listed above; alignment of the other destinations is
not adjusted. For example, when loop is selected, alignment of the head of a loop is adjusted but align-
ment is not adjusted at the branch destination of an if statement that is used in the loop but does not gen-
erate a loop.

- If an object module file or a standard library that has been generated through compilation without using this option is
specified for linkage, the warning W0561322 will be output at linkage but program execution will have no problem.

[Example]

- <C source file>

-instalign8[={loop|inmostloop}]

dlong a;
int f1(int num)
{
 return (num+1);
}
void f2(void)
{
 a = 0;
}
void f3(void)
{
}

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 63 of 1053
Nov 01, 2020

- <Output code>
[When compiling with -instalign8 specified]
In the example shown below, the head of each function is aligned so that the instruction does not exceed the 8-byte
boundary.
In 8-byte boundary alignment of instructions, the address will not be changed unless the target instruction exceeds
the 8-byte boundary. Therefore, only the address of function f2 is actually aligned.

 .SECTION P,CODE,ALIGN=8
 .INSTALIGN 8
 _f1: ; Function f1, address = 0000H
 ADD #01H,R1 ; 2 bytes
 RTS ; 1 byte
 .INSTALIGN 8
 _f2: ; Function f2, address =0008H
 ; Note: Alignment is performed.
 ; When a 6-byte instruction is placed at
 ; 0003H, it exceeds the 8-byte boundary.
 ; Thus, alignment is performed.
 MOV.L #_a,R4 ; 6 bytes
 MOV.L #0,[R4] ; 3 bytes
 RTS ; 1 byte
 .INSTALIGN 8
 _f3: ; Function f3, address = 0012H
 RTS
 .END

R20UT3248EJ0110 Rev.1.10 Page 64 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-noinstalign

< Compile Options / Object Options >

[Format]

[Description]

- This option does not aligns instructions at branch destinations.

-noinstalign

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 65 of 1053
Nov 01, 2020

-nouse_div_inst

< Compile Options / Object Options >

[Format]

[Description]

- This option generates code in which no DIV, DIVU, FDIV, or DDIV instructions are used for division and modular divi-
sion operations in the program.

[Remarks]

- This option calls the equivalent runtime functions instead of DIV, DIVU, FDIV, or DDIV instructions. This may lower
code efficiency in terms of required ROM capacity and speed of execution.

-nouse_div_inst

R20UT3248EJ0110 Rev.1.10 Page 66 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-create_unfilled_data

< Compile Options / Object Options >

[Format]

[Description]

- When a Motorola S-record file (<name>.mot) or Hex file (<name>.hex) is output, this option blocks spaces created
by .OFFSET directives in the assembly language being filled with output data.

- When using this option, specify it when using the ccrx or asrx command to create an object file (<name>.obj) as well
as when using the rlink command to create a Motorola S-record file or Hex file.

[Remarks]

- This option is available in V2.03 and later versions of this compiler.

- When this option is used, symbols in the format shown below*1 will be added for each .OFFSET directive.

__$_<FileName>_<SectionName>_<IDNumber>s__unfilled_area
__$_<FileName>_<SectionName>_<IDNumber>e__unfilled_area

Here, the name of the source file, section, and a number in a sequence starting from 1 are entered as <FileName>,
<SectionName>, and <IDNumber>, respectively.

Note
*1) Since symbols in this format are reserved, they cannot be directly included in your source code.

-create_unfilled_data

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 67 of 1053
Nov 01, 2020

-stack_protector/-stack_protector_all [Professional Edition only] [V2.04.00 or later]

< Compile Options / Object Options >

[Format]

[Description]

- This option generates a code for detection of stack smashing at the entry and the end of a function. A code for detec-
tion of stack smashing consists of instructions executing the three processes shown below.

(1) A 4-byte area is allocated just before (in the direction towards address 0xFFFFFFFF) the local variable area at
the entry to a function, and the value specified by <number> is stored in the allocated area.
(2) At the end of the function, whether the 4-byte area in which <number> was stored has been rewritten is
checked.
(3) If the 4-byte area has been rewritten in (2), the __stack_chk_fail function is called as the stack has been
smashed.

- A decimal number from 0 to 4294967295 should be specified in <number>. If the specification of <number> is omit-
ted, the compiler automatically select the number.

- The __stack_chk_fail function needs to be defined by the user. It should contain postprocesses for the detected
stack smashing.

- Note the following items when defining the __stack_chk_fail function.

- The only possible type of return value is void and any formal parameters not allowed.

- It is prohibited to call the __stack_chk_fail function as a normal function.

- The __stack_chk_fail function is not subject to generating a code for detection of stack smashing due to the
-stack_protector and -stack_protector_all options and #pragma stack_protector.

- In a C++ program, add extern "C" to the definition or the declaration for __stack_chk_fail function.

- Prevent returning to the caller (the function where stack smashing was detected) by taking measures such as
calling abort() in __stack_chk_fail function and terminating the program.

- Do not define the function as static.

- If -stack_protector is specified, this option generates a code for detection of stack smashing for only functions hav-
ing a structure, union, or array that exceeds eight bytes as a local variable. If -stack_protector_all is specified, this
option generates a code for detection of stack smashing for all functions.

- If these options are used simultaneously with #pragma stack_protector, the specification by #pragma
stack_protector becomes valid.

- Even though these options are specified, a code for detection of stack smashing is not generated for a functions for
which one of the following #pragma directives is specified.
#pragma inline, #pragma inline_asm, #pragma entry, #pragma no_stack_protector

-stack_protector[=<numeric value>]
-stack_protector_all[=<numeric value>]

R20UT3248EJ0110 Rev.1.10 Page 68 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

[Example]

- <C source file>

#include <stdio.h>
#include <stdlib.h>

void f1() // Sample program in which the stack is smashed
{
 volatile char str[10];
 int i;
 for (i = 0; i <= 10; i++){
 str[i] = i; // Stack is smashed when i=10
 }
}

#ifdef __cplusplus
extern "C" {
#endif
void __stack_chk_fail(void)
{
 printf("stack is broken!");
 abort();
}
#ifdef __cplusplus
}
#endif

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 69 of 1053
Nov 01, 2020

- <Output code>
When compilation is performed with -stack_protector=0 specified

 .glb _test
 .glb ___stack_chk_fail
 .glb _printf
 .glb _abort
 .SECTION P,CODE
_test:
 .STACK _test=20
 MOV.L #00000000H, R14 ; The specified <number> 0 is stored in the stack area.
 PUSH.L R14
 SUB #0CH, R0
 MOV.L #00000000H, R14
 MOV.L #0000000BH, R15
 ADD #02H, R0, R5
L12: ; parse_bb
 MOV.B R14, [R5+]
 ADD #01H, R14
 SUB #01H, R15
 BNE L12
L13: ; return
 MOV.L 0CH[R0], R14 ; Data is loaded from the location where <number> was
 CMP #00H, R14 ; stored at the entry to a function and it is compared
 ; with the specified <number> 0.
 BNE L15 ; If they do not match, the program branches to L15.
L14: ; return
 RTSD #10H
L15: ; return
 BRA ___stack_chk_fail ; __stack_chk_fail is called.

___stack_chk_fail:
 .STACK ___stack_chk_fail=8
 SUB #04H, R0
 MOV.L #_L10, R14
 MOV.L R14, [R0]
 BSR _printf
 ADD #04H, R0
 BRA _abort

.SECTION L,ROMDATA,ALIGN=4
_L10:
 .byte "stack is broken!"
 .byte 00H
 .END

R20UT3248EJ0110 Rev.1.10 Page 70 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-avoid_cross_boundary_prefetch [V2.07.00 or later]

< Compile Options / Object Options >

[Format]

[Description]

- When both of the conditions given below are satisfied, using this option allows the compiler to expand library func-
tions for handling strings as two units of code that include string manipulation instructions: one for manipulating data
at the address where reading of the string starts up to the next 4-byte boundary and the other for manipulating data
from that 4-byte boundary up to the last address.

- Files of source code include calls of library functions for string handling, i.e. memchr(), strlen(), strcpy(),
strncpy(), strcmp(), strncmp(), strcat(), or strncat().

- library=intrinsic has been specified to select the expansion of library functions.

[Remarks]

- The aim of this option is to prevent the reading of data across 4-byte boundaries in prefetching for string manipulation
instructions.

- If this option is selected, the code size increases when library functions for string handling, i.e. memchr(), strlen(),
strcpy(), strncpy(), strcmp(), strncmp(), strcat(), or strncat(), are compiled with library=intrinsic specified.

- Using this option allows the library generator to expand library functions for string handling, i.e. memchr(), strlen(),
strcpy(), strncpy(), strcmp(), strncmp(), strcat(), or strncat(), as two units of code that include string manipulation
instructions: one for manipulating data at the address where reading of the string starts up to the next 4-byte bound-
ary and the other for manipulating data from that 4-byte boundary up to the last address.

-avoid_cross_boundary_prefetch

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 71 of 1053
Nov 01, 2020

-insert_nop_with_label [V2.08.00 or later]

< Compile Options / Object Options >

[Format]

- Interpretation when omitted
A local label and nop instruction are not inserted.

[Description]

- This option inserts a local label and nop instruction at the specified location based on the information for source
debugging.

- When this option is specified, the -debug option also becomes valid.

- This function is assumed to be used via CS+ or e2studio and should not be used directly by the user.

-insert_nop_with_label=<file>,<line>,<label>

R20UT3248EJ0110 Rev.1.10 Page 72 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-control_flow_integrity [Professional Edition only] [V2.08.00 or later]

< Compile Options / Object Options >

[Format]

- Interpretation when omitted
Code for the detection of illegal indirect function calls is not generated.

[Description]

- This option generates code for the detection of illegal indirect function calls.
When this option is specified, code for the following processing is generated in the C/C++ source program.

(1) The __control_flow_integrity checking function is called with an indirect calling address as an argument imme-
diately before indirect function calls.
(2) Within the checking function, the address given as the argument is checked against a list of the addresses of
functions (hereafter referred to as the function list) which may be indirectly called. If the list does not include the
address, the __control_flow_chk_fail function will be called since this is regarded as an illegal indirect function call.

The correctness of processing to change the flow of the program, such as through indirect function calls, is referred to
as control flow integrity (CFI), and CFI techniques are used to verify this.

- A checking function is defined as follows and provided as library functions.
void __control_flow_integrity(void *addr);

Calling the checking function in the same way as normal functions is prohibited.

- The compiler automatically extracts the information on the functions which may be indirectly called from the C/C++
source program. The linker consolidates that information in creating the function list. For the linker to create a function
list, the -cfi link option must be specified.
For details, refer to section 2.5.3 Optimizing Linkage Editor (rlink) Options.

- The __control_flow_chk_fail function contains code for the processing which is to be executed when an illegal indirect
function call is detected. The user must define this function.
Note the following when defining the __control_flow_chk_fail function.

- Specify void as the type of the return value and parameter.

- Do not define the function as static.

- Calling the __control_flow_chk_fail function in the same way as a normal function is prohibited.

- The __control_flow_chk_fail function is not for the creation of code for detecting illegal indirect function calls.

- In the __control_flow_chk_fail function, note that execution must not be returned to the checking function, for
example, by calling abort() to terminate the program.

- When defining the __control_flow_chk_fail function in a C++ program, add 'extern "C"'.

- If the -pic option is specified at the same time, an error will occur.

-control_flow_integrity

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 73 of 1053
Nov 01, 2020

[Example]

- <C source code>

#include <stdlib.h>

int glb;

void __control_flow_chk_fail(void)
{
 abort();
}

void func1(void) // Added to the function list.
{
 ++glb;
}

void func2(void) // Not added to the function list.
{
 --glb;
}

void (*pf)(void) = func1;

void main(void)
{
 pf(); // Indirect call of the function func1.
 func2();
}

R20UT3248EJ0110 Rev.1.10 Page 74 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

- <Output code>
When -isa=rxv2 -output=src -control_flow_integrity is specified for compilation

___control_flow_chk_fail:
 .STACK ___control_flow_chk_fail=4
 BRA _abort
_func1:
 .STACK _func1=4
 MOV.L #_glb, R14
 MOV.L [R14], R15
 ADD #01H, R15
 MOV.L R15, [R14]
 RTS
_func2:
 .STACK _func2=4
 MOV.L #_glb, R14
 MOV.L [R14], R15
 SUB #01H, R15
 MOV.L R15, [R14]
 RTS
_main:
 .STACK _main=8
 PUSH.L R6
 MOV.L #_pf, R6
 MOV.L [R6], R1
 BSR ___control_flow_integrity ; Call the checking function.
 MOV.L [R6], R14
 JSR R14 ; Indirect call of the function func1.
 BSR _func2 ; Direct call of the function func2.
 RTSD #04H, R6-R6
 .SECTION D,ROMDATA,ALIGN=4
_pf:
 .lword _func1
 .SECTION B,DATA,ALIGN=4
_glb:
 .blkl 1
 .END

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 75 of 1053
Nov 01, 2020

< Compile Options / List Options >

The following list options are available.

- -listfile

- -nolistfile

- -show

List Options

R20UT3248EJ0110 Rev.1.10 Page 76 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-listfile

< Compile Options / List Options >

[Format]

[Description]

- These options specify whether to output a source list file.

- When the listfile option is specified, a source list file is output. <file name> can also be specified.

- An existing folder can also be specified as <path name> instead of <file name>. In such a case, a source list file with
the file extension .lst and the name of the source file being compiled or assembled is output to the folder selected as
<path name>.

[Remarks]

- A linkage list cannot be output by this option. In order to output a linkage list, specify the list option of the optimizing
linkage editor by using the lnkcmd option.

- Information output from the compiler is written to the source list. For the source list file format, refer to Assemble List
File.

- When you use <path name>, create the folder in advance. If the folder specified as <path name> does not exist, the
compiler will assume that <file name> is selected.

-listfile[={<file name>|<path name>}]

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 77 of 1053
Nov 01, 2020

-nolistfile

< Compile Options / List Options >

[Format]

[Description]

- When the nolistfile option is specified, no source list file is output.

-nolistfile

R20UT3248EJ0110 Rev.1.10 Page 78 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-show

< Compile Options / List Options >

[Format]

[Description]

- This option sets the source list file contents.

- The suboptions and specified contents are shown in the following table.

Table 2.5 Suboption Specifications

[Remarks]

- This option is valid only when the listfile option has been specified.

- Information output from the compiler is written to the source list. For the source list file format, refer to Assemble List
File.

-show=<sub>[,...]
 <sub>: { source | conditionals | definitions | expansions }

Suboption Description

source Outputs the C/C++ source file.

conditionals Outputs also the statements for which the specified condition is not satisfied in conditional
assembly.

definitions Outputs the information before .DEFINE replacement.

expansions Outputs the assembler macro expansion statements.

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 79 of 1053
Nov 01, 2020

< Compile Options / Optimize Options >

The following optimize options are available.

- -optimize

- -goptimize

- -speed

- -size

- -loop

- -inline

- -noinline

- -file_inline

- -case

- -volatile

- -novolatile

- -const_copy

- -noconst_copy

- -const_div

- -noconst_div

- -library

- -scope

- -noscope

- -schedule

- -noschedule

- -map

- -smap

- -nomap

- -approxdiv

- -enable_register

- -simple_float_conv

- -fpu

- -nofpu

- -dpfpu [V3.01.00 or later]

- -nodpfpu [V3.01.00 or later]

- -tfu [V3.01.00 or later]

- -alias

- -float_order

- -branch_chaining [V3.03.00 or later]

- -nobranch_chaining [V3.03.00 or later]

- -ip_optimize

- -merge_files

- -whole_program

Optimize Options

R20UT3248EJ0110 Rev.1.10 Page 80 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-optimize

< Compile Options / Optimize Options >

[Format]

[Description]

- This option specifies the optimization level.

- When optimize=0 is specified, the compiler does not optimize the program. Accordingly, the debugging information
may be output with high precision and source-level debugging is made easier.

- When optimize=1 is specified, the compiler partially optimizes the program by automatically allocating variables to
registers, integrating the function exit blocks, integrating multiple instructions which can be integrated, etc. Accord-
ingly, the code size may become smaller than when compiled with the optimize=0 specification.

- When optimize=2 is specified, the compiler performs overall optimization. However, the optimization contents to be
performed slightly differ depending on whether the size option or speed option has been selected.

- When optimize=max is specified, the compiler performs optimization as much as possible. For example, the optimi-
zation scope is expanded to its maximum extent, and if the speed option is specified, loop expansion is possible on a
large scale. Though the advantages of optimization can be expected, there may be side effects, such as longer com-
pilation time, and if the speed option is specified, significantly increased code size.

[Remarks]

- If the default is not included in the description of an optimize option, this means that the default varies depending on
the optimize option and speed or size option specifications. For details on the default, refer to the speed or size
option.

-optimize = { 0 | 1 | 2 | max }

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 81 of 1053
Nov 01, 2020

-goptimize

< Compile Options / Optimize Options >

[Format]

[Description]

- This option generates the additional information for inter-module optimization in the output file.

- At linkage, inter-module optimization is applied to files for which this option has been specified.

-goptimize

R20UT3248EJ0110 Rev.1.10 Page 82 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-speed

< Compile Options / Optimize Options >

[Format]

- [Default]
Optimization is with emphasis on size.

[Description]

- When the speed option is specified, optimization will be performed with emphasis on execution performance.

[Remarks]

- When the speed option is specified, the following options are automatically specified based on the optimize option
specification.

- The processing for optimization in response to the optimization level selected for the optimize option includes the fine
adjustment of many items other than those that can be specified through compiler options. Code produced with differ-
ent levels of optimization will differ in the ways set by the compiler options listed in the tables below, but will also not
match in other ways.

<When optimize=max is specified>

Note The default is map when a C/C++ source program has been specified for input and output=abs or out-
put=mot has been specified for output. For any other case, the default is nomap.

<When optimize=2 is specified>

-speed

Loop
Expan-

sion

Inline
Expan-

sion

Converting
Constant

Division into
Multiplica-

tion

Schedul-
ing

Instruc-
tions

Constant
Propaga-

tion of
const

Qualified
Variables

Dividing
Optimiz-

ing
Ranges

Optimiz-
ing Exter-

nal
Variable

Accesses

Optimiza-
tion Consid-

ering the
Type of the
Data Indi-
cated by

the Pointer

Optimiza-
tion by
Reduc-
ing the
Branch
Instruc-
tion Size

speed loop=8 inline=
250

const_div schedule const_copy noscope map*
nomap*

alias=ansi nobranch
_chaining

Loop
Expan-

sion

Inline
Expan-

sion

Converting
Constant

Division into
Multiplica-

tion

Schedul-
ing

Instruc-
tions

Constant
Propaga-

tion of
const

Qualified
Variables

Dividing
Optimiz-

ing
Ranges

Optimiz-
ing Exter-

nal
Variable

Accesses

Optimiza-
tion Consid-

ering the
Type of the
Data Indi-
cated by

the Pointer

Optimiza-
tion by
Reduc-
ing the
Branch
Instruc-
tion Size

speed loop=2 inline=
100

const_div schedule const_copy scope nomap alias=
noansi

nobranch
_chaining

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 83 of 1053
Nov 01, 2020

<When optimize=0 or optimize=1 is specified>

Loop
Expan-

sion

Inline
Expan-

sion

Converting
Constant

Division into
Multiplica-

tion

Schedul-
ing

Instruc-
tions

Constant
Propaga-

tion of
const

Qualified
Variables

Dividing
Optimiz-

ing
Ranges

Optimiz-
ing Exter-

nal
Variable

Accesses

Optimiza-
tion Consid-

ering the
Type of the
Data Indi-
cated by

the Pointer

Optimiza-
tion by
Reduc-
ing the
Branch
Instruc-
tion Size

speed loop=1 noinline const_div nosched-
ule

noconst_
copy

scope nomap alias=
noansi

nobranch
_chaining

R20UT3248EJ0110 Rev.1.10 Page 84 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-size

< Compile Options / Optimize Options >

[Format]

- [Default]
Optimization is with emphasis on size.

[Description]

- When the size option is specified, optimization will be performed with emphasis on code size.

[Remarks]

- When the size option is specified, the following options are automatically specified based on the optimize option
specification. Note however that if one of the following options is specified otherwise explicitly, that specified option
becomes valid.

- The processing for optimization in response to the optimization level selected for the optimize option includes the fine
adjustment of many items other than those that can be specified through compiler options. Code produced with differ-
ent levels of optimization will differ in the ways set by the compiler options listed in the tables below, but will also not
match in other ways.

<When optimize=max is specified>

Note The default is map when a C/C++ source program has been specified for input and output=abs or out-
put=mot has been specified for output. For any other case, the default is nomap.

<When optimize=2 is specified>

-size

Loop
Expan-

sion

Inline
Expan-

sion

Converting
Constant

Division into
Multiplica-

tion

Schedul-
ing

Instruc-
tions

Constant
Propaga-

tion of
const

Qualified
Variables

Dividing
Optimiz-

ing
Ranges

Optimiz-
ing Exter-

nal
Variable

Accesses

Optimiza-
tion Consid-

ering the
Type of the
Data Indi-
cated by

the Pointer

Optimiza-
tion by
Reduc-
ing the
Branch
Instruc-
tion Size

size loop=1 inline=0 noconst_div schedule const_
copy

noscope map*
nomap*

alias=ansi branch_
chaining

Loop
Expan-

sion

Inline
Expan-

sion

Converting
Constant

Division into
Multiplica-

tion

Schedul-
ing

Instruc-
tions

Constant
Propaga-

tion of
const

Qualified
Variables

Dividing
Optimiz-

ing
Ranges

Optimiz-
ing Exter-

nal
Variable

Accesses

Optimiza-
tion Consid-

ering the
Type of the
Data Indi-
cated by

the Pointer

Optimiza-
tion by
Reduc-
ing the
Branch
Instruc-
tion Size

size loop=1 noinline noconst_div schedule const_
copy

scope nomap alias=
noansi

branch_
chaining

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 85 of 1053
Nov 01, 2020

<When optimize=0 or optimize=1 is specified>

Loop
Expan-

sion

Inline
Expan-

sion

Converting
Constant

Division into
Multiplica-

tion

Schedul-
ing

Instruc-
tions

Constant
Propaga-

tion of
const

Qualified
Variables

Dividing
Optimiz-

ing
Ranges

Optimiz-
ing Exter-

nal
Variable

Accesses

Optimiza-
tion Consid-

ering the
Type of the
Data Indi-
cated by

the Pointer

Optimiza-
tion by
Reduc-
ing the
Branch
Instruc-
tion Size

size loop=1 noinline noconst_div nosched-
ule

noconst_
copy

scope nomap alias=
noansi

nobranch
_chaining

R20UT3248EJ0110 Rev.1.10 Page 86 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-loop

< Compile Options / Optimize Options >

[Format]

- [Default]
The default for this option is loop=2.

[Description]

- This option specifies whether to optimize loop expansion.

- When the loop option is specified, the compiler expands loop statements (for, while, and do-while).

- The maximum expansion factor can be specified by <numeric value>. An integer from 1 to 32 can be specified for
<numeric value>. If no <numeric value> is specified, 2 will be assumed.

- The default for this option is determined based on the optimize option and speed or size option specifications. For
details, refer to the speed or size option.

[Remarks]

- This option is invalid when optimize=0 or optimize=1.

-loop[=<numeric value>]

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 87 of 1053
Nov 01, 2020

-inline

< Compile Options / Optimize Options >

[Format]

- [Default]
The default for this option is inline=100.

[Description]

- These options specify whether to automatically perform inline expansion of functions.

- A value from 0 to 65535 is specifiable as <numeric value>.

- When the inline option is specified, the compiler automatically performs inline expansion. However, inline expansion
is not performed for the functions specified by #pragma noinline. The user is able to use inline=<numeric value>,
to specify the allowed increase in the function's size due to the use of inline expansion. For example, when
inline=100 is specified, inline expansion will be performed until the function size has increased by 100% (size is dou-
bled).

- The default for this option is determined based on the optimize option and speed or size option specifications. For
details, refer to the speed or size option.

[Remarks]

- Inline expansion is attempted for all functions for which #pragma inline has been specified or with an inline specifier
whether other options have been specified or not. To perform inline expansion for a function for certain, specify
#pragma inline for the function. Even though this option has been selected or an inline specifier has been specified
for the function, if the compiler judges that the efficiency is degraded by inline expansion, it will not perform it in some
cases.

-inline[=<numeric value>]

R20UT3248EJ0110 Rev.1.10 Page 88 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-noinline

< Compile Options / Optimize Options >

[Format]

[Description]

- When the noinline option is specified, automatic inline expansion is not performed.

[Remarks]

- Inline expansion is attempted for all functions for which #pragma inline has been specified or with an inline specifier
whether other options have been specified or not.

-noinline

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 89 of 1053
Nov 01, 2020

-file_inline

< Compile Options / Optimize Options >

[Format]

[Description]

- This option is not available in V.2.00. Any specification of this option will simply be ignored and will not lead to an error
due to compatibility with former versions.

[Remarks]

- For C (C99) source files, -merge_files can be used instead of -file_inline. Add the file that was used with -file_inline
(including the file path if -file_inline_path was used together with it) as one of the source files to be merged.

- There are some points to be noted regarding -merge_files. Refer to [Remarks] of the -merge_files option.

-file_inline=<file name>[,...]

R20UT3248EJ0110 Rev.1.10 Page 90 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-case

< Compile Options / Optimize Options >

[Format]

- [Default]
The default for this option is case=auto.

[Description]

- This option specifies the expansion method of the switch statement.

- When case=ifthen is specified, the switch statement is expanded using the if_then method, which repeats, for each
case label, comparison between the value of the evaluation expression in the switch statement and the case label
value. If they match, execution jumps to the statement of the case label. This method increases the object code size
depending on the number of case labels in the switch statement.

- When case=table is specified, the switch statement is expanded by using the table method, where the case label
jump destinations are stored in a branch table so that a jump to the statement of the case label that matches the
expression for evaluation in the switch statement is made through a single access to the branch table. With this
method, the size of the branch table increases with the number of case labels in the switch statement, but the
performance in execution remains the same. The branch table is output to a section for areas holding switch state-
ments for branch tables.

- When case=auto is specified, the compiler automatically selects the if_then method or table method.

[Remarks]

- The branch table created when case=table has been specified will be output to section W when the nostuff option is
specified and will be output to section W, W_2, or W_1 according to the size of the switch statement when the nos-
tuff option is not specified.

-case={ ifthen | table | auto }

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 91 of 1053
Nov 01, 2020

-volatile

< Compile Options / Optimize Options >

[Format]

[Description]

- When volatile is specified, all external variables are handled as if they were volatile qualified. Accordingly, the
access count and access order for external variables are exactly the same as those written in the C/C++ source file.

[Remarks]

- Debugging tools for RX do not display the volatile declaration added to individual variables by this option.

-volatile

R20UT3248EJ0110 Rev.1.10 Page 92 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-novolatile

< Compile Options / Optimize Options >

[Format]

[Description]

- When novolatile is specified, the external variables which are not volatile qualified are optimized. Accordingly, the
access count and access order for external variables may differ from those written in the C/C++ source file.

-novolatile

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 93 of 1053
Nov 01, 2020

-const_copy

< Compile Options / Optimize Options >

[Format]

- [Default]
The default for this option is const_copy when the optimize=2 or optimize=max option has been specified.

[Description]

- When const_copy is specified, constant propagation is performed even for const qualified global variables.

- The default for this option is const_copy when the optimize=2 or optimize=max option has been specified.

[Remarks]

- const qualified variables in a C++ source file cannot be controlled by this option (constant propagation is always per-
formed).

-const_copy

R20UT3248EJ0110 Rev.1.10 Page 94 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-noconst_copy

< Compile Options / Optimize Options >

[Format]

- [Default]
The default for this option is noconst_copy when the optimize=1 or optimize=0 option has been specified.

[Description]

- When noconst_copy is specified, constant propagation is disabled for const qualified global variables.

[Remarks]

- const qualified variables in a C++ source file cannot be controlled by this option (constant propagation is always per-
formed).

-noconst_copy

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 95 of 1053
Nov 01, 2020

-const_div

< Compile Options / Optimize Options >

[Format]

- [Default]
The default for this option is const_div when the speed option has been specified.

[Description]

- When const_div is specified, calculations for division and remainders of integer constants in the source file are con-
verted into sequences of multiplication or bitwise operation (shift or bitwise AND operations) instructions.

[Remarks]

- Constant multiplication that can be performed through only shift operations and division and residue that can be per-
formed through only bitwise AND operations cannot be controlled by the const_div option.

-const_div

R20UT3248EJ0110 Rev.1.10 Page 96 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-noconst_div

< Compile Options / Optimize Options >

[Format]

- [Default]
The default for this option is noconst_div when the size option has been specified.

[Description]

- When noconst_div is specified, the corresponding division and remainder instructions are used for calculating divi-
sion and remainders of integer constants in the source file (except divisions and remainders of unsigned integers by
powers of two).

[Remarks]

- Constant multiplication that can be performed through only shift operations and division and residue that can be per-
formed through only bitwise AND operations cannot be controlled by the noconst_div option.

-noconst_div

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 97 of 1053
Nov 01, 2020

-library

< Compile Options / Optimize Options >

[Format]

- [Default]
The default for this option is library=intrinsic.

[Description]

- When -library=function is specified, all library functions are called by calling subroutines provided by standard
library.

- When -library=intrinsic is specified, a call for any of the following library functions is replaced with the RX instruction
that has the corresponding facility.

- abs

- fabsf/fabs*1/fabsl*1

- sqrtf*2/sqrt*1*2*3/sqrtl*1*2*3

- memchr/strlen/strcpy/strncpy/strcmp/strncmp/strcat/strncat

Notes 1. When -dbl_size=4 or the -dpfpu option is specified

Notes 2. When the -isa option is specified with a value other than rxv1 in combination with the -fpu option

Notes 3. When the -isa option is specified with a value other than rxv1 in combination with the -fpu
-dbl_size=4, or when the -dpfpu option is specified

[Remarks]

- The value of variable errno is not changed by the call of a library function that was replaced with an instruction.

-library = { function | intrinsic }

R20UT3248EJ0110 Rev.1.10 Page 98 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-scope

< Compile Options / Optimize Options >

[Format]

- [Default]
The default for this option is scope when the optimize=max option has been specified.

[Description]

- When the scope option is specified, the optimizing ranges of the large-size function are divided into many sections
before compilation.

- Use this option at performance tuning because it affects the object performance depending on the program.

-scope

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 99 of 1053
Nov 01, 2020

-noscope

< Compile Options / Optimize Options >

[Format]

- [Default]
The default for this option is noscope when the optimize=max option has been specified.

[Description]

- When the noscope option is specified, the optimizing ranges are not divided before compilation. When the optimizing
range is expanded, the object performance is generally improved although the compilation time is delayed. However,
if registers are not sufficient, the object performance may be lowered. Use this option at performance tuning because
it affects the object performance depending on the program.

-noscope

R20UT3248EJ0110 Rev.1.10 Page 100 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-schedule

< Compile Options / Optimize Options >

[Format]

- [Default]
The default for this option is schedule when the optimize=2 or optimize=max option has been specified.

[Description]

- When the schedule option is specified, instructions are scheduled taking into consideration pipeline processing.

-schedule

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 101 of 1053
Nov 01, 2020

-noschedule

< Compile Options / Optimize Options >

[Format]

- [Default]
The default for this option is noschedule when the optimize=1 or optimize=0 option has been specified.

[Description]

- When the noschedule option is specified, instructions are not scheduled. Basically, processing is performed in the
same order the instructions have been written in the C/C++ source file.

-noschedule

R20UT3248EJ0110 Rev.1.10 Page 102 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-map

< Compile Options / Optimize Options >

[Format]

- [Default]
The default for this option is map when the optimize=max option has been specified.

[Description]

- This option optimizes accesses to global variables.

- When the map option is specified, a base address is set by using an external symbol-allocation information file cre-
ated by the optimizing linkage editor, and a code that uses addresses relative to the base address for accesses to
global or static variables is generated.

- When accesses to external variables are to be optimized by the map option, how the map option is used differs
according to the specification of the output option.

- [output=abs, output=mot, or output=hex is specified]
Specify only map. The compiler automatically performs compilation and linkage twice, and a code in which the base
address is set based on external symbol allocation information is generated. Note that when output=abs, out-
put=mot, or output=hex is specified simultaneously with optimize=max, map will be specified implicitly.

- [output=obj is specified]
Compile the source file once without specifying these options, create an external symbol-allocation information file by
specifying map=<file name> at linkage by the optimizing linkage editor, and then compile the source file again by
specifying map=<file name> in ccrx.

[Example]

- <C source file>

- <Output code>

[Remarks]

- When the order of the definitions of global variables or static variables has been changed, a new external symbol-allo-
cation information file must be created. If any option other than the map option in the previous compilation differs from
the one in the current compilation, or if any contents of a function are changed, correct operation is not guaranteed. In
such a case, a new external symbol-allocation information file must be created.

-map[= <file name>]

long A,B,C;
void func()
{
 A = 1;
 B = 2;
 C = 3;
}

_func:
 MOV.L #_A,R4 ; Sets the address of A as the base address.
 MOV.L #1,[R4]
 MOV.L #2,4[R4] ; Accesses B using the address of A as the base.
 MOV.L #3,8[R4] ; Accesses C using the address of A as the base.

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 103 of 1053
Nov 01, 2020

- This option is only valid for the compilation of C/C++ source programs. It does not apply to programs that have been
compiled with the output=src specification or to programs written in assembly language.

- When the map option and smap option are specified simultaneously, the map option is valid.

- When continuous data sections are allocated after a program section, optimization of external variable accesses may
be disabled or may not be performed sufficiently. For performing optimization to a maximum extent in a case in which
multiple sections are allocated continuously, allocate the program section at the end. An example is shown below.

- In the above example, section P is allocated from address 0x100, sections C1 and C2 are allocated immediately after
section P, and section C3 is allocated from address 0x400. Since sections C1 and C2 are allocated continuously after
section P, section P should be allocated behind section C2. Section C3 is not involved because it is not allocated con-
tinuously.

P C1 C2 C3

Address 0x100 Address 0x400

Note:
P: Program section
C1, C2, C3: Data section

R20UT3248EJ0110 Rev.1.10 Page 104 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-smap

< Compile Options / Optimize Options >

[Format]

[Description]

- When the smap option is specified, a base address is set for global or static variables defined in the file to be com-
piled, and a code that uses addresses relative to the base address for accesses to those variables is generated.

[Example]

- <C source file>

- <Output code>

[Remarks]

- This option is only valid for the compilation of C/C++ source programs. It does not apply to programs that have been
compiled with the output=src specification or to programs written in assembly language.

- When the map option and smap option are specified simultaneously, the map option is valid.

-smap

long A,B,C;
void func()
{
 A = 1;
 B = 2;
 C = 3;
}

_func:
 MOV.L #_A,R4 ; Sets the address of A as the base address.
 MOV.L #1,[R4]
 MOV.L #2,4[R4] ; Accesses B using the address of A as the base.
 MOV.L #3,8[R4] ; Accesses C using the address of A as the base.

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 105 of 1053
Nov 01, 2020

-nomap

< Compile Options / Optimize Options >

[Format]

- [Default]
The default for this option is nomap when the optimize=0, optimize=1, or optimize=2 option has been specified.

[Description]

- When the nomap option is specified, accesses to external variables are not optimized.

[Example]

- <C source file>

- <Output code>

-nomap

long A,B,C;
void func()
{
 A = 1;
 B = 2;
 C = 3;
}

_func:
 MOV.L #_A,R4
 MOV.L #1,[R4]
 MOV.L #_B,R4
 MOV.L #2,[R4]
 MOV.L #_C,R4
 MOV.L #3,[R4]

R20UT3248EJ0110 Rev.1.10 Page 106 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-approxdiv

< Compile Options / Optimize Options >

[Format]

- [Default]
When this option is omitted, division of floating-point constants into multiplications of the corresponding reciprocals as
constants is not performed.

[Description]

- When there is an expression of (variable constant), this option generates a code with the expression converted into
(variable reciprocal of constant).

[Remarks]

- When this option is specified, the execution performance of floating-point constant division will be improved. The pre-
cision and order of operations may, however, be changed, so take care on this point.

-approxdiv

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 107 of 1053
Nov 01, 2020

-enable_register

< Compile Options / Optimize Options >

[Format]

[Description]

- This option is not available in V.2.00. Any specification of this option will simply be ignored and will not lead to an error
due to compatibility with former versions.

-enable_register

R20UT3248EJ0110 Rev.1.10 Page 108 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-simple_float_conv

< Compile Options / Optimize Options >

[Format]

[Description]

- This option omits part of the type conversion processing for the floating type.

- When this option is selected, the generation code that performs type conversion of the next floating-point number
changes.

- a) Type conversion from 32-bit floating type to unsigned integer type

- b) Type conversion from unsigned integer type to 32-bit floating type

- c) Type conversion from integer type to 64-bit floating type via 32-bit floating type

[Example]

- < a) Type conversion from 32-bit floating type to unsigned integer type>

- < b) Type conversion from unsigned integer type to 32-bit floating type>

- < c) Type conversion from integer type to 64-bit floating type via 32-bit floating type>

-simple_float_conv

unsigned long func1(float f)
{
 return ((unsigned long)f);
}

When this option is not specified:
 _func1:
 FCMP #4F000000H,R1
 BLT L12
 FADD #0CF800000H,R1
 L12:
 FTOI R1,R1
 RTS

float func2(unsigned long u)
{
 return ((float)u);
}

When this option is not specified:
 _func2:
 BTST #31,R1
 BEQ L15
 SHLR #1,R1,R14
 AND #1,R1
 OR R14,R1
 ITOF R1,R1
 FADD R1,R1
 BRA L16
 L15:
 ITOF R1,R1
 L16:
 RTS

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 109 of 1053
Nov 01, 2020

Does not apply when the dbl_size=8 specification is not valid.

[Remarks]

- When this option is specified, code performance of the relevant type conversion processing is improved. The
conversion result may, however, differ from C/C++ language specifications, so take care on this point.

- This option of c) is invalid when optimize=0.

double func3(long l)
 {
 return (double)(float)l;
 }
When this option is not specified:
_func3:
 ITOF R1,R1
 BRA __COM_CONVfd

When this option is specified:
 BRA __COM_CONV32sd

R20UT3248EJ0110 Rev.1.10 Page 110 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-fpu

< Compile Options / Optimize Options >

[Format]

- [Default]
The default for this option is fpu when the Instruction-code set as the ISA *1.
The default for this option is nofpu (when RX200 is selected as the target CPU *2) or fpu (in other cases).

Note
*1) This means a selection by the -isa option or the ISA_RX environment variable.
*2) This means a selection by the -cpu option or the CPU_RX environment variable.

[Description]

- When the fpu option is specified, a code using single-precision floating-point processing instructions is generated.

[Remarks]

- For details of the single-precision floating-point processing instructions, refer to the RX Family Software Manual.

- When RX200 is selected as the CPU, an error will occur if fpu is specified.

-fpu

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 111 of 1053
Nov 01, 2020

-nofpu

< Compile Options / Optimize Options >

[Format]

- [Default]
The default for this option is fpu when the Instruction-code set as the ISA *1.
The default for this option is nofpu (when RX200 is selected as the target CPU *2) or fpu (in other cases).

Note
*1) This means a selection by the -isa option or the ISA_RX environment variable.
*2) This means a selection by the -cpu option or the CPU_RX environment variable.

[Description]

- When the nofpu option is specified, a code not using single-precision floating-point processing instructions is gener-
ated.

-nofpu

R20UT3248EJ0110 Rev.1.10 Page 112 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-dpfpu [V3.01.00 or later]

< Compile Options / Optimize Options >

[Format]

- Interpretation when omitted
nodpfpu is assumed to be specified.

[Description]

- When the dpfpu option is specified, a code using double-precision floating-point processing instructions is generated.

[Remarks]

- For details of the double-precision floating-point processing instructions, refer to the RX Family Software Manual.

- When the CPU*1 is selected or RXv1 or RXv2 is selected as ISA*2, an error will occur if dpfpu is specified.

- When nofpu has been specified, an error will occur if dpfpu is specified.

Note
*1) This means a selection by the cpu option or the CPU_RX environment variable.
*2) This means a selection by the isa option or the ISA_RX environment variable.

-dpfpu

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 113 of 1053
Nov 01, 2020

-nodpfpu [V3.01.00 or later]

< Compile Options / Optimize Options >

[Format]

- Interpretation when omitted
nodpfpu is assumed to be specified.

[Description]

- When the nodpfpu option is specified, a code not using double-precision floating-point processing instructions is gen-
erated.

-nodpfpu

R20UT3248EJ0110 Rev.1.10 Page 114 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-tfu [V3.01.00 or later]

< Compile Options / Optimize Options >

[Format]

[Description]

- When -tfu=intrinsic is specified, the following intrinsic functions which use the trigonometric function unit are avail-
able.

- __sincosf

- __atan2hypotf

- __init_tfu (for initialization)

For details on the listed intrinsic functions, refer to section 4.2.6 Intrinsic Functions.

- When -tfu=intrinsic,mathlib is specified, the above intrinsic functions are available and calls of relevant mathematics
library functions are replaced with code that uses the trigonometric function unit. The following are the mathematics
library functions to be replaced.

- sinf / sin*1 / sinl*1

- cosf / cos*1 / cosl*1

- atan2f / atan2*1 / atan2l*1

- hypotf / hypot*1 / hypotl*1

- asinf *2 / asin *1*2 / asinl *1*2 [V3.02.00 or later]

- acosf *2 / acos *1*2 / acosl *1*2 [V3.02.00 or later]

- atanf / atan *1 / atanl *1 [V3.02.00 or later]

- tanf / tan *1 / tanl *1 [V3.02.00 or later]

*1: This is only the case when -dbl_size=4 is specified.
*2: This is the case when -isa=rxv2|rxv3 and -fpu are specified.

[Remarks]

- Code for operations that use the trigonometric function unit is not reentrant.

- When -tfu=intrinsic,mathlib is specified, replacement of the mathematics library functions means that only code
from the relevant function calls is replaced and code in the library is not affected. Accordingly, if an indirect call via a
pointer is made, the trigonometric function unit will not be used.

- If calls of mathematics library functions are replaced with code that uses the trigonometric function unit, the values of
variable errno will not be modified.

- Use or non-use of the trigonometric function unit affects the precision of operations.

- Before using the trigonometric function unit, initialize the unit from the startup program by calling the __init_tfu()
intrinsic function. If you do not do so, correct operation is not guaranteed.

- Do not specify this option for a device that does not include a trigonometric function unit.

-tfu=intrinsic[,mathlib]

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 115 of 1053
Nov 01, 2020

-alias

< Compile Options / Optimize Options >

[Format]

- [Default]
The default for this option is alias=noansi.

[Description]

- This option selects whether to perform optimization with consideration for the type of the data indicated by the pointer.

- When alias=ansi is specified, based on the ANSI standard, optimization considering the type of the data indicated by
the pointer is performed. Although the performance of object code is generally better than when alias=noansi is
specified, the results of execution may differ according to whether alias=ansi or alias=noansi is specified.

- In the same way as in V. 1.00, ANSI-standard based optimization in consideration of the type of data indicated by
pointers is not performed when alias=noansi is specified.

[Example]

- [When alias=noansi is specified]
The value of n is reloaded at (A) since it is regarded that there is a possibility of the value of n being rewritten by *ps =
2.

- [When alias=ansi is specified]
The value used in assignment at n = 1 is reused at (B) because it is regarded that the value of n will not change at *ps
= 2 since *ps and n have different types.
(If the value of n is changed by *ps = 2, the result is also changed.)

-alias = { noansi | ansi }

long x;
long n;
void func(short * ps)
{
 n = 1;
 *ps = 2;
 x = n;
}

_func:
 MOV.L #_n,R4
 MOV.L #1,[R4] ; n = 1;
 MOV.W #2,[R1] ; *ps = 2;
 MOV.L [R4],R5 ; (A) n is reloaded
 MOV.L #_x,R4
 MOV.L R5,[R4]
 RTS

_func:
 MOV.L #_n,R4
 MOV.L #1,[R4] ; n = 1;
 MOV.W #2,[R1] ; *ps = 2;
 MOV.L #_x,R4
 MOV.L #1,[R4] ; (B) Value used in assignment at n = 1 is reused
 RTS

R20UT3248EJ0110 Rev.1.10 Page 116 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

[Remarks]

- When optimize=0 or optimize=1 is valid and the alias option is specified, the alias=ansi specification will be ignored
and code will always be generated as if alias=noansi has been selected.

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 117 of 1053
Nov 01, 2020

-float_order

< Compile Options / Optimize Options >

[Format]

- [Default]
If this option is omitted, optimization of modification of the operation order in a floating-point expression is not
performed.

[Description]

- This option is not available in V.2.00. Any specification of this option will simply be ignored and will not lead to an error
due to compatibility with former versions.

-float_order

R20UT3248EJ0110 Rev.1.10 Page 118 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-branch_chaining [V3.03.00 or later]

< Compile Options / Optimize Options >

[Format]

[Description]

- This option uses a branch instruction whose code size is small. To use a branch instruction whose code size is small,
another branch instruction which shares the same destination may be specified as the branch destination, not a direct
branch to the final destination.

- If this option is not selected, the specification for the optimize, speed, and size options is followed.

- For details, see the sections for the speed and size options.

[Remarks]

- Although this option reduces the code size, it also lowers the execution speed.

- Note that using this optimization without specifying the -g_line option may affect the behavior of single-step execu-
tion.

- If the -speed option is specified, this option is ignored.

- If -optimize=0 or 1 is specified, this option is ignored.

-branch_chaining

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 119 of 1053
Nov 01, 2020

-nobranch_chaining [V3.03.00 or later]

< Compile Options / Optimize Options >

[Format]

[Description]

- This option suppresses the optimization that reduces the branch instruction size.

- If this option is not specified, the specification for the optimize, speed, and size options is followed.

- For details, see the sections for the speed and size options.

-nobranch_chaining

R20UT3248EJ0110 Rev.1.10 Page 120 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-ip_optimize

< Compile Options / Optimize Options >

[Format]

[Description]

- This option applies global optimization including

- optimization that utilizes interprocedural alias analysis and

- propagation of constant parameters and return values.

[Example]

Examples 1.

- <C source code>

- <Output assembly code without ip_optimize>

- <Output assembly code with ip_optimize>

Examples 2.

- <C source code>

-ip_optimize

static int func1(int *a, int *b) {
 *a=0;
 *b=1;
 return *a;
}
int x[2];
int func2() {
 return func1(x, x+1);
}

; -optimize=2 -size
__$func1:
 MOV.L #00000000H, [R1]
 MOV.L #00000001H, [R2]
 MOV.L [R1], R1
 RTS
_func2:
 MOV.L #_x,R1
 ADD #04H, R1, R2
 BRA __$func1

; -optimize=2 -size
__$func1:
 MOV.L #00000000H, [R1]
 MOV.L #00000001H, [R2]
 MOV.L #00000000H, R1
 RTS
_func2:
 MOV.L #_x,R1
 ADD #04H, R1, R2
 BRA __$func1

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 121 of 1053
Nov 01, 2020

- <Output assembly code without ip_optimize>

- <Output assembly code with ip_optimize>

[Remarks]

- Inter-file optimization is also applied when this option is used with merge_files.

static int func(int x, int y, int z) {
 return x-y+z;
}
int func2() {
 return func(3,4,5);
}

__$func:
 ADD R3, R1
 SUB R2, R1
 RTS
_func2:
 MOV.L #00000005H, R3
 MOV.L #00000004H, R2
 MOV.L #00000003H, R1
 BRA __$func

__$func:
 MOV.L #00000004H, R1
 RTS
_func2:
 MOV.L #00000005H, R3
 MOV.L #00000004H, R2
 MOV.L #00000003H, R1
 BRA __$func

R20UT3248EJ0110 Rev.1.10 Page 122 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-merge_files

< Compile Options / Optimize Options >

[Format]

[Description]

- This option allows the compiler to compile multiple C source files and output the results to a single object file.

- The name of the object file is specified by the output option. If no name is specified, the filename will be that of the first
source file plus a filename extension that corresponds to the selected output format.

- If src or obj is selected as the output format, the compiler also generates blank files that have the names of the other
source files with the given filename extension attached.

[Example]

files.obj is the object file. Blank files file1.obj, file2.obj, and file3.obj are also generated.

[Remarks]

- This option is invalid when only one source file is to be compiled or when the output option has been used to specify
prep as the output format.

- Inter-file in-line expansion is applied when this option is used with the inline option.

- This option is not available for files to be compiled in C++ or EC++.

- The following restrictions apply to programs that include static functions or static variables.

- If you wish to use the [Watch] window of the debugger to view a static variable that has the same name as a
variable in another file, specify the variable name as well as the filename. The debugger cannot identify the vari-
able without a filename.

- When two or more files contain static variables with the same name and rlink is used to overlay sections to
which the files belong, the debugger's facility to display overlay sections taking precedence over other sections
is not available.

- The names of static variables and static functions written in the link map file (.map) are those converted by the
compiler (i.e., not original ones).

- Any differences (e.g. type specifier) in declarations of the same variable may lead to an error in compilation.

-merge_files

ccrx -merge_files -output=obj=files.obj file1.c file2.c file3.c

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 123 of 1053
Nov 01, 2020

-whole_program

< Compile Options / Optimize Options >

[Format]

[Description]

- This option makes the compiler perform optimization on the assumption that all source files have been input.

[Remarks]

- When this option is specified, do not include C++ language source files among the input files.

- When this option is specified, do not specify -lang=cpp or -lang=ecpp.

- Specifying this option also makes the ip_optimize option effective, and if multiple source files are input, the
merge_files option is also effective.

- When this option is specified, compilation is on the assumption that the conditions listed below are satisfied. Correct
operation is not guaranteed otherwise.

- Values and addresses of extern variables defined in the target source files will not be modified or referred to by
other files.

- Functions within the target source file will not be called from within other files, although functions in other files
can be called from within the target source files.

-whole_program

R20UT3248EJ0110 Rev.1.10 Page 124 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

[Example]

[wp.c]
extern void g(void);
int func(void)
{
 static int a = 0;
 a++; // (1) Write a value to a.
 g(); // (2) Call g().
 return a; // (3) Call a.
}

[Without whole_program]
The compiler assumes that (2) will change the value of a since function g() may call
function func(), and generates a code to read the value of a in (3).
_func:
 PUSH.L R6
 MOV.L #__a1,R6
 MOV.L [R6],R14
 ADD #1,R14
 MOV.L R14,[R6] ; (1)
 BSR _g ; (2)
 MOV.L [R6],R1 ; (3)
 RTSD #4,R6-R6

[With whole_program]
The compiler assumes that function g() will not call function func() and thus (2) will
not change the value of a. As a result, the compiler does not read the value of a in
(3) and instead generates a code to use the value written to a in (1).
_func:
 PUSH.L R6
 MOV.L #__a1,R14
 MOV.L [R14],R6
 ADD #1,R6
 MOV.L R6,[R14] ; (1)
 BSR _g ; (2)
 MOV.L R6,R1 ; (3)
 RTSD #4,R6-R6

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 125 of 1053
Nov 01, 2020

< Compile Options / Microcontroller Options >

The following microcontroller options are available.

- -isa

- -cpu

- -endian

- -round

- -denormalize

- -dbl_size

- -int_to_short

- -signed_char

- -unsigned_char

- -signed_bitfield

- -unsigned_bitfield

- -auto_enum

- -bit_order

- -pack

- -unpack

- -exception

- -noexception

- -rtti

- -fint_register

- -branch

- -base

- -patch

- -pic

- -pid

- -nouse_pid_register

- -save_acc

Microcontroller Options

R20UT3248EJ0110 Rev.1.10 Page 126 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-isa

< Compile Options / Microcontroller Options >

[Format]

- [Default]
The default for this option is determined based on the environment variable ISA_RX.

[Description]

- This option specifies an instruction-set architecture for use in generating object files.

[Remarks]

- When neither the -nofpu nor -fpu option has been selected, specifying this option automatically selects the -fpu
option.

- Omitting this option when neither the -cpu option nor one of the environment variables (CPU_RX or ISA_RX) is spec-
ified will lead to an error.

- When the -cpu option and this option are specified simultaneously, an error will occur.

-isa={ rxv1 | rxv2 | rxv3 }

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 127 of 1053
Nov 01, 2020

-cpu

< Compile Options / Microcontroller Options >

[Format]

- [Default]
The default for this option is determined based on the environment variable CPU_RX.

[Description]

- This option specifies the microcontroller type for the instruction code to be generated.

- When cpu=rx600 is specified, an instruction code for the RX600 Series is generated.

- When cpu=rx200 is specified, an instruction code for the RX200 Series is generated.

[Remarks]

- This option is for compatibility with earlier products.

- For upcoming RX-family MCUs, the isa option will be used instead of the cpu option to select an instruction-set archi-
tecture. In developing new applications, use the isa option where possible.

- The cpu option can be replaced by the -isa, -fpu and -nofpu option as follows.

- - -cpu=rx600 ==> -isa=rxv1 -fpu

- - -cpu=rx200 ==> -isa=rxv1 -nofpu

- When cpu=rx200 is specified, the nofpu option is automatically selected.

- cpu=rx200 and the fpu option cannot be specified at the same time.

- When cpu=rx600 is specified while neither the nofpu option nor the fpu option has been specified, the fpu option is
automatically selected.

- Omitting the cpu option will lead to an error if neither the -isa option nor one of the environment variables (CPU_RX or
ISA_RX) is specified.

- The cpu and isa options cannot be specified at the same time.

-cpu={ rx600 | rx200 }

R20UT3248EJ0110 Rev.1.10 Page 128 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-endian

< Compile Options / Microcontroller Options >

[Format]

- [Default]
The default for this option is endian=little.

[Description]

- When endian=big is specified, data bytes are arranged in big endian.

- When endian=little is specified, data bytes are arranged in little endian.

- The mode for arranging data bytes can also be specified by the #pragma endian directive. If both this option and a
#pragma directive are specified, the #pragma specification takes priority.

-endian={ big | little }

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 129 of 1053
Nov 01, 2020

-round

< Compile Options / Microcontroller Options >

[Format]

- [Default]
The default for this option is round=nearest.

[Description]

- This option specifies the rounding method for floating-point constant operations.

- When round=zero is specified, values are rounded to zero.

- When round=nearest is specified, values are rounded to the nearest value.

[Remarks]

- This option does not affect the method of rounding for floating-point operations during program execution.

- The default selection of this option does not affect the selection of the fpu and nofpu options.

-round={ zero | nearest }

R20UT3248EJ0110 Rev.1.10 Page 130 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-denormalize

< Compile Options / Microcontroller Options >

[Format]

- [Default]
The default for this option is denormalize=off.

[Description]

- This option specifies the operation when denormalized numbers are used to describe floating-point constants.

- When denormalize=off is specified, denormalized numbers are handled as zero.

- When denormalize=on is specified, denormalized numbers are handled as they are.

[Remarks]

- This option does not affect the handling of denormalized numbers in floating-point operations during program execu-
tion.

- This option is not automatically enabled by the selection of the fpu and nofpu options.

-denormalize={ off | on }

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 131 of 1053
Nov 01, 2020

-dbl_size

< Compile Options / Microcontroller Options >

[Format]

- [Default]
The default for this option is dbl_size=8 when the -dpfpu option is specified. Otherwise, it is dbl_size=4.

[Description]

- This option controls how the double type and long double type are handled.
When dbl_size=4 is specified, they are handled as the single-precision floating-point type.
When dbl_size=8 is specified, they are handled as the double-precision floating-point type.

[Remarks]

- When -dbl_size=4 is selected, among the standard functions, the mathf.h and math.h functions having the same
specifications as each other (e.g., sqrtf and sqrt) are integrated to configure a standard library. Because of this, phe-
nomena, such as the following example will occur when -dbl_size=4 is selected. When the RX simulator or emulator
traces (single-step execution) the calling of sqrtf which is a mathf.h header function, it appears as if not sqrtf but
sqrt, which is a math.h header function with the same specifications, has been called.

-dbl_size={ 4 | 8 }

R20UT3248EJ0110 Rev.1.10 Page 132 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-int_to_short

< Compile Options / Microcontroller Options >

[Format]

- [Default]
Before compilation, the int type is not replaced with the short type and the unsigned int type is not replaced with the
unsigned short type in the source file.

[Description]

- Before compilation, the int type is replaced with the short type and the unsigned int type is replaced with the
unsigned short type in the source file.

[Remarks]

- INT_MAX, INT_MIN, and UINT_MAX of limits.h are not converted by this option.

- This option is invalid during C++ and EC++ program compilation. If an external name of a C program may be referred
to by a C++, EC++ program, message W0523041 will be output for the external name.

- When the int_to_short option is specified and a file including a C standard header is compiled as C++ or EC++, the
compiler may show the W0523041 message. In this case, simply ignore the message because it does not indicate a
problem.

- Data that are shared between C and C++ (EC++) programs must be declared as the long or short type rather than as
the int type.

- When an input function having a format such as that of scanf in the standard library is called while this option is
enabled, be sure to pass the addresses of the variables of the long and unsigned long types as parameters for use in
%d and %u conversion. If the address of the int-type or unsigned-type variables not declared as long is passed, the
program might not handle related operations correctly.

-int_to_short

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 133 of 1053
Nov 01, 2020

-signed_char

< Compile Options / Microcontroller Options >

[Format]

- [Default]
When -signed_char is omitted, char type values are handled as unsigned.

[Description]

- When -signed_char is specified, char type values are handled as signed.

[Remarks]

- The bit-field members of the char type are not controlled by this option; control them using the -signed_bitfield and
-unsigned_bitfield options.

-signed_char

R20UT3248EJ0110 Rev.1.10 Page 134 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-unsigned_char

< Compile Options / Microcontroller Options >

[Format]

- [Default]
When -unsigned_char is omitted, char type values are handled as unsigned.

[Description]

- When -unsigned_char is specified, char type values are handled as unsigned.

[Remarks]

- The bit-field members of the char type are not controlled by this option; control them using the signed_bitfield and
unsigned_bitfield options.

-unsigned_char

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 135 of 1053
Nov 01, 2020

-signed_bitfield

< Compile Options / Microcontroller Options >

[Format]

- [Default]
When signed_bitfield is omitted, the value is handled as unsigned.

[Description]

- When signed_bitfield is specified, the value is handled as signed.

-signed_bitfield

R20UT3248EJ0110 Rev.1.10 Page 136 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-unsigned_bitfield

< Compile Options / Microcontroller Options >

[Format]

- [Default]
When unsigned_bitfield is omitted, the value is handled as unsigned.

[Description]

- When unsigned_bitfield is specified, the value is handled as unsigned.

-unsigned_bitfield

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 137 of 1053
Nov 01, 2020

-auto_enum

< Compile Options / Microcontroller Options >

[Format]

- [Default]
The default for this option is to process the enumeration type size as the signed long type.

[Description]

- This option processes the enumerated data qualified by enum as the minimum data type with which the enumeration
value can fit in.

- The possible enumeration values correspond to the data types as shown in the following table.

Table 2.6 Correspondences between Possible Enumeration Values and Data Types

Note
*1) When the -int_to_short option has been selected, the signed 4-byte integer type will be selected.

-auto_enum

Enumerator Data Type

Minimum Value Maximum Value When -unsigned_char is selected When -signed_char is selected

128 127 signed char char

0 255 char unsigned char

32768 32767 signed short signed short

0 65535 unsigned short unsigned short

Other than above int *1 int *1

R20UT3248EJ0110 Rev.1.10 Page 138 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-bit_order

< Compile Options / Microcontroller Options >

[Format]

- [Default]
The default for this option is bit_order=right.

[Description]

- This option specifies the order of bit-field members.

- When bit_order=left is specified, members are allocated from the upper bit.

- When bit_order=right is specified, members are allocated from the lower bit.

- The order of bit-field members can also be specified by the #pragma bit_order extension. If both this option and a
#pragma extension are specified, the #pragma specification takes priority.

-bit_order = { left | right }

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 139 of 1053
Nov 01, 2020

-pack

< Compile Options / Microcontroller Options >

[Format]

- [Default]
The boundary alignment value for structures and classes equals the maximum boundary alignment value for mem-
bers.

[Description]

- This option specifies the boundary alignment value for structure members and class members.

- The boundary alignment value for structure members can also be specified by the #pragma pack extension. If both
this option and a #pragma extension are specified, the #pragma specification takes priority. The boundary alignment
value for structures and classes equals the maximum boundary alignment value for members.

[Remarks]

- The boundary alignment values for structure members and class members when these options are specified are
shown in the following table.

Table 2.7 Boundary Alignment Values for Structure Members and Class Members When the pack Option is
Specified

Note Becomes the same as short when the int_to_short option is specified.

-pack

Member Type pack Not Specified

(signed) char 1 1

(unsigned) short 1 2

(unsigned) intNote, (unsigned) long, (unsigned) long long, floating
type, and pointer type

1 4

R20UT3248EJ0110 Rev.1.10 Page 140 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-unpack

< Compile Options / Microcontroller Options >

[Format]

- [Default]
The boundary alignment value for structures and classes equals the maximum boundary alignment value for mem-
bers.

[Description]

- This option specifies the boundary alignment value for structure members and class members.

- The boundary alignment value for structures and classes equals the maximum boundary alignment value for mem-
bers.

[Remarks]

- The boundary alignment values for structure members and class members when these options are specified are
shown in the following table.

Table 2.8 Boundary Alignment Values for Structure Members and Class Members When the unpack Option is
Specified

Note Becomes the same as short when the int_to_short option is specified.

-unpack

Member Type unpack Not Specified

(signed) char 1 1

(unsigned) short 2 2

(unsigned) intNote, (unsigned) long, (unsigned) long long, floating
type, and pointer type

4 4

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 141 of 1053
Nov 01, 2020

-exception

< Compile Options / Microcontroller Options >

[Format]

- [Default]
The C++ exceptional handling function (try, catch, throw) is disabled.

[Description]

- The C++ exceptional handling function (try, catch, throw) is enabled.

- The code performance may be lowered.

[Remarks]

- In order to use the C++ exceptional handling function among files, perform the following:

- Specify rtti=on.

- Do not specify the noprelink option in the optimizing linkage editor.

- The exception option can be specified only at C++ compilation. The exception option is ignored when lang=cpp has
not been specified and the input file extension is .c or .p.

-exception

R20UT3248EJ0110 Rev.1.10 Page 142 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-noexception

< Compile Options / Microcontroller Options >

[Format]

- [Default]
The C++ exceptional handling function (try, catch, throw) is disabled.

[Description]

- The C++ exceptional handling function (try, catch, throw) is disabled.

[Remarks]

- In order to use the C++ exceptional handling function among files, perform the following:

- Specify rtti=on.

- Do not specify the noprelink option in the optimizing linkage editor.

- The noexception option can be specified only at C++ compilation. The noexception option cannot be specified
when lang=cpp has not been specified and the input file extension is .c or .p. If specified, an error will occur.

-noexception

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 143 of 1053
Nov 01, 2020

-rtti

< Compile Options / Microcontroller Options >

[Format]

- [Default]
The default for this option is rtti=off.

[Description]

- This option enables or disables runtime type information.

- When rtti=on is specified, dynamic_cast and typeid are enabled.

- When rtti=off is specified, dynamic_cast and typeid are disabled.

[Remarks]

- Do not define relocatable files (.obj) that were created by this option in a library, and do not output files in the relocat-
able format (.rel) through the optimizing linkage editor. A symbol double definition error or symbol undefined error
may occur.

- rtti=on can be specified only at C++ compilation. rtti=on is ignored when lang=cpp has not been specified and the
input file extension is .c or .p.

-rtti={ on | off }

R20UT3248EJ0110 Rev.1.10 Page 144 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-fint_register

< Compile Options / Microcontroller Options >

[Format]

- [Default]
The default for this option is fint_register=0.

[Description]

- This option specifies the general registers which are to be used only in fast interrupt functions (functions that have the
fast interrupt setting (fint) in their interrupt specification defined by #pragma interrupt). The specified registers can-
not be used in functions other than the fast interrupt functions. Since the general registers specified by this option can
be used without being saved or restored in fast interrupt functions, the execution speed of fast interrupt functions will
most likely be improved. Then again, since the number of usable general registers in other functions is reduced, the
efficiency of register allocation in the entire program is degraded.

- The options correspond to the registers as shown in the following table.

Table 2.9 Correspondences between Options and Registers

[Remarks]

- Correct operation is not guaranteed when a register specified by this option is used in a function other than the fast
interrupt functions. If a register specified by this option has been specified by the base option, an error will occur.

-fint_register = {0 | 1 | 2 | 3 | 4 }

Option Registers for Fast Interrupts Only

fint_register=0 None

fint_register=1 R13

fint_register=2 R12, R13

fint_register=3 R11, R12, R13

fint_register=4 R10, R11, R12, R13

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 145 of 1053
Nov 01, 2020

-branch

< Compile Options / Microcontroller Options >

[Format]

- [Default]
The default for this option is branch=24.

[Description]

- This option specifies the branch width.

- When branch=16 is specified, the program is compiled with a branch width within 16 bits.

- When branch=24 is specified, the program is compiled with a branch width within 24 bits.

- When branch=32 is specified, the branch width is not specified.

-branch = { 16 | 24 | 32 }

R20UT3248EJ0110 Rev.1.10 Page 146 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-base

< Compile Options / Microcontroller Options >

[Format]

[Description]

- This option specifies the general register used as a fixed base address throughout the program.

- When base=rom=<register A> is specified, accesses to const variables are performed relative to the specified reg-
ister A. Note, however, that the difference between the address closest to 0 and the address closest to 0xFFFFFFFF
is within the range from 64 Kbytes to 256 Kbytes*1 in the constant area section.
The constant area section includes the sections (before renamed) shown below;
C_1, C_2, C, C_8, C$VECT, C$INIT, C$VTBL, W, W_1, W_2, L

- When base=ram=<register B> is specified, accesses to initialized variables and uninitialized variables are per-
formed relative to the specified register B. Note, however, that the difference between the address closest to 0 and
the address closest to 0xFFFFFFFF is within the range from 64 Kbytes to 256 Kbytes*1 in the RAM data area section.
The RAM data area section includes the sections (before renamed) shown below;
D_1, D_2, D, D_8, B_1, B_2, B, B_8

- When <address value>=<register C> is specified, accesses to an area within 64Kbytes to 256 bytes from the
address value, among the areas whose addresses are already determined at the time of compilation, are performed
relative to the specified register C.

Note
*1) This value is in the range from 64 to 256 Kbytes and depends on the total size of variables to be accessed.

[Remarks]

- The same register cannot be specified for different areas.

- Only a single register can be specified for each area. If a register specified by the fint_register option is specified by
this option, an error will occur.

- When the pid option is selected, base=rom=<register> cannot be selected. If selected, message W0523039 is out-
put as a warning and the selection of base=rom=<register> is disabled.

-base = { rom=<register>
 | ram=<register>
 | <address value> = <register>}
 <register>:= {R8 to R13}

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 147 of 1053
Nov 01, 2020

-patch

< Compile Options / Microcontroller Options >

[Format]

[Description]

- This option is used to avoid a problem specific to the CPU type.

- When -patch=rx610 is specified, the MVTIPL instruction which causes a problem in the RX610 Group is not used in
the generated code. Unless -patch=rx610 is specified, the code generated in response to the call by the intrinsic
function set_ipl will contain the MVTIPL instruction.

-patch = { rx610 }

R20UT3248EJ0110 Rev.1.10 Page 148 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-pic

< Compile Options / Microcontroller Options >

[Format]

- [Default]
This option does not generate code with the program section as PIC (position independent code).

[Description]

- This option generates code with the program section as PIC (position independent code).

- In PIC, all function calls are performed with BSR or BRA instructions. When acquiring the address of a function, a rel-
ative address from the PC should be used. This allows PIC to be located at a desired address after linkage.

[Example]

- Calling a function (only for branch=32)

- Acquiring a function address

-pic

void func()
{
 sub();
}

[Without -pic]
_func:
 MOV.L #_sub,R14
 JMP R14
[With -pic]
_func:
 MOV.L #_sub-L11,R14
L11:
 BRA R14

void func1(void);
void (*f_ptr)(void);
void func2(void)
{
 f_ptr = func1;
}

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 149 of 1053
Nov 01, 2020

[Remarks]

- In C++ or EC++ compilation, the pic option cannot be selected. If selected, message W0511171 is output as a warn-
ing and the selection of the pic option is disabled.

- The address of a function which is PIC should not be used in the initialization expression used for static initialization.
If used, error E0523026 will occur.

- <Example of using a PIC address for static initialization>

- When creating a code for startup of the application program using the PIC function, refer to the Application Startup
section of the STARTUP chapter.

- For the PIC function, also refer to the Usage of PIC/PID Function of the STARTUP section.

[Without -pic]
_func2:
 MOV.L #_f_ptr,R4
 MOV.L #_func1,[R4]
 RTS
[With -pic]
_func2:
 MOV.L #_f_ptr,R4
L11:
 MVFC PC,R14
 ADD #_func1-L11,R14
 MOV.L R14,[R4]
 RTS

void pic_func1(void), pic_func2(int), pic_func3(int); /* Becomes PIC */
void (*fptr1_for_pic) = pic_func1; /* Uses PIC address in static initialization:
Error */
struct PIC_funcs{ int code; void (*fptr)(int); };
struct PIC_funcs pic_funcs[] = {
 { 2, pic_func2 }, /* Uses PIC address in static initialization: Error
*/
 { 3, pic_func3 }, /* Uses PIC address in static initialization: Error
*/
};

R20UT3248EJ0110 Rev.1.10 Page 150 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-pid

< Compile Options / Microcontroller Options >

[Format]

- [Default]
The constant area sections C_8, C, C_2, and C_1, the literal section L, and the switch statement branch table sec-
tions W, W_2, and W_1 are not handled as PID (position independent data).

[Description]

- The constant area sections C_8, C, C_2, and C_1, the literal section L, and the switch statement branch table sec-
tions W, W_2, and W_1 are handled as PID (position independent data).

- PID can be accessed through a relative address from the PID register. This allows PID to be located at a desired
address after linkage.

- A single general register is used to implement the PID function.

- <PID register>

- Based on the rules in the following table, one register from among R9 to R13 is selected according to the spec-
ification of the fint_register option. If the fint_register option is not specified, R13 is selected.

Table 2.10 Correspondences between fint_register Options and PID Registers

- The PID register can be used only for the purpose of PID access.

- <Parameters>

- The parameter selects the maximum bit width of the offset when accessing the constant area section from the
PID register as 16 bits or 32 bits.

- The default for this option when the offset width is omitted is pid=16. When pid=16 is specified, the size of the
constant area section that can be accessed by the PID register is limited to 64 Kbytes to 256 Kbytes (varies
depending on the access width). When pid=32 is specified, there is no limitation of the size of the constant area
section that can be accessed by the PID register, but the size of the code accessing PID is increased.

- Note that when pid=32 and the map option with valid external symbol-allocation information are specified at the
same time, the allocation information causes code the same as if pid=16 was specified to be generated if
access by the PID register is possible.

-pid[={ 16 | 32 }]

fint_register Option PID Register

No fint_register specification R13

fint_register = 0

fint_register = 1 R12

fint_register = 2 R11

fint_register = 3 R10

fint_register = 4 R9

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 151 of 1053
Nov 01, 2020

[Examples]

- Accessing an externally referenced symbol that is const qualified

- Acquiring the address of an externally defined symbol that is const qualified

[Remarks]

- The address of an area which is PID should not be used in the initialization expression used for static initialization. If
used, error E0523027 will occur.

extern const int pid;
int work;
void func1()
{
 work = pid;
}

[Without -pid]
_func1:
 MOV.L #_pid,R4
 MOV.L [R4],R5
 MOV.L #_work,R4
 MOV.L R5,[R4]
 RTS
[With -pid=16] (only when the PID register is R13)
_func1:
 MOV.L _pid-__PID_TOP:16[R13],R5
 MOV.L #_work,R4
 MOV.L R5,[R4]
 RTS
 .glb __PID_TOP
[With -pid=32] (only when the PID register is R13)
_func1:
 ADD #(_pid-__PID_TOP),R13,R6
 MOV.L [R6],R5
 MOV.L #_work,R4
 MOV.L R5,[R4]
 RTS
 .glb __PID_TOP

extern const int pid = 1000;
const int *ptr;
void func2()
{
 ptr = &pid;
}

[Without -pid]
_func2:
 MOV.L #_ptr,R4
 MOV.L #_pid,[R4]
 RTS
[With -pid] (only when the PID register is R13)
_func2:
 ADD #(_pid-__PID_TOP),R13,R5
 MOV.L #_ptr,R4
 MOV.L R5,[R4]
 RTS
 .glb __PID_TOP

R20UT3248EJ0110 Rev.1.10 Page 152 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

- <Example of using a PID address for static initialization>

- When creating a code for startup of the application program using the PID function, refer to Application Startup,
instead of Startup.

- When the pid option is selected, the same external variables in different files all have to be const qualified. This is
because the pid option is used to specify const qualified variables as PID. The pid option (PID function) should not
be used when there may be an external variable that is not const qualified.

- If the map=<file name> option is enabled while the pid option is selected, warning W0530809 may be output when
there is an externally referenced variable that is not const qualified but used in different files as the same external
variable. In the case, the displayed variable is handled as PID.

- In C++ or EC++ compilation, the pid option cannot be selected. If selected, message W0511171 is output as a warn-
ing and the selection of the pid option is disabled.

- When the pid option is selected, base=rom=<register> cannot be selected. If selected, message W0551149 is out-
put as a warning and the selection of base=rom=<register> is disabled.

- If a PID register selected by the pid option is also specified by the base option, warning W0511149 will occur.

- If the pid option and nouse_pid_register option are selected simultaneously, error E0511150 will occur.

- For details of the application and PID function, refer to Usage of PIC/PID Function.

extern const int pid_data1; /* Becomes PID */
const int *ptr1_for_pid = &pid_data1;/* Uses PID address in static initialization:
Error */
const int pid_data4[] = {1,2,3,4}; /* Becomes PID */
const int *ptr2_for_pid = pid_data4; /* Uses PID address in static initialization:
Error */

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 153 of 1053
Nov 01, 2020

-nouse_pid_register

< Compile Options / Microcontroller Options >

[Format]

[Description]

- When this option is specified, the generated code does not use the PID register.

- Selection of the PID register according to the settings of the fint_register option is based on the same rule as for the
pid option.

- A master program called by an application program in which the PID function is enabled needs to be compiled with
this option. At this time, if the fint_register option is selected in the application program, the same parameter
fint_register should also be selected in the master program.

[Remarks]

- If the nouse_pid_register option and pid option are selected simultaneously, error E0511150 will occur.

- A register selected as the PID register also being specified for the base option leads to warning W0511149.

- For details of the PID function, refer to Usage of PIC/PID Function.

-nouse_pid_register

R20UT3248EJ0110 Rev.1.10 Page 154 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-save_acc

< Compile Options / Microcontroller Options >

[Format]

- [Default]
When this option is omitted, it does not generate the saved and restored code of the accumulator (ACC,ACC0,ACC1)
for interrupt functions.

[Description]

- This option generates the saved and restored code of the accumulator (ACC,ACC0,ACC1) for interrupt functions.

- The code for saving and restoring the ACC is generated when RXv1 is selected for ISA*1 or the microcomputer type
is selected by the CPU*2.

- The code for saving and restoring ACC0 and ACC1 is generated when a value other than RXv1 is selected for ISA*1.

Note
*1) This means a selection by the -isa option or the ISA_RX environment variable.
*2) This means a selection by the -cpu option or the CPU_RX environment variable.

[Remarks]

- The generated code for saving and restoring is the same code generated when interrupt specification "acc" is
selected in #pragma interrupt. For the actual code for saving and restoring, refer to the description of #pragma inter-
rupt in section 4.2.3 #pragma Directive.

- Since the value of the accumulator is retained even at interrupt occurrence if this option has been specified, a code
using DSP instructions, such as the MACW instruction, may be generated for C/C++ arithmetic expressions.

-save_acc

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 155 of 1053
Nov 01, 2020

< Compile Options / Assemble and Linkage Options >

The following assemble and linkage options are available.

- -asmcmd

- -lnkcmd

- -asmopt

- -lnkopt

Assemble and Linkage Options

R20UT3248EJ0110 Rev.1.10 Page 156 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-asmcmd

< Compile Options / Assemble and Linkage Options >

[Format]

[Description]

- This option specifies the assembler options to pass to asrx with a subcommand file.

[Example]

The above description has the same meaning as the following two command lines:

[Remarks]

- If this option is specified for more than one time, all specified subcommand files are valid.

-asmcmd=<file name>

ccrx -isa=rxv1 -asmcmd=file.sub sample.c

ccrx -isa=rxv1 -output=src sample.c
asrx -isa=rxv1 -subcommand=file.sub sample.src

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 157 of 1053
Nov 01, 2020

-lnkcmd

< Compile Options / Assemble and Linkage Options >

[Format]

[Description]

- This option specifies the linkage options to pass to rlink with a subcommand file.

[Example]

The above description has the same meaning as the following three command lines:

[Remarks]

- If this option is specified for more than one time, all specified subcommand files are valid.

- Refer to the -subcommand option of the optimizing linkage editor for the contents of the subcommand file passed to
the -lnkcmd option.

-lnkcmd=<file name>

ccrx -isa=rxv1 -output=abs=tp.abs -lnkcmd=file.sub tp1.c tp2.c

ccrx -isa=rxv1 -output=src tp1.c tp2.c]
asrx -isa=rxv1 tp1.src tp2.src
rlink -subcommand=file.sub -form=abs -output=tp tp1.obj tp2.obj

R20UT3248EJ0110 Rev.1.10 Page 158 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-asmopt

< Compile Options / Assemble and Linkage Options >

[Format]

[Description]

- This option specifies the assembler options to pass to asrx with a string.

- Multiple options can be specified by enclosing them with double-quote marks (").

[Example]

The above description has the same meaning as the following two command lines:

[Remarks]

- If this option is specified for more than one time, all specified assembler options are valid.

-asmopt=["]<assembler option>["]

ccrx -isa=rxv1 -asmopt="-chkpm" sample.c

ccrx -isa=rxv1 -output=src sample.c
asrx -isa=rxv1 -chkpm sample.src

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 159 of 1053
Nov 01, 2020

-lnkopt

< Compile Options / Assemble and Linkage Options >

[Format]

[Description]

- This option specifies the linkage options to pass to rlink with a string.

- Multiple options can be specified by enclosing them with double-quote marks (").

[Example]

The above description has the same meaning as the following three command lines:

[Remarks]

- If this option is specified for more than one time, all specified linkage options are valid.

- A single -lnkopt option can only take a single linkage option. To pass multiple linkage options, specify -lnkopt options
as many times as the number of linkage options you require.

-lnkopt=["]<linkage option>["]

ccrx -isa=rxv1 -output=abs=tp.abs -lnkopt="-start=P,C,D/100,B/8000" tp1.c tp2.c

ccrx -isa=rxv1 -output=src tp1.c tp2.c
asrx -isa=rxv1 tp1.src tp2.src
rlink -start=P,C,D/100,B/8000 -form=abs -output=tp tp1.obj tp2.obj

R20UT3248EJ0110 Rev.1.10 Page 160 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

< Compile Options / Other Options >

The following other options are available.

- -logo

- -nologo

- -euc

- -sjis

- -latin1

- -utf8

- -big5

- -gb2312

- -outcode

- -subcommand

Other Options

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 161 of 1053
Nov 01, 2020

-logo

< Compile Options / Other Options >

[Format]

- [Default]
The copyright notice is output.

[Description]

- The copyright notice is output.

-logo

R20UT3248EJ0110 Rev.1.10 Page 162 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-nologo

< Compile Options / Other Options >

[Format]

- [Default]
The copyright notice is output.

[Description]

- When the nologo option is specified, output of the copyright notice is disabled.

-nologo

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 163 of 1053
Nov 01, 2020

-euc

< Compile Options / Other Options >

[Format]

- [Default]
This option specifies the character code to handle the characters in strings, character constants, and comments in
SJIS code.

[Description]

- This option specifies the character code to handle the characters in strings, character constants, and comments in
EUC code.

-euc

R20UT3248EJ0110 Rev.1.10 Page 164 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-sjis

< Compile Options / Other Options >

[Format]

- [Default]
This option specifies the character code to handle the characters in strings, character constants, and comments in
SJIS code.

[Description]

- This option specifies the character code to handle the characters in strings, character constants, and comments in
SJIS code.

-sjis

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 165 of 1053
Nov 01, 2020

-latin1

< Compile Options / Other Options >

[Format]

- [Default]
This option specifies the character code to handle the characters in strings, character constants, and comments in
SJIS code.

[Description]

- This option specifies the character code to handle the characters in strings, character constants, and comments in
ISO-Latin1 code.

-latin1

R20UT3248EJ0110 Rev.1.10 Page 166 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-utf8

< Compile Options / Other Options >

[Format]

- [Default]
This option specifies the character code to handle the characters in strings, character constants, and comments in
SJIS code.

[Description]

- This option specifies the character code to handle the characters in strings, character constants, and comments in
UTF-8 code.

-utf8

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 167 of 1053
Nov 01, 2020

-big5

< Compile Options / Other Options >

[Format]

- [Default]
This option specifies the character code to handle the characters in strings, character constants, and comments in
SJIS code.

[Description]

- This option specifies the character code to handle the characters in strings, character constants, and comments in
Big5 code.

[Remarks]

- When big5 is specified, the same character coding must be selected for the outcode option.

-big5

R20UT3248EJ0110 Rev.1.10 Page 168 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-gb2312

< Compile Options / Other Options >

[Format]

- [Default]
This option specifies the character code to handle the characters in strings, character constants, and comments in
SJIS code.

[Description]

- This option specifies the character code to handle the characters in strings, character constants, and comments in
GB2312 code.

[Remarks]

- When gb2312 is specified, the same character coding must be selected for the outcode option.

-gb2312

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 169 of 1053
Nov 01, 2020

-outcode

< Compile Options / Other Options >

[Format]

- [Default]
The default for this option is outcode=sjis.

[Description]

- This option specifies the character code to output characters in strings and character constants.

- The options correspond to the character codes as shown in the following table.

Table 2.11 Correspondences between Options and Character Codes (outcode)

[Remarks]

- When outcode=big5 or outcode=gb2312, the big5 or gb2312 option must also be specified.

-outcode = { euc | sjis | utf8 | big5 | gb2312 }

Option Character Code

euc EUC code

sjis SJIS code

utf8 UTF-8 code

big5 Big5 code

gb2312 GB2312 code

R20UT3248EJ0110 Rev.1.10 Page 170 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-subcommand

< Compile Options / Other Options >

[Format]

[Description]

- When the subcommand option is specified, the compiler options specified in a subcommand file are used at compiler
startup. Specify options in a subcommand file in the same format as in the command line.

[Remarks]

- If this option is specified for more than one time, all specified subcommand files are valid.

-subcommand=<subcommand file name>

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 171 of 1053
Nov 01, 2020

2.5.2 Assembler Command Options

Classification Option Description

Source Options -include Specifies the names of folders that hold include files.

-define Specifies macro definitions.

-chkpm Checks whether a privileged instruction is written.

-chkfpu Checks whether a single-precision floating-point processing
instruction is written.

-chkdsp Checks whether a DSP instruction is written.

-chkdpfpu [V3.01.00
or later]

Checks whether a double-precision floating-point processing
instruction is written.

Object Options -output Specifies the relocatable file name.

-debug Debugging information is output to the object files.

-nodebug Debugging information is not output to the object files.

-goptimize Outputs additional information for inter-module optimization.

-fpu Enables writing of a single-precision floating-point processing
instruction.

-nofpu Generates an error when a single-precision floating-point process-
ing instruction is written.

-dpfpu [V3.01.00 or
later]

Enables writing of a double-precision floating-point processing
instruction.

-nodpfpu [V3.01.00
or later]

Generates an error when a double-precision floating-point process-
ing instruction is written.

-bank [V3.01.00 or
later]

Enables writing of the SAVE and RSTR instructions dedicated to
the register bank save function.

-nobank [V3.01.00 or
later]

Generates an error when the SAVE or RSTR instruction dedicated
to the register bank save function is written.

-create_unfilled_area [To be supported by V2.03 and later versions]
Makes spaces created by .OFFSET unfilled.

List Options -listfile An assembler list file is output.

-nolistfile An assembler list file is not output.

-show Specifies the contents of the source list file.

R20UT3248EJ0110 Rev.1.10 Page 172 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

Microcontroller Options -isa Selects the instruction-set architecture.

-cpu Selects the microcontroller type.

-endian Selects the endian type.

-fint_register Selects a general register for exclusive use with the fast interrupt
function.

-base Specifies the base registers for ROM and RAM.

-patch Selects avoidance or non-avoidance of a problem specific to the
CPU type.

-pic Enables the PIC function.

-pid Enables the PID function.

-nouse_pid_register The PID register is not used in code generation.

Other Options -logo Selects the output of copyright information.

-nologo Selects the non-output of copyright information.

-subcommand Specifies a file for including command options.

-euc The character codes of input programs are interpreted as EUC
codes.

-sjis The character codes of input programs are interpreted as SJIS
codes.

-latin1 The character codes of input programs are interpreted as
ISO-Latin1 codes.

-big5 The character codes of input programs are interpreted as BIG5
codes.

-gb2312 The character codes of input programs are interpreted as GB2312
codes.

-utf8 [V2.04.00 or
later]

The character codes of input programs are interpreted as UTF-8
codes.

Classification Option Description

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 173 of 1053
Nov 01, 2020

< Assembler Command Options / Source Options >

The following source options are available.

- -include

- -define

- -chkpm

- -chkfpu

- -chkdsp

- -chkdpfpu [V3.01.00 or later]

Source Options

R20UT3248EJ0110 Rev.1.10 Page 174 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-include

< Assembler Command Options / Source Options >

[Format]

- [Default]
The include file is searched for in the order of the current folder and the folders specified by environment variable
INC_RXA.

[Description]

- This option specifies the name of the path to the folder that stores the include file.

- Multiple path names can be specified by separating them with a comma (,).

- The include file is searched for in the order of the current folder, the folders specified by the include option, and the
folders specified by environment variable INC_RXA.

[Example]

- Folders c:\usr\inc and c:\usr\rxc are searched for the include file.

-include=<path name>[,...]

asrx -include=c:\usr\inc,c:\usr\rxc test.src

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 175 of 1053
Nov 01, 2020

-define

< Assembler Command Options / Source Options >

[Format]

[Description]

- This option replaces the macro name with the specified string.
(This provides the same function as writing the .DEFINE directive at the beginning of the source file.)

[Remarks]

- .DEFINE takes priority over the define option if both are specified.

-define=<sub>[,...]
 <sub>: <macro name> = <string>

R20UT3248EJ0110 Rev.1.10 Page 176 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-chkpm

< Assembler Command Options / Source Options >

[Format]

[Description]

- This option outputs warning W0551011 when a privileged instruction is written in the source file.

[Remarks]

- For details of the privileged instructions, refer to the RX Family Software Manual.

-chkpm

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 177 of 1053
Nov 01, 2020

-chkfpu

< Assembler Command Options / Source Options >

[Format]

[Description]

- This option outputs warning W0551012 when a single-precision floating-point processing instruction is written in the
source file.

[Remarks]

- For details of the single-precision floating-point processing instructions, refer to the RX Family Software Manual.

-chkfpu

R20UT3248EJ0110 Rev.1.10 Page 178 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-chkdsp

< Assembler Command Options / Source Options >

[Format]

[Description]

- This option outputs warning W0551013 when a DSP instruction is written in the source file.

[Remarks]

- For details of the DSP instructions, refer to the RX Family Software Manual.

-chkdsp

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 179 of 1053
Nov 01, 2020

-chkdpfpu [V3.01.00 or later]

< Assembler Command Options / Source Options >

[Format]

[Description]

- This option outputs warning W0551017 when a double-precision floating-point processing instruction is written in the
source file.

[Remarks]

- For details of the double-precision floating-point processing instructions, refer to the RX Family Software Manual.

-chkdpfpu

R20UT3248EJ0110 Rev.1.10 Page 180 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

< Assembler Command Options / Object Options >

The following object options are available.

- -output

- -debug

- -nodebug

- -goptimize

- -fpu

- -nofpu

- -dpfpu [V3.01.00 or later]

- -nodpfpu [V3.01.00 or later]

- -bank [V3.01.00 or later]

- -nobank [V3.01.00 or later]

- -create_unfilled_area

Object Options

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 181 of 1053
Nov 01, 2020

-output

< Assembler Command Options / Object Options >

[Format]

- [Default]
This option outputs a relocatable file having the same name as that of the source file with extension .obj.

[Description]

- When the specified output file name does not have an extension, the file name appended with extension .obj is used
for the output relocatable file name. When it has an extension, the extension is replaced with .obj.

-output=<output file name>

R20UT3248EJ0110 Rev.1.10 Page 182 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-debug

< Assembler Command Options / Object Options >

[Format]

- [Default]
If this option is not specified, no debugging information is output to the relocatable file.

[Description]

- When the debug option is specified, debugging information is output to the relocatable file.

-debug

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 183 of 1053
Nov 01, 2020

-nodebug

< Assembler Command Options / Object Options >

[Format]

- [Default]
If this option is not specified, no debugging information is output to the relocatable file.

[Description]

- When the nodebug option is specified, no debugging information is output to the relocatable file.

-nodebug

R20UT3248EJ0110 Rev.1.10 Page 184 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-goptimize

< Assembler Command Options / Object Options >

[Format]

- [Default]
If this option is not specified, additional information for the inter-module optimization is not output.

[Description]

- This option outputs the additional information for the inter-module optimization.

- At linkage, inter-module optimization is applied to the file specified with this option.

-goptimize

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 185 of 1053
Nov 01, 2020

-fpu

< Assembler Command Options / Object Options >

[Format]

- [Default]
The default for this option is fpu when the Instruction-code set as the ISA *1.
The default for this option is nofpu (when RX200 is selected as the target CPU *2) or fpu (in other cases).

Note
*1) This means a selection by the -isa option or the ISA_RX environment variable.
*2) This means a selection by the -cpu option or the CPU_RX environment variable.

[Description]

- This option enables writing of a single-precision floating-point processing instruction.

[Remarks]

- Specifying fpu will lead to an error when the RX200 is selected as the target CPU.

- For details of the single-precision floating-point processing instructions, refer to the RX Family Software Manual.

-fpu

R20UT3248EJ0110 Rev.1.10 Page 186 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-nofpu

< Assembler Command Options / Object Options >

[Format]

- [Default]
The default for this option is fpu when the Instruction-code set as the ISA *1.
The default for this option is nofpu (when RX200 is selected as the target CPU *2) or fpu (in other cases).

Note
*1) This means a selection by the -isa option or the ISA_RX environment variable.
*2) This means a selection by the -cpu option or the CPU_RX environment variable.

[Description]

- This option generates an error when a single-precision floating-point processing instruction is written.

[Remarks]

- For details of the single-precision floating-point processing instructions, refer to the RX Family Software Manual.

- When this option is specified, a code including single-precision floating-point processing instructions or control regis-
ter FPSW will cause an error.

-nofpu

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 187 of 1053
Nov 01, 2020

-dpfpu [V3.01.00 or later]

< Assembler Command Options / Object Options >

[Format]

- Interpretation when omitted
nodpfpu is assumed to be specified.

[Description]

- This option enables writing of a double-precision floating-point processing instruction.

[Remarks]

- When the CPU*1 is selected or RXv1 or RXv2 is selected as ISA*2, an error will occur if dpfpu is specified.

- For details of the double-precision floating-point processing instructions, refer to the RX Family Software Manual.

- When nofpu has been specified, an error will occur if dpfpu is specified.

Note
*1) This means a selection by the cpu option or the CPU_RX environment variable.
*2) This means a selection by the isa option or the ISA_RX environment variable.

-dpfpu

R20UT3248EJ0110 Rev.1.10 Page 188 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-nodpfpu [V3.01.00 or later]

< Assembler Command Options / Object Options >

[Format]

- Interpretation when omitted
nodpfpu is assumed to be specified.

[Description]

- This option generates an error when a double-precision floating-point processing instruction is written.

[Remarks]

- For details of the double-precision floating-point processing instructions, refer to the RX Family Software Manual.

- When this option is specified, a code including double-precision floating-point processing instructions, double-preci-
sion floating-point data registers (DR0 to DR15), or double-precision floating-point control registers (DPSW, DMCR,
DECNT, and DEPC) will cause an error.

-nodpfpu

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 189 of 1053
Nov 01, 2020

-bank [V3.01.00 or later]

< Assembler Command Options / Object Options >

[Format]

- Interpretation when omitted
When the CPU*1 is selected or RXv1 or RXv2 is selected as ISA*2, -nobank is assumed to be specified.
In other cases, -bank is assumed to be specified.

Note
*1) This means a selection by the cpu option or the CPU_RX environment variable.
*2) This means a selection by the isa option or the ISA_RX environment variable.

[Description]

- This option enables writing of the SAVE and RSTR instructions dedicated to the register bank save function.

-bank

R20UT3248EJ0110 Rev.1.10 Page 190 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-nobank [V3.01.00 or later]

< Assembler Command Options / Object Options >

[Format]

- Interpretation when omitted
When the CPU*1 is selected or RXv1 or RXv2 is selected as ISA*2, -nobank is assumed to be specified.
In other cases, -bank is assumed to be specified.

Note
*1) This means a selection by the cpu option or the CPU_RX environment variable.
*2) This means a selection by the isa option or the ISA_RX environment variable.

[Description]

- This option generates an error when the SAVE or RSTR instruction dedicated to the register bank save function is
written.

-nobank

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 191 of 1053
Nov 01, 2020

-create_unfilled_area

< Assembler Command Options / Object Options >

[Format]

[Description]

- When a Motorola S-record file (<name>.mot) or Hex file (<name>.hex) is output, this option blocks spaces created
by .OFFSET directives in the assembly language being filled with output data.

- When using this option, specify it when using the ccrx or asrx command to create an object file (<name>.obj) as well
as when using the rlink command to create a Motorola S-record file or Hex file.

[Remarks]

- This option is available in V2.03 and later versions of this compiler.

- When this option is used, symbols in the format shown below*1 will be added for each .OFFSET directive.

__$_<FileName>_<SectionName>_<IDNumber>s__unfilled_area
__$_<FileName>_<SectionName>_<IDNumber>e__unfilled_area

Here, the name of the source file, section, and a number in a sequence starting from 1 are entered as <FileName>,
<SectionName>, and <IDNumber>, respectively.

Note
*1) Since symbols in this format are reserved, they cannot be directly included in your source code.

-create_unfilled_area

R20UT3248EJ0110 Rev.1.10 Page 192 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

< Assembler Command Options / List Options >

The following list options are available.

- -listfile

- -nolistfile

- -show

List Options

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 193 of 1053
Nov 01, 2020

-listfile

< Assembler Command Options / List Options >

[Format]

- [Default]
If this option is not specified, no assemble list file is output.

[Description]

- When the listfile option is specified, an assemble list file is output. The name of the file can also be specified.

- <file name> should be specified according to the rules described in the Naming Files section.

- If <file name> is not specified in the listfile option, the source file name with the extension replaced with .lst is used
as the source list file name.

-listfile[=<file name>]

R20UT3248EJ0110 Rev.1.10 Page 194 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-nolistfile

< Assembler Command Options / List Options >

[Format]

- [Default]
If this option is not specified, no assemble list file is output.

[Description]

- When the nolistfile option is specified, no assemble list file is output.

-nolistfile

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 195 of 1053
Nov 01, 2020

-show

< Assembler Command Options / List Options >

[Format]

[Description]

- This option specifies the contents of the list file to be output by the assembler. The following output types can be spec-
ified as <sub>.

Table 2.12 Output Types Specifiable for show Option

-show=<sub>[,...]
 <sub>: { conditionals | definitions | expansions }

Output Type Description

conditionals The statements for which the specified condition is not satisfied in conditional assembly are
also output to a source list file.

definitions The information before replacement specified by .DEFINE is output to a source list file.

expansions The macro expansion statements are output to a source list file.

R20UT3248EJ0110 Rev.1.10 Page 196 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

< Assembler Command Options / Microcontroller Options >

The following microcontroller options are available.

- -isa

- -cpu

- -endian

- -fint_register

- -base

- -patch

- -pic

- -pid

- -nouse_pid_register

Microcontroller Options

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 197 of 1053
Nov 01, 2020

-isa

< Assembler Command Options / Microcontroller Options >

[Format]

- [Default]
The default for this option is determined based on the environment variable ISA_RX.

[Description]

- This option specifies an instruction-set architecture for use in generating object files.

[Remarks]

- When neither the -nofpu nor -fpu option has been selected, specifying this option automatically selects the -fpu
option.

- Omitting this option when neither the -cpu option nor one of the environment variables (CPU_RX or ISA_RX) is spec-
ified will lead to an error.

- When the -cpu option and this option are specified simultaneously, an error will occur.

-isa={ rxv1 | rxv2 | rxv3 }

R20UT3248EJ0110 Rev.1.10 Page 198 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-cpu

< Assembler Command Options / Microcontroller Options >

[Format]

- [Default]
The default for this option is determined based on the environment variable CPU_RX.

[Description]

- This option specifies the CPU type for the instruction code to be generated.

- When -cpu=rx600 is specified, a relocatable file for the RX600 Series is generated.

- When -cpu=rx200 is specified, a relocatable file for the RX200 Series is generated.

[Remarks]

- This option is for compatibility with earlier products.

- For upcoming RX-family MCUs, the isa option will be used instead of the cpu option to select an instruction-set archi-
tecture. In developing new applications, use the isa option where possible.

- The cpu option can be replaced by the -isa, -fpu and -nofpu options as follows.

- -cpu=rx600 ==> -isa=rxv1 -fpu

- -cpu=rx200 ==> -isa=rxv1 -nofpu

- Omitting the cpu option will lead to an error if neither the -isa option nor one of the environment variables (CPU_RX
or ISA_RX) is specified.

- The -cpu and -isa options cannot be specified at the same time.

-cpu={ rx600 | rx200 }

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 199 of 1053
Nov 01, 2020

-endian

< Assembler Command Options / Microcontroller Options >

[Format]

- [Default]
The default for this option is endian=little.

[Description]

- When endian=big is specified, data bytes are arranged in big endian.
When endian=little is specified, data bytes are arranged in little endian.

-endian={ big | little }

R20UT3248EJ0110 Rev.1.10 Page 200 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-fint_register

< Assembler Command Options / Microcontroller Options >

[Format]

- [Default]
The default for this option is fint_register=0.

[Description]

- This option outputs to the relocatable file the information about the general registers that are specified to be used only
for fast interrupts through the same-name option in the compiler.

[Remarks]

- Be sure to set this option to the same value for all assembly processes in the project. If a different setting is made,
correct operation is not guaranteed.

- Do not use a general register dedicated to fast interrupts for other purposes in assembly-language files. If such a reg-
ister is used for any other purpose, correct operation is not guaranteed.

- If a register specified by this option is also specified by the base option, an error will be output.

-fint_register = {0 | 1 | 2 | 3 | 4 }

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 201 of 1053
Nov 01, 2020

-base

< Assembler Command Options / Microcontroller Options >

[Format]

[Description]

- This option outputs to the relocatable file the information about the general register that is specified to be used only as
a base address register through the same-name option in the compiler.

[Remarks]

- Be sure to set this option to the same value for all assembly processes in the project. If a different setting is made,
correct operation is not guaranteed.

- Do not use a general register specified by this option for other purposes than a base address register. If such a regis-
ter is used for any other purpose, correct operation is not guaranteed.

- If a single general register is specified for different areas, an error will be output.

- If a general register specified by the fint_register option is also specified by this option, an error will be output.

-base = { rom = <register>
 | ram = <register>
 | <address> = <register>}
 <register> = {R8 to R13}

R20UT3248EJ0110 Rev.1.10 Page 202 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-patch

< Assembler Command Options / Microcontroller Options >

[Format]

[Description]

- This option is used to avoid a problem specific to the CPU type.

- When -patch=rx610 is specified, the MVTIPL instruction which causes a problem in the RX610 Group is handled as
an undefined instruction. The MVTIPL instruction will not be recognized as an instruction and the error message
E0552113 will be output.

-patch = { rx610 }

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 203 of 1053
Nov 01, 2020

-pic

< Assembler Command Options / Microcontroller Options >

[Format]

- [Default]
This option generates a relocatable object indicating that code was generated with the PIC function disabled.

[Description]

- This option generates a relocatable object indicating that code was generated with the PIC function enabled.

[Remarks]

- Even if code conflicting with this option is written in the assembly code, it will not be checked.

- A relocatable object with the PIC function enabled cannot be linked with a relocatable object with the PIC function dis-
abled.

- For the PIC function, also refer to Usage of PIC/PID Function.

-pic

R20UT3248EJ0110 Rev.1.10 Page 204 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-pid

< Assembler Command Options / Microcontroller Options >

[Format]

- [Default]
This option generates a relocatable object indicating that code was generated with the PID function disabled.

[Description]

- This option generates a relocatable object indicating that code was generated with the PID function enabled.

- <PID register>

- Based on the rules in the following table, one register from among R9 to R13 is selected according to the spec-
ification of the fint_register option. If the fint_register option is not specified, R13 is selected.

Table 2.13 Correspondences between fint_register Options and PID Registers

- The PID register can be used only for the purpose of PID access.

- <Parameters>

- The meaning of a parameter is the same as that for the compiler option with the same name.

[Remarks]

- Even if code conflicting with PID is written in the assembly code, it will not be checked.

- A relocatable object with the PID function enabled cannot be linked with a relocatable object with the PID function dis-
abled.

- If a PID register specified by the pid option is also specified by the base option, error F0553111 will be output.

- If the pid option and nouse_pid_register option are selected simultaneously, error F0553103 will be output.

- For the PID function, also refer to Usage of PIC/PID Function.

-pid[={ 16 | 32 }]

fint_register Option PID Register

No fint_register specification R13

fint_register = 0

fint_register = 1 R12

fint_register = 2 R11

fint_register = 3 R10

fint_register = 4 R9

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 205 of 1053
Nov 01, 2020

-nouse_pid_register

< Assembler Command Options / Microcontroller Options >

[Format]

[Description]

- This option generates a relocatable object that was generated without using the PID register.

- If the PID register is used in the assembly-language source file, error message E0552058 will be output. Specifying
this option, however, does not lead to an error if a substitute register defined in the assembler specifications is used
as the PID register.

- A master program called by an application program in which the PID function is enabled needs to be assembled with
this option. At this time, if the fint_register option is selected in the application program, the same parameter
fint_register should also be selected in the master program.

[Remarks]

- If the nouse_pid_register option and pid option are selected simultaneously, error F0553103 will be output.

- If a register specified by the nouse_pid_register option is also specified by the base option, error F0553112 will be
output.

- For the PID function, also refer to Usage of PIC/PID Function.

-nouse_pid_register

R20UT3248EJ0110 Rev.1.10 Page 206 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

< Assembler Command Options / Other Options >

The following other options are available.

- -logo

- -nologo

- -subcommand

- -euc

- -sjis

- -latin1

- -big5

- -gb2312

- -utf8 [V2.04.00 or later]

Other Options

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 207 of 1053
Nov 01, 2020

-logo

< Assembler Command Options / Other Options >

[Format]

- [Default]
The copyright notice is output.

[Description]

- The copyright notice is output.

-logo

R20UT3248EJ0110 Rev.1.10 Page 208 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-nologo

< Assembler Command Options / Other Options >

[Format]

- [Default]
The copyright notice is output.

[Description]

- When the nologo option is specified, output of the copyright notice is disabled.

-nologo

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 209 of 1053
Nov 01, 2020

-subcommand

< Assembler Command Options / Other Options >

[Format]

[Description]

- When the subcommand option is specified, the assembler options specified in a subcommand file are used at
assembler startup. Specify options in a subcommand file in the same format as in the command line.

[Example]

- Contents of subcommand file opt.sub:

- Command line specifications:

- When options are specified in the command line as shown (1) below, the assembler interprets them as shown in (2).

-subcommand=<subcommand file name>

-listfile
-debug

(1) asrx -endian=big -subcommand=opt.sub test.src
(2) asrx -endian=big -listfile -debug test.src

R20UT3248EJ0110 Rev.1.10 Page 210 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-euc

< Assembler Command Options / Other Options >

[Format]

- [Default]
This option specifies the character code to handle the characters in strings, character constants, and comments in
SJIS code.

[Description]

- This option specifies the character code to handle the characters in strings, character constants, and comments in
EUC code.

-euc

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 211 of 1053
Nov 01, 2020

-sjis

< Assembler Command Options / Other Options >

[Format]

- [Default]
This option specifies the character code to handle the characters in strings, character constants, and comments in
SJIS code.

[Description]

- This option specifies the character code to handle the characters in strings, character constants, and comments in
SJIS code.

-sjis

R20UT3248EJ0110 Rev.1.10 Page 212 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-latin1

< Assembler Command Options / Other Options >

[Format]

- [Default]
This option specifies the character code to handle the characters in strings, character constants, and comments in
SJIS code.

[Description]

- This option specifies the character code to handle the characters in strings, character constants, and comments in
ISO-Latin1 code.

-latin1

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 213 of 1053
Nov 01, 2020

-big5

< Assembler Command Options / Other Options >

[Format]

- [Default]
This option specifies the character code to handle the characters in strings, character constants, and comments in
SJIS code.

[Description]

- This option specifies the character code to handle the characters in strings, character constants, and comments in
Big5 code.

-big5

R20UT3248EJ0110 Rev.1.10 Page 214 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-gb2312

< Assembler Command Options / Other Options >

[Format]

- [Default]
This option specifies the character code to handle the characters in strings, character constants, and comments in
SJIS code.

[Description]

- This option specifies the character code to handle the characters in strings, character constants, and comments in
GB2312 code.

-gb2312

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 215 of 1053
Nov 01, 2020

-utf8 [V2.04.00 or later]

< Assembler Command Options / Other Options >

[Format]

- [Default]
This option specifies the character code to handle the characters in strings, character constants, and comments in
SJIS code.

[Description]

- This option specifies the character code to handle the characters in strings, character constants, and comments in
UTF-8 code.

-utf8

R20UT3248EJ0110 Rev.1.10 Page 216 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

2.5.3 Optimizing Linkage Editor (rlink) Options

Classification Option Description

Input Options -Input Specifies relocatable files.

-library Specifies library files.

-binary Specifies binary files.

-define Specifies symbol definitions.

-entry Specifies an entry symbol or entry address.

-noprelink Selects non-initiation of the prelinker.

-ALLOW_DUPLICATE_MO
DULE_NAME [V3.02.00 or
later]

This option allows multiple same module names to be speci-
fied.

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 217 of 1053
Nov 01, 2020

Output Options -form Selects the output file format.

-debug Debugging information is output to load module files.

-sdebug Debugging information is output to the .dbg file.

-nodebug Debugging information is not output.

-record Selects the record size.

-end_record [V2.07.00 or
later]

This option specifies the end record.

-rom Specifies the section mapping from ROM to RAM.

-output Specifies the names of files to be output.

-map Outputs an external symbol-allocation information file.

-space Data are output to fill unused ranges of memory.

-message Information-level messages are output.

-nomessage The output of messages is disabled.

-msg_unused Messages are output to indicate the presence of externally
defined symbols to which there is no reference.

-byte_count Specifies the number of bytes in a data record.

-fix_record_length_and_ali
gnment [V2.08.00 or later]

Fixes the format of data records to be output.

-crc Specifies the format for output of the CRC code.

-padding Padding data are included at the end of each section.

-vectn Assigns an address to the specified vector number in the vari-
able vector table (for the RX Family and M16C Family).

-vect Assigns an address to an unused area in the variable vector
table (for the RX Family and M16C Family).

-split_vect [V3.00.00 or
later]

Generates split vector table sections.

-jump_entries_for_pic Outputs a jump table file (for the PIC function of the RX Fam-
ily).

-cfi [Professional Edition
only] [V2.08.00 or later]

Generates the function list for use in detecting illegal indirect
function calls.

-cfi_add_func [V2.08.00 or
later]

Specifies the symbol or address of a function to be added to
the function list for use in detecting illegal indirect function
calls.

-cfi_ignore_module
[V2.08.00 or later]

Specifies modules which are to be exempted from checking
against the function list for use in detecting illegal indirect func-
tion calls.

-create_unfilled_area [To be supported by V2.03 and later versions]
Makes spaces created by .OFFSET unfilled.

List Options -list A linkage list file is output.

-show Selects the contents to be output in the linkage list file.

Classification Option Description

R20UT3248EJ0110 Rev.1.10 Page 218 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

Optimize Options -optimize Selects the items to be optimized at linkage.

-nooptimize Selects no optimization at linkage.

-samesize Specifies the minimum size for unification of the same codes.

-symbol_forbid Specifies symbols for which unreferenced symbol deletion is disabled.

-samecode_forbid Specifies symbols for which same code unification is disabled.

-section_forbid Specifies a section where optimization is disabled.

-absolute_forbid Specifies an address range where optimization is disabled.

Section Options -start Specifies a section start address.

-fsymbol Specifies the section where an external defined symbol will be
placed in the output file.

-aligned_section Specifies the section alignment value as 16 bytes.

Verify Options -cpu Checks addresses for consistency.

-contiguous_section Specifies sections that will not be divided.

Other Options -s9 Selects the output of an s9 record at the end of the file.

-stack Selects the output of a stack information file.

-compress Debugging information are compressed.

-nocompress Debugging information are not compressed.

-memory Selects the amount of memory to be used in linkage.

-rename Specifies symbol names and section names to be modified.

-lib_rename [V3.01.00 or
later]

Changes the name of a symbol or section that was input from
a library.

-delete Specifies symbol names and module names to be deleted.

-replace Specifies library modules to be replaced.

-extract Specifies modules to be extracted from library files.

-strip Debugging information is deleted from absolute files and
library files.

-change_message Specifies changes to the levels of messages (information,
warning, and error).

-hide Name information on local symbols is deleted.

-total_size The total sizes of sections after linkage are sent to standard output.

-verbose [V3.03.00 or later] This option displays detailed information in the standard error
output.

Subcommand File
Option

-subcommand Specifies a file from which to include command options.

Options Other Than
Above

-logo Selects the output of copyright information.

-nologo Selects the non-output of copyright information.

-end Selects the execution of option strings specified before END.

-exit Specifies the end of option specification.

Classification Option Description

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 219 of 1053
Nov 01, 2020

< Optimizing Linkage Editor (rlink) Options / Input Options >

The following input options are available.

- -Input

- -library

- -binary

- -define

- -entry

- -noprelink

- -ALLOW_DUPLICATE_MODULE_NAME [V3.02.00 or later]

Input Options

R20UT3248EJ0110 Rev.1.10 Page 220 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-Input

< Optimizing Linkage Editor (rlink) Options / Input Options >

[Format]

[Description]

- Specifies an input file. Two or more files can be specified by separating them with a comma (,) or space.

- Wildcards (* or ?) can also be used for the specification. String literals specified with wildcards are expanded in alpha-
betical order. Expansion of numerical values precedes that of alphabetical letters. Uppercase letters are expanded
before lowercase letters.

- Specifiable files are object files output from the compiler or the assembler, and relocatable or absolute files output
from the optimizing linkage editor. A module in a library can be specified as an input file using the format of <library
name>(<module name>). The module name is specified without an extension.

- If an extension is omitted from the input file specification, obj is assumed when a module name is not specified and
lib is assumed when a module name is specified.

[Examples]

[Remarks]

- When form=object or extract is specified, this option is unavailable.

- When an input file is specified on the command line, input should be omitted.

-Input = <suboption>[{, | }...]
 <suboption>: <file name>[(<module name>[,...])]

input=a.obj lib1(e) ; Inputs a.obj and module e in lib1.lib.
input=c*.obj ; Inputs all .obj files beginning with c.

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 221 of 1053
Nov 01, 2020

-library

< Optimizing Linkage Editor (rlink) Options / Input Options >

[Format]

[Description]

- Specifies an input library file. Two or more files can be specified by separating them with a comma (,).

- Wildcards (* or ?) can also be used for the specification. String literals specified with wildcards are expanded in the
alphabetical order. Expansion of numerical values precedes that of alphabetical letters. Uppercase letters are
expanded before lowercase letters.

- If an extension is omitted from the input file specification, lib is assumed.

- If form=library or extract is specified, the library file is input as the target library to be edited.

- Otherwise, after the linkage processing between files specified for the input files are executed, undefined symbols are
searched in the library file.

- The symbol search in the library file is executed in the following order: user library files with the library option specifi-
cation (in the specified order), the system library files with the library option specification (in the specified order), and
then the default library (environment variable HLNK_LIBRARY1,2,3).

[Examples]

-library = <file name>[,...]

library=a.lib,b ; Inputs a.lib and b.lib.
library=c*.lib ; Inputs all files beginning with c with the extension .lib.

R20UT3248EJ0110 Rev.1.10 Page 222 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-binary

< Optimizing Linkage Editor (rlink) Options / Input Options >

[Format]

[Description]

- Specifies an input binary file. Two or more files can be specified by separating them with a comma (,).

- If an extension is omitted for the file name specification, bin is assumed.

- Input binary data is allocated as the specified section data. The section address is specified with the start option. That
section cannot be omitted.

- When a symbol is specified, the file can be linked as a defined symbol. For a variable name referenced by a C/C++
program, add an underscore (_) at the head of the reference name in the program.

- The section specified with this option can have its section attribute and boundary alignment specified.

- CODE or DATA can be specified for the section attribute.

- When section attribute specification is omitted, the write, read, and execute attributes are all enabled by default.

- A boundary alignment value can be specified for the section specified by this option. A power of 2 can be specified for
the boundary alignment; no other values should be specified.

- When the boundary alignment specification is omitted, 1 is used as the default.

[Examples]

- Allocates b.bin from 0x200 as the D1bin section.

- Allocates c.bin after D1bin as the D2bin section (with boundary alignment = 4).

- Links c.bin data as the defined symbol _datab.

[Remarks]

- When form={object | library} or strip is specified, this option is unavailable.

- If no input object file is specified, this option cannot be specified.

-binary = <suboption>[,...]
 <suboption>: <file name>(<section name>
 [:<boundary alignment>][/<section attribute>][,<symbol name>])
 <section attribute>: CODE | DATA
 <boundary alignment>: 1 | 2 | 4 | 8 | 16 | 32 (default: 1)

input=a.obj
start=P,D*/200
binary=b.bin(D1bin),c.bin(D2bin:4,_datab)
form=absolute

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 223 of 1053
Nov 01, 2020

-define

< Optimizing Linkage Editor (rlink) Options / Input Options >

[Format]

[Description]

- Defines an undefined symbol forcedly as an externally defined symbol or a numerical value.

- The numerical value is specified in the hexadecimal notation. If the specified value starts with a letter from A to F,
symbols are searched first, and if no corresponding symbol is found, the value is interpreted as a numerical value.
Values starting with 0 are always interpreted as numerical values.

- If the specified symbol name is a C/C++ variable name, add an underscore (_) at the head of the definition name in
the program. If the symbol name is a C++ function name (except for the main function), enclose the definition name
with the double-quotes including parameter strings. If the parameter is void, specify as "<function name>()".

[Examples]

[Remarks]

- When form={object | relocate | library} is specified, this option is unavailable.

-define = <suboption>[,...]
 <suboption>: <symbol name>={<symbol name> | <numerical value>}

define=_sym1=data ; Defines _sym1 as the same value as the externally defined symbol
data.
define=_sym2=4000 ; Defines _sym2 as 0x4000.

R20UT3248EJ0110 Rev.1.10 Page 224 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-entry

< Optimizing Linkage Editor (rlink) Options / Input Options >

[Format]

[Description]

- Specifies the execution start address with an externally defined symbol or address.

- The address is specified in hexadecimal notation. If the specified value starts with a letter from A to F, symbols are
searched first, and if no corresponding symbol is found, the value is interpreted as an address. Values starting with 0
are always interpreted as addresses.

- For a C function name, add an underscore (_) at the head of the definition name in the program. For a C++ function
name (except for the main function), enclose the definition name with double-quotes in the program including param-
eter strings. If the parameter is void, specify as "<function name>()".

- If the entry symbol is specified at compilation or assembly, this option precedes the entry symbol.

[Examples]

[Remarks]

- When form={object | relocate | library} or strip is specified, this option is unavailable.

- When optimization with undefined symbol deletion (optimize=symbol_delete) is specified, the execution start
address should be specified. If it is not specified, the specification of the optimization with undefined symbol deletion
is unavailable. Optimization with undefined symbol deletion is not available when an address is specified with this
option.

-entry = {<symbol name> | <address>}

entry=_main ; Specifies main function in C/C++ as the execution start address.
entry="init()" ; Specifies init function in C++ as the execution start address.
entry=100 ; Specifies 0x100 as the execution start address.

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 225 of 1053
Nov 01, 2020

-noprelink

< Optimizing Linkage Editor (rlink) Options / Input Options >

[Format]

- [Default]
If this option is not specified, the prelinker is initiated.

[Description]

- Disables the prelinker initiation.

- The prelinker supports the functions to generate the C++ template instance automatically and to check types at run
time. When the C++ template function and the run-time type test function are not used, specify the noprelink option
to reduce the link time.

[Remarks]

- When extract or strip is specified, this option is unavailable.

- If form=lib or form=rel is specified while the C++ template function and run-time type test are used, do not specify
noprelink.

-noprelink

R20UT3248EJ0110 Rev.1.10 Page 226 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-ALLOW_DUPLICATE_MODULE_NAME [V3.02.00 or later]

< Optimizing Linkage Editor (rlink) Options / Input Options >

[Format]

[Description]

- This option allows multiple input files with the same module name to be specified to generate a library.

- If the library already contains a module having the same name with other modules to be registered in the library, the
other modules are renamed by adding a postfix number ".<N>".

- <N> is assigned a number as a unique module name in the generating library. If can't assigned a unique number, The
linker will output the error message and quit.

[Examples]

- To generate a library a.lib from multiple input files having the same module name (mod), describe as:

The command line above leads to generate a library a.lib containing the following modules:

- mod (originally b\mod.obj)

- mod.1 (originally c\mod.obj)

- mod.2 (originally d\mod.obj)

[Remarks]

- If the -form={ object|absolute|relocate|hexadecimal|stype|binary }, -strip, or -extract option is specified, this
option will be invalid.

-allow_duplicate_module_name

> rlink -allow_duplicate_module_name -form=lib -output=a.lib b\mod.obj c\mod.obj
d\mod.obj

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 227 of 1053
Nov 01, 2020

< Optimizing Linkage Editor (rlink) Options / Output Options >

The following output options are available.

- -form

- -debug

- -sdebug

- -nodebug

- -record

- -end_record [V2.07.00 or later]

- -rom

- -output

- -map

- -space

- -message

- -nomessage

- -msg_unused

- -byte_count

- -fix_record_length_and_alignment [V2.08.00 or later]

- -crc

- -padding

- -vectn

- -vect

- -split_vect [V3.00.00 or later]

- -jump_entries_for_pic

- -cfi [Professional Edition only] [V2.08.00 or later]

- -cfi_add_func [V2.08.00 or later]

- -cfi_ignore_module [V2.08.00 or later]

- -create_unfilled_area

Output Options

R20UT3248EJ0110 Rev.1.10 Page 228 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-form

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

- [Default]
When this option is omitted, the default is form=absolute.

[Description]

- Specifies the output format.

- Table 2.4 lists the suboptions.

Table 2.14 Suboptions of form Option

[Remarks]

Table B-15 shows relations between output formats and input files or other options.

-form = {Absolute | Relocate | Object | Library[={S | U}]} | Hexadecimal | Stype |
Binary}

No Suboption Description

1 absolute Outputs an absolute file

2 relocate Outputs a relocatable file

3 object Outputs an object file. This is specified when a module is extracted as an object file from
a library with the extract option.

4 library Outputs a library file.
When library=s is specified, a system library is output.
When library=u is specified, a user library is output.
Default is library=u.

5 hexadecimal Outputs a HEX file. For details of the HEX format, refer to HEX File Format.

6 stype Outputs an S-type file. For details of the S-type format, refer to S-Type File Format.

7 binary Outputs a binary file.

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 229 of 1053
Nov 01, 2020

Table 2.15 Relations Between Output Format and Input File or Other Options

Notes 1. message/nomessage, change_message, logo/nologo, form, list, and subcommand can always be
specified.

Notes 2. s9 can be used only when form=stype is specified for the output format.

Notes 3. byte_count can be used only when form=hexadecimal or form=stype is specified for the output for-
mat.

Notes 4. memory cannot be used when hide is specified.

No Output Format Specified Option Enabled File For-
mat

Specifiable OptionNote1

1 Absolute strip specified Absolute file input, output

Other than above Object file
Relocatable file
Binary file
Library file

input, library, binary, debug/nodebug, sdebug,
cpu, start, rom, entry, output, map, hide,
optimize/nooptimize, samesize, symbol_forbid,
samecode_forbid, section_forbid,
absolute_forbid, compress, rename,
lib_rename, delete, define, fsymbol, stack,
noprelink, memory, msg_unused,
show={symbol,reference,xreference,total_size,
vector,relocation_attribute}
jump_entries_for_pic, aligned_section, padding,
vectn, vect, split_vect

2 Relocate extract specified Library file library, output

Other than above Object file
Relocatable file
Binary file
Library file

input, library, debug/nodebug, output, hide,
rename, lib_rename, delete, noprelink,
msg_unused,
show=symbol,reference,xreference,total_size

3 Object extract specified Library file library, output

4 Hexadecimal
Stype
Binary

Object file
Relocatable file
Binary file
Library file

input, library, binary, cpu, start, rom, entry,
output, map, space, optimize/nooptimize,
samesize, symbol_forbid, samecode_forbid,
section_forbid, absolute_forbid, rename,
lib_rename, delete, define, fsymbol, stack,
noprelink, record, end_record, s9Note 2,
byte_countNote3, fix_record_length_and_align,
memory, msg_unused,
show=symbol,reference,xreference,total_size,
vector, jump_entries_for_pic, aligned_section,
padding, vectn, vect, split_vect

Absolute file input, output, record, end_record, s9Note2,
byte_countNote3, fix_record_length_and_align,
show=symbol, reference, xreference

5 Library strip specified Library file library, output, memoryNote4, show=symbol,
section

extract specified Library file library, output

Other than above Object file
Relocatable file

input, library, output, hide, rename, delete,
replace, noprelink, memoryNote4, show=symbol,
section, allow_duplicate_module_name

R20UT3248EJ0110 Rev.1.10 Page 230 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-debug

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

- [Default]
When this option is omitted, debugging information is output to the output file.

[Description]

- When debug is specified, debugging information is output to the output file.

- If debug is specified and if two or more files are specified to be output with output, they are interpreted as sdebug
and debugging information is output to <first output file name>.dbg.

[Remarks]

- When form={object | library | hexadecimal | stype | binary}, strip or extract is specified, this option is unavailable.

-debug

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 231 of 1053
Nov 01, 2020

-sdebug

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

- [Default]
When this option is omitted, debugging information is output to the output file.

[Description]

- When sdebug is specified, debugging information is output to <output file name>.dbg file.

- If sdebug and form=relocate are specified, sdebug is interpreted as debug.

[Remarks]

- When form={object | library | hexadecimal | stype | binary}, strip or extract is specified, this option is unavailable.

-sdebug

R20UT3248EJ0110 Rev.1.10 Page 232 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-nodebug

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

- [Default]
When this option is omitted, debugging information is output to the output file.

[Description]

- When nodebug is specified, debugging information is not output.

[Remarks]

- When form={object | library | hexadecimal | stype | binary}, strip or extract is specified, this option is unavailable.

-nodebug

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 233 of 1053
Nov 01, 2020

-record

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

- [Default]
When this option is omitted, various data records are output according to each address.

[Description]

- Outputs data with the specified data record regardless of the address range.

- If there is an address that is larger than the specified data record, the appropriate data record is selected for the
address.

[Remarks]

- This option is available only when form=hexadecimal or stype is specified.

-record = { H16 | H20 | H32 | S1 | S2 | S3 }

R20UT3248EJ0110 Rev.1.10 Page 234 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-end_record [V2.07.00 or later]

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

[Description]

- This option specifies the type of the end record of a Motorola S-record file.

- When the entry point address is larger than the specified address field, select the type of end record that suits the
address of the entry point.

- When this option is omitted, the end record that is output will suit the address of the entry point.

[Example]

- An S-type end record that is interpreted as a 32-bit address (S7) is output regardless of the address range.

[Remarks]

- When -form={stype} is not also specified, an error message is output in response to this option and execution is termi-
nated.

-end_record = { S7 | S8 | S9 }

rlink a.obj b.obj -end_record=S7 -form=stype -output=c.mot

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 235 of 1053
Nov 01, 2020

-rom

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

[Description]

- Reserves ROM and RAM areas in the initialized data area and relocates a defined symbol in the ROM section with
the specified address in the RAM section.

- Specifies a relocatable section including the initial value for the ROM section.

- Specifies a nonexistent section or relocatable section whose size is 0 for the RAM section.

[Examples]

- Reserves R section with the same size as D section and relocates defined symbols in D section with the R section
addresses.

[Remarks]

- When form={object | relocate | library}or strip is specified, this option is unavailable.

-rom = <suboption>[,...]
 <suboption>: <ROM section name>=<RAM section name>

rom=D=R
start=D/100,R/8000

R20UT3248EJ0110 Rev.1.10 Page 236 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-output

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

- [Default]
When this option is omitted, the default is <first input file name>.<default extension>.
The default extensions are as follows:
form=absolute: abs, form=relocate: rel, form=object: obj, form=library: lib, form=hexadecimal: hex, form=stype: mot,
form=binary: bin

[Description]

- Specifies an output file name. When form=absolute, hexadecimal, stype, or binary is specified, two or more files
can be specified. An address is specified in the hexadecimal notation. If the specified data starts with a letter from A to
F, sections are searched first, and if no corresponding section is found, the data is interpreted as an address. Data
starting with 0 are always interpreted as addresses.

- [V3.00.00 or later] If a load address is specified, when outputting an Intel HEX file or Motorola S-record file, the first
load address in the file is changed to the specified value.

[Examples]

- Outputs the range from 0 to 0xffff to file1.abs and the range from 0x10000 to 0x1ffff to file2.abs.

- Outputs the sec1 and sec2 sections to file1.abs and the sec3 section to file2.abs.

[Remarks]

- When a file is output in section units while the CPU type is RX Family in big endian, the section size should be a mul-
tiple of 4.

- [V3.00.00 or later] A load address can be specified only when form=hexadecimal or form=stype is specified.

-output = <suboption>[,...]
 <suboption>: {<file name> | <file name>=<output range> |
 <file name>=<output range>/<load address> |
 <file name>=/<load address>}
 <output range>: {<start address>-<end address> | <section name>[:...]}

output=file1.abs=0-ffff,file2.abs=10000-1ffff

output=file1.abs=sec1:sec2,file2.abs=sec3

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 237 of 1053
Nov 01, 2020

-map

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

[Description]

- Outputs the external-symbol-allocation information file that is used by the compiler in optimizing access to external
variables.

- When <file name> is not specified, the file has the name specified by the output option or the name of the first input
file, and the extension bls.

- If the order of the declaration of variables in the external-symbol-allocation information file is not the same as the
order of the declaration of variables found when the object was read after compilations, an error will be output.

- In the following case, the linker outputs the external variable allocation information file and, when the -list option is
specified, outputs the list file. After that, the linker terminates operation normally. Note that the linker does not output
a load module file in this case.

- When a program section allocation address exceeds the allowable address range:

In the external variable allocation information file, information regarding only the symbols and sections allocated
within the allowable areas are output. [V2.06 or later]

[Remarks]

- This option is valid only when form={absolute | hexadecimal | stype | binary} is specified.

-map [= <file name>]

R20UT3248EJ0110 Rev.1.10 Page 238 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-space

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

[Description]

- This option fills the vacant area of the output range with user-specified data.

- Fills the unused areas in the output ranges with random values or a user-specified hexadecimal value.

- The way of filling unused areas differs with the output range specification as follows.

- When the output option is used to specify sections as the range for output:

- The specified numerical value is output to unused areas between the specified sections.

- When the output option is used to specify a range of addresses as the range for output:

- The specified numerical value is output to unused areas within the specified address range.

- When the fix_record_length_and_align option is specified:

- The specified numerical value is output to an unused area at the top of a section, which starts at an address
that can be divided by the alignment number.

- The specified numerical value is output when the end of a section does not reach the specified record length.

[Remarks]

- When no suboption is specified by this option, unused areas are not filled with values.

- This option is only available when the form={ binary | stype | hexadecimal } or fix_record_length_and_align
option is specified.

-space [= {<numerical value> | Random}]

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 239 of 1053
Nov 01, 2020

-message

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

[Description]

- When message is specified, information-level messages are output.

- When this option is omitted, the output of information-level messages is disabled.

-message

R20UT3248EJ0110 Rev.1.10 Page 240 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-nomessage

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

- [Default]
When this option is omitted, the output of information-level messages is disabled.

[Description]

- When nomessage is specified, the output of information-level messages is disabled. If an error number is specified,
the output of the error message with the specified error number is disabled. A range of error message numbers to be
disabled can be specified using a hyphen (-).

- Each error number consists of a component number (05), phase (6), and a four-digit value (e.g. 0004 in the case of
M0560004). If the four-digit section has leading zeroes, e.g. before the 4 in the case of M0560004, these can be omit-
ted.

- If a warning or error level message number is specified, the message output is disabled assuming that
change_message has changed the specified message to the information level.

[Examples]

- Messages of L0004, L0200 to L0203, and L1300 are disabled to be output.

-nomessage [=<suboption>[,...]]
 <suboption>: <error number>[-<error number>]

nomessage=4,200-203,1300

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 241 of 1053
Nov 01, 2020

-msg_unused

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

[Description]

- Notifies the user of the externally defined symbol which is not referenced during linkage through an output message.

[Examples]

[Remarks]

- When an absolute file is input, this option is invalid.

- To output a message, the message option must also be specified.

- The linkage editor may output a message for the function that was inline-expanded at compilation. To avoid this, add
a static declaration for the function definition.

- In any of the following cases, references are not correctly analyzed so that information shown by output messages
will be incorrect.

- There are references to constant symbols within the same file.

- There are branches to immediate subordinate functions when optimization is specified at compilation.

-msg_unused

rlink -msg_unused a.obj

R20UT3248EJ0110 Rev.1.10 Page 242 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-byte_count

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

- [Default]
The default values are FF (hexadecimal) for Intel HEX-format files and 10 (hexadecimal) for Motorola S-format files.

[Description]

- This option is used to specify the length of data records in Intel HEX-format files or Motorola S-format files to be gen-
erated.

- Values from 01 to FF (hexadecimal) are specifiable for Intel HEX-format files.

- The following ranges of values are specifiable for Motorola S-format files.

- S1 records: 01 to FC (hexadecimal)

- S2 records: 01 to FB (hexadecimal)

- S3 records: 01 to FA (hexadecimal)

[Examples]

Specifying 16 bytes (10 in hexadecimal) as the length of data records

[Remarks]

- This option is invalid for file formats other than Intel HEX type (form=hex) or Motorola S-record type (form=stype).

-byte_count=<numerical value>

-byte_count=10

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 243 of 1053
Nov 01, 2020

-fix_record_length_and_alignment [V2.08.00 or later]

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

[Description]

- This option is used to output an Intel HEX- or Motorola S-format file with records of a fixed length starting from the
address that has alignment with the specified number.

- The address of the first record to be output should be less than or equal to the first address of a section and be the
largest number that can be divided by the specified alignment number.

- The specified numerical value or default value for the parameter of the byte_count option will be used as the length
of the records.

- Since the length of records is fixed, each record may include data for more than one section.

- In unused areas, the value specified by the space option will be output. If the space option is not specified, 0 (with the
crc option not specified) or FF (with the crc option specified) as the default value will be output.

[Examples]

Starting the output of records from an address that can be divided by 8, with the length of each record fixed to 16 bytes
(10 in hexadecimal)

[Remarks]

- This option is invalid for file formats other than Intel HEX type (form=hex) or Motorola S-record type (form=stype).

-fix_record_length_and_align=<alignment number>

rlink a.obj b.obj -form=hexadecimal -byte_count=10 -fix_record_length_and_align=8

R20UT3248EJ0110 Rev.1.10 Page 244 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-crc

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

[Description]

- CRC (cyclic redundancy check) operation is done for the specified range of section data in the order from the lower to
the higher addresses, and the operation result is output to the specified output address in the specified endian mode.

- Specify one of the following as the operation method. If the specification of the operation method is omitted, operation
is performed assuming that CCITT has been specified.

Table 2.16 List of Operation Methods

-CRc = <suboption>
 <suboption>: <address where the result is output>=<target range>
 [/<Operation Method>][<initial value>][:<endian>]
 <address where the result is output>: <address>
 <target range>: { <start address>-<end address> |
 <section> }[,...]
 <Operation Method>: { CCITT | 16-CCITT-MSB |
 16-CCITT-MSB-LITTLE-4 |
 16-CCITT-MSB-LITTLE-2 | 16-CCITT-LSB |
 16 | SENT-MSB | 32-ETHERNET }
 <initial value>: <initial value>
 <endian>: {BIG | LITTLE}[-<size>-<offset>]

Operation Method Description

CCITT The result of CRC-16-CCITT operation is obtained with the MSB first, an
initial value of 0xFFFF, and inverse of XOR performed.
The generator polynomial is x16+x12+x5+1.

16-CCITT-MSB
[V2.04.00 or later]

The result of CRC-16-CCITT operation is obtained with the MSB first.
The generator polynomial is x16+x12+x5+1.

16-CCITT-MSB-LITTLE-4
[V2.04.00 or later]

The input is handled in little endian in 4-byte units and the result of
CRC-16-CCITT operation is obtained with the MSB first.
The generator polynomial is x16+x12+x5+1.

16-CCITT-MSB-LITTLE-2
[V2.04.00 or later]

The input is handled in little endian in 2-byte units and the result of
CRC-16-CCITT operation is obtained with the MSB first.
The generator polynomial is x16+x12+x5+1.

16-CCITT-LSB
[V2.04.00 or later]

The result of CRC-16-CCITT operation is obtained with the LSB first.
The generator polynomial is x16+x12+x5+1.

16 The result of CRC-16 operation is obtained with the LSB first.
The generator polynomial is x16+x15+x2+1.

SENT-MSB
[V2.04.00 or later]

The input is handled in little endian in the lower 4-bit units of one byte and
the result of SENT-compliant CRC operation is obtained with the MSB
first and an initial value of 0x5.
The generator polynomial is x4+x3+x2+1.

32-ETHERNET
[V2.04.00 or later]

The result of CRC-32-ETHERNET operation is obtained with an initial
value of 0xFFFFFFFF, inverse of XOR performed, and the bits reversed.
The generator polynomial is x32+x26+x23+x22+x16+x12+x11+x10+x8
+x7+x5+x4 +x2 +x+1.

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 245 of 1053
Nov 01, 2020

- The specifiable value of <initial value> ranges from 0x0 to 0xFFFFFFFF when the operation method is 32-ETHER-
NET, and from 0x0 to 0xFFFF for other cases.

- When <initial value> is omitted, operation is performed on the assumption that 0x5 has been specified for the opera-
tion method of SENT-MSB, 0xFFFF for CCITT, 0xFFFFFFFF for 32-ETHERNET, and 0x0 for other cases.

- The operation result is output to the specified output address by writing at the offset location from the beginning of the
area allocated by size in the byte order specified with BIG or LITTLE. 0 is output from the beginning of the allocated
area until immediately before the offset location.

- When the size and offset are omitted, the size is assumed to be 2 bytes and the offset is assumed to be 0.

- When the space option is not specified, space=FF is assumed for CRC operation for the unused areas in the opera-
tion range. Note that 0xFF is only assumed for CRC operation for the unused areas, but the areas are not actually
filled with 0xFF.

- Operation is done from the lower to the higher addresses of the specified operation range.

[Example]

- rlink *.obj -form=stype -start=P1,P2/1000,P3/2000
 -crc=2FFE=1000-2FFD -output=out.mot=1000-2FFF

- crc option: -crc=2FFE=1000-2FFD

- In this example, CRC will be calculated for the range from 0x1000 to 0x2FFD and the result will be output to
address 0x2FFE.

- When the space option has not been specified, space=0xFF is assumed for calculation of free areas within the
target range.

- output option: -output=out.mot=1000-2FFF

- Since the space option has not been specified, the free areas are not output to the out.mot file. 0xFF is used in
CRC for calculation of the free areas, but will not be filled into these areas.

Notes 1. The address where the result of CRC will be output cannot be included in the target range.

Notes 2. The address where the result of CRC will be output must be included in the output range speci-
fied with the output option.

- rlink *.obj -form=stype -start=P1/1000,P2/1800,P3/2000
 -space=7F -crc=2FFE=1000-17FF,2000-27FF
 -output=out.mot=1000-2FFF

- crc option: -crc=2FFE=1000-2FFD,2000-27FF

- In this example, CRC will be calculated for the two ranges, 0x1000 to 0x17FF and 0x2000 to 0x27FF, and the
result will be output to address 0x2FFE.

- Two or more non-contiguous address ranges can be selected as the target range for CRC.

- space option: -space=7F

- The value of the space option (0x7F) is used for CRC in free areas within the target range.

- output option: -output=out.mot=1000-2FFF

- Since the space option has been specified, the free areas are output to the out.mot file. 0x7F will be filled
into the free areas.

Notes 1. The order that CRC is calculated for the specified address ranges is not the order that the ranges
have been specified. CRC proceeds from the lowest to the highest address.

Notes 2. Even if you wish to use the crc and space options at the same time, the space option cannot be
set as random or a value of 2 bytes or more. Only 1-byte values are valid.

R20UT3248EJ0110 Rev.1.10 Page 246 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

- rlink *.obj -form=stype -start=P1,P2/1000,P3/2000
 -crc=1FFE=1000-1FFD,2000-2FFF
 -output=flmem.mot=1000-1FFF

- crc option: -crc=1FFE=1000-1FFD,2000-2FFF

- In this example, CRC will be calculated for the two ranges, 0x1000 to 0x1FFD and 0x2000 to 0x2FFF, and the
result will be output to address 0x1FFE.
When the space option has not been specified, space=0xFF is assumed for calculation of free areas within
the target range.

- output option: -output=flmem.mot=1000-1FFF

- Since the space option has not been specified, the free areas are not output to the flmem.mot file. 0xFF is
used in CRC for calculation of the free areas, but will not be filled into these areas.

[Remarks]

- When multiple load module files are input, the compiler outputs a warning message and ignores this option.

- This option is valid when the output format is form={hexadecimal | stype | bin}. For any other cases, an error is out-
put and execution is terminated.

- When the space option is not specified and the operation range includes an empty area that is not output, 0xFF is
assumed to be stored in the unused area during CRC operation.

- An error is output and execution is terminated if the CRC operation range includes an overlaid area.

- The following can be specified for the size and offset when specifying the endian. For any other cases, an error is out-
put and execution is terminated.

- LITTLE

- LITTLE-2-0

- LITTLE-4-0

- BIG

- BIG-2-0

- BIG-4-0

- Sample Code: The sample code shown below is provided to check the result of CRC figured out by the crc option.
The sample code program should match the result of CRC by rlink.

- When the selected operation method is CRC-CCITT:

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 247 of 1053
Nov 01, 2020

- When the selected operation method is CRC-16:

typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
typedef unsigned ong uint32_t;

uint16_t CRC_CCITT(uint8_t *pData, uint32_t iSize)
{
 uint32_t ui32_i;
 uint8_t *pui8_Data;
 uint16_t ui16_CRC = 0xFFFFu;

 pui8_Data = (uint8_t *)pData;

 for(ui32_i = 0; ui32_i < iSize; ui32_i++)
 {
 ui16_CRC = (uint16_t)((ui16_CRC >> 8u) |
 ((uint16_t)((uint32_t)ui16_CRC << 8u)));
 ui16_CRC ^= pui8_Data[ui32_i];
 ui16_CRC ^= (uint16_t)((ui16_CRC & 0xFFu) >> 4u);
 ui16_CRC ^= (uint16_t)((ui16_CRC << 8u) << 4u);
 ui16_CRC ^= (uint16_t)(((ui16_CRC & 0xFFu) << 4u) << 1u);
 }
 ui16_CRC = (uint16_t)(0x0000FFFFul &
 ((uint32_t)~(uint32_t)ui16_CRC));
 return ui16_CRC;
}

#define POLYNOMIAL 0xa001 // Generated polynomial expression CRC-16

typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
typedef unsigned long uint32_t;

uint16_t CRC16(uint8_t *pData, uint32_t iSize)
{
 uint16_t crcdData = (uint16_t)0;
 uint32_t data = 0;
 uint32_t i,cycLoop;

 for(i=0;i<iSize;i++){
 data = (uint32_t)pData[i];
 crcdData = crcdData ^ data;
 for (cycLoop = 0; cycLoop < 8; cycLoop++) {
 if (crcdData & 1) {
 crcdData = (crcdData >> 1) ^ POLYNOMIAL;
 } else {
 crcdData = crcdData >> 1;
 }
 }
 }
 return crcdData;
}

R20UT3248EJ0110 Rev.1.10 Page 248 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-padding

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

[Description]

- Fills in padding data at the end of a section so that the section size is a multiple of the boundary alignment of the sec-
tion.

- The file name is <output file>.jmp.

[Examples]

- When the boundary alignment of section P is 4 bytes, the size of section P is 0x06 bytes, the boundary alignment of
section C is 1 byte, and the size of section C is 0x03 bytes, two bytes of padding data is filled in section P to make its
size become 0x08 bytes and then linkage is performed.

- When the boundary alignment of section P is 4 bytes, the size of section P is 0x06 bytes, the boundary alignment of
section C is 1 byte, and the size of section C is 0x03 bytes, if two bytes of padding data is filled in section P to make
its size become 0x08 bytes and then linkage is performed, error L2321 will be output because section P overlaps with
section C.

[Remarks]

- The value of the created padding data is 0x00.

- Since padding is not performed to an absolute address section, the size of an absolute address section should be
adjusted by the user.

-padding

-start=P,C/0 -padding

-start=P/0,C/7 -padding

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 249 of 1053
Nov 01, 2020

-vectn

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

[Description]

- Assigns the specified address to the specified vector number in the variable vector table section.

- When this option is specified, a variable vector table section is created and the specified address is set in the table
even if there is no interrupt function in the source code.

- Specify a decimal value from 0 to 255 for <vector number>.

- Specify the external name of the target function for <symbol>.

- Specify the desired hexadecimal address for <address>.

- [V3.00.00 or later] When split_vect is not specified, set a value in an unused area which is not specified with vectn
according to the following priority.

1. Value specified with the vect option
2. If there is a defined symbol with the name (internal name) of "__dummy_int" in the link target,

the address of that symbol
3. If there is a defined symbol with the name (internal name) of "dummy_int" in the link target,

the address of that symbol
4. 0 for cases other than any of the above

When split_vect is specified, a section for each vector number is not generated for an unused area which is not
specified with vectn.

[Examples]

[Remarks]

- This option is ignored when the user creates a variable vector table section in the source program because the vari-
able vector table is not automatically created in this case.

-vectn = <suboption>[,...]
 <suboption>: <vector number> = {<symbol> | <address>}

-vectn=30=_f1,31=0000F100 ;Specifies the _f1 address for vector
 ;number 30 and 0x0f100 for vector number 31

R20UT3248EJ0110 Rev.1.10 Page 250 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-vect

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

[Description]

- Assigns the specified address to the vector number to which no address has been assigned in the variable vector
table section.

- When this option is specified, a variable vector table section is created by the linkage editor and the specified address
is set in the table even if there is no interrupt function in the source code.

- Specify the external name of the target function for <symbol>.

- Specify the desired hexadecimal address for <address>.

- The file name is <output file>.jmp.

[Remarks]

- This option is ignored when the user creates a variable vector table section in the source program because the vari-
able vector table is not automatically created in this case.

- When the {<symbol>|<address>} specification is started with 0, the whole specification is assumed as an address.

-vect={<symbol>|<address>}

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 251 of 1053
Nov 01, 2020

-split_vect [V3.00.00 or later]

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

[Description]

- This option generates vector table sections split by vector table number.

- A vector table section is not generated for an unused area of the vector table number.

[Example]

- To generate a vector table section "C$VECT14" for vector table number 14, code as:

[Remarks]

- This option is invalid when the -vect option, -form={object | relocate | library} option, -strip option, or -extract
option is specified at the same time.

-split_vect

-vectn=14=__dummy -split_vect

R20UT3248EJ0110 Rev.1.10 Page 252 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-jump_entries_for_pic

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

[Description]

- Outputs an assembly-language source for a jump table to branch to external definition symbols in the specified sec-
tion.

- The file name is <output file>.jmp.

[Examples]

- A jump table for branching to external definition symbols in the sections sct2 and sct3 is output to test.jmp.

- [Example of a file output to test.jmp]

[Remarks]

- This option is invalid when form={object | relocate| library} or strip is specified.

- The generated jump table is output to the P section.

- Only the program section can be specified for the type of section in the section name.

-jump_entries_for_pic=<section name>[,...]

jump_entries_for_pic=sct2,sct3
output=test.abs

;OPTIMIZING LINKAGE EDITOR GENERATED FILE 2009.07.19
 .glb _func01
 .glb _func02
 .SECTION P,CODE
_func01:
 MOV.L #1000H,R14
 JMP R14
_func02:
 MOV.L #2000H,R14
 JMP R14
 .END

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 253 of 1053
Nov 01, 2020

-cfi [Professional Edition only] [V2.08.00 or later]

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

- Interpretation when omitted
The function list for use in detecting illegal indirect function calls is not generated.

[Description]

- This option selects generation of the function list for use in detecting illegal indirect function calls.
For details on detecting illegal indirect function calls, refer to the item on the '-control_flow_integrity [Professional Edi-
tion only] [V2.08.00 or later]' compile option.

- Since the linker generates the function list for the C section, the C section must be specified with the -start option at
the time of linking.

- When an object file is created with -control_flow_integrity specified at the time of compilation, the linker generates
the function list according to information that the compiler has automatically extracted.

- When an object file is created without -control_flow_integrity specified at the time of compilation, the linker gener-
ates function lists for all symbols that were resolved for relocation in the object file.

- To add specific functions to the function list, specify the -cfi_add_func optimizing linkage editor (rlink) option.
When a function in the specific object file is to be exempted from the function list, specify the -cfi_ignore_module
optimizing linkage editor (rlink) option.

-cfi

R20UT3248EJ0110 Rev.1.10 Page 254 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-cfi_add_func [V2.08.00 or later]

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

[Description]

- This option registers the symbol or address of functions in the function list for use in detecting illegal indirect function
calls.
For details on detecting illegal indirect function calls, refer to the item on the '-control_flow_integrity [Professional Edi-
tion only] [V2.08.00 or later]' compile option.

- Specify addresses in hexadecimal.

- If the specified symbol of a function is not included in the load module that was optimized by the linker, an error will
occur.

- If this option is specified more than once, all specified symbols or addresses of functions are registered in the function
list.

- When this option is used, the -cfi option must also be specified. If the -cfi option is not specified, an error will occur.

[Example]

- To register the sub1 function of the C source code, function address 0x100, and the function sub2 in the C source
code in the function list, write this as:

-cfi_add_func={ <function symbol> | <function address> }[,{ <function symbol> | <func-
tion address> }]...

-cfi_add_func=_sub1,100 -cfi_add_func=_sub2

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 255 of 1053
Nov 01, 2020

-cfi_ignore_module [V2.08.00 or later]

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

[Description]

- This option specifies object files to be exempted from the function list for use in detecting illegal indirect function calls.
For details on detecting illegal indirect function calls, refer to the item on the '-control_flow_integrity [Professional Edi-
tion only] [V2.08.00 or later]' compiler option.

- [V3.00.00 or later] This option specifies object files or library files to be exempted from the function list for use in
detecting illegal indirect function calls. The module name can be used to specify a module in a library file.

- If the specified object file does not exist, an error will occur.

- If this option is specified more than once, the functions of all specified object files are exempted from the function list.

- When this option is used, the -cfi option must also be specified. If the -cfi option is not specified, an error will occur.

[Example]

- To remove functions in a.obj, b.obj, and the d module in c.lib from the function list, code as:

-cfi_ignore_module=<suboption>[,...]
 <suboption>: <module> | <library file>[(<library module>
 [,<library module>]...)[,...]]

-cfi_ignore_module=a.obj,b.obj -cfi_ignore_module=c.lib(d)

R20UT3248EJ0110 Rev.1.10 Page 256 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-create_unfilled_area

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

[Description]

- This option is available in V2.03 and later versions of this compiler.

- When a Motorola S-record file (<name>.mot) or Hex file (<name>.hex) is output, this option blocks spaces created
by .OFFSET directives in the assembly language being filled with output data.

- When using this option, specify it when using the ccrx or asrx command to create an object file (<name>.obj) as well
as when using the rlink command to create a Motorola S-record file or Hex file.

-create_unfilled_area

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 257 of 1053
Nov 01, 2020

< Optimizing Linkage Editor (rlink) Options / List Options >

The following list options are available.

- -list

- -show

List Options

R20UT3248EJ0110 Rev.1.10 Page 258 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-list

< Optimizing Linkage Editor (rlink) Options / List Options >

[Format]

[Description]

- Specifies list file output and a list file name.

- If no list file name is specified, a list file with the same name as the output file (or first output file) is created, with the
extension lbp when form=library or extract is specified, or map in other cases.

- Even if the section allocation address exceeds the allowable address range, this option outputs the link map informa-
tion and symbol information. In this case, "**OVER**" is output. [V2.06.00 or later]

-list [=<file name>]

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 259 of 1053
Nov 01, 2020

-show

< Optimizing Linkage Editor (rlink) Options / List Options >

[Format]

[Description]

- Specifies output contents of a list.

- Table 2.17 lists the suboptions.

- For details of list examples, refer to Linkage List, and Library List in the user's manual.

Table 2.17 Suboptions of show Option

-show [=<sub>[,...]]
 <sub>:{ symbol | reference | section | xreference | total_size | vector |
 struct | relocation_attribute | all}

No Output Format Suboption Name Description

1 form=library
is specified.

symbol Outputs a symbol name list in a module (when extract is specified).

reference Not specifiable.

section Outputs a section list in a module.

xreference Not specifiable.

total_size Not specifiable.

vector Not specifiable.

relocation_attribute Not specifiable.

cfi Not specifiable.

all Not specifiable (when extract is specified).
Outputs a symbol name list and a section list in a module (when
form=library).

R20UT3248EJ0110 Rev.1.10 Page 260 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

[Remarks]

- The following table shows whether suboptions will be valid or invalid by all possible combinations of options form,
show, and/or show=all.

2 Other than
form=library
is specified.

symbol Outputs symbol address, size, type, and optimization contents.

reference Outputs the number of symbol references.

section Not specifiable.

xreference Outputs the cross-reference information.

total_size Shows the total sizes of sections allocated to the ROM and RAM
areas.

vector Outputs vector information.

struct Outputs structure/union member information.

relocation_attribute When -form=abs is specified and -strip is not specified, the relocation
attribute corresponding to the section is output.
When -form=hex/bin/stype is specified and the input file format is not
absolute/hex/stype, the relocation attribute corresponding to the
section is output.
Otherwise, relocation_attribute is not specified.

cfi Outputs the function list for use in detecting illegal indirect function
calls.
cfi must be specified with -cfi option (Otherwise an error will occur).
cfi is specifiable when

* -form=abs option is specified and -strip option is not specified, or
* -form=hex/bin/stype option is specified and input files are

absolute/hex/stype.
Otherwise, cfi is not specifiable.

all If form=rel the linkage editor outputs the same information as when
show=symbol,xreference,total_size is specified.
If form=rel,data_stuff have been specified, the linkage editor outputs
the same information as when show=symbol,total_size is specified.
If form=abs the linkage editor outputs the same information as when
show=symbol,reference,xreference,total_size,struct is specified.
If form=hex/stype/bin the linkage editor outputs the same information
as when show=symbol,reference,xreference,total_size,struct is
specified.
If form=obj, all is not specifiable.

Symbol Refer-
ence

Section Xrefer-
ence

Vector Total_siz
e

relocatio
n_attribu

te

cfi

form=abs show Valid Valid Invalid Invalid Invalid Invalid Invalid Invalid

show=all Valid Valid Invalid Valid Valid Valid Invalid Invalid

form=lib show Valid Invalid Valid Invalid Invalid Invalid Invalid Invalid

show=all Valid Invalid Valid Invalid Invalid Invalid Invalid Invalid

form=rel show Valid Invalid Invalid Invalid Invalid Invalid Invalid Invalid

show=all Valid Invalid Invalid ValidNote Invalid Valid Invalid Invalid

No Output Format Suboption Name Description

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 261 of 1053
Nov 01, 2020

Note The option is invalid if an absolute-format file is input.

- Note the following limitations on output of the cross-reference information.

- When an absolute-format file is input, the referrer address information is not output.

- Information about references to constant symbols within the same file is not output.

- When optimization is specified at compilation, information about branches to immediate subordinate functions is
not output.

- When optimization of access to external variables is specified, information about references to variables other
than base symbols is not output.

- Both show=total_size and total_size output the same information.

- When show=reference is valid, the number of references of the variable specified by #pragma address is output
as 0.

form=obj show Valid Valid Invalid Invalid Invalid Invalid Invalid Invalid

show=all Valid Invalid Invalid Invalid Invalid Invalid Invalid Invalid

form=hex/bin/
sty

show Valid Valid Invalid Invalid Invalid Invalid Invalid Invalid

show=all Valid Valid Invalid Valid ValidNote ValidNote Invalid Invalid

Symbol Refer-
ence

Section Xrefer-
ence

Vector Total_siz
e

relocatio
n_attribu

te

cfi

R20UT3248EJ0110 Rev.1.10 Page 262 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

< Optimizing Linkage Editor (rlink) Options / Optimize Options >

The following optimize options are available.

- -optimize

- -nooptimize

- -samesize

- -symbol_forbid

- -samecode_forbid

- -section_forbid

- -absolute_forbid

Optimize Options

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 263 of 1053
Nov 01, 2020

-optimize

< Optimizing Linkage Editor (rlink) Options / Optimize Options >

[Format]

- [Default]
When this option is omitted, the default is optimize.

[Description]

- When optimize is specified, optimization is performed for the file specified with the goptimize option at compilation or
assembly.

- -optimize (no suboptions) executes all optimization. It has the same meaning as
 -optimize=symbol_delete,same_code,short_format,branch.

- -optimize=speed executes optimizations other than those reducing object speed. It has the same meaning as
 -optimize=symbol_delete,short_format,branch

- -optimize=safe executes optimization other than those limited by variable or function attributes. It has the same mean-
ing as -optimize=short_format,branch

- Other suboptions mean optimization as the following table.

Table 2.18 Suboptions of optimize Option

Notes 1. RXC: C/C++ program for RX Family,
RXA: Assembly program for RX Family

[Remarks]

- When form={object | relocate | library} or strip is specified, this option is unavailable.

- When a start function with #pragma entry or entry is not specified, optimize=symbol_delete is invalid.

-optimize [= <suboption>[,...]]
<suboption>: { SYmbol_delete | SAMe_code | SHort_format | Branch | SPeed | SAFe }

Suboption Description Program to be
OptimizedNote1

RXC RXA

symbol_delete Deletes variables/functions that are not referenced.
Always be sure to specify #pragma entry at compilation or the entry option
in the optimizing linkage editor.

O X

same_code Creates a subroutine for the same instruction sequence. O X

short_format Replaces an instruction having a displacement or an immediate value with a
smaller-size instruction when the code size of the displacement or immedi-
ate value can be reduced.

O O

branch Optimizes branch instruction size according to program allocation informa-
tion. Even if this option is not specified, it is performed when any other opti-
mization is executed.

O O

R20UT3248EJ0110 Rev.1.10 Page 264 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-nooptimize

< Optimizing Linkage Editor (rlink) Options / Optimize Options >

[Format]

- [Default]
When this option is omitted, the default is optimize.

[Description]

- When pnooptimize is specified, optimization is not performed at linkage.

-nooptimize

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 265 of 1053
Nov 01, 2020

-samesize

< Optimizing Linkage Editor (rlink) Options / Optimize Options >

[Format]

- [Default]
When this option is omitted, the default is samesize=1E.

[Description]

- Specifies the minimum code size for the optimization with the same-code unification (optimize=same_code). Specify
a hexadecimal value from 8 to 7FFF.

[Remarks]

- When optimize=same_code is not specified, this option is unavailable.

-samesize = <size>

R20UT3248EJ0110 Rev.1.10 Page 266 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-symbol_forbid

< Optimizing Linkage Editor (rlink) Options / Optimize Options >

[Format]

[Description]

- Disables optimization regarding unreferenced symbol deletion. For a C/C++ variable or C function name, add an
underscore (_) at the head of the definition name in the program. For a C++ function, enclose the definition name in
the program with double-quotes including the parameter strings. When the parameter is void, specify as "<function
name>()".

[Remarks]

- If optimization is not applied at linkage, this option is ignored.

-symbol_forbid = <symbol name> [,...]

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 267 of 1053
Nov 01, 2020

-samecode_forbid

< Optimizing Linkage Editor (rlink) Options / Optimize Options >

[Format]

[Description]

- Disables optimization regarding same-code unification. For a C/C++ variable or C function name, add an underscore
(_) at the head of the definition name in the program. For a C++ function, enclose the definition name in the program
with double-quotes including the parameter strings. When the parameter is void, specify as "<function name>()".

[Remarks]

- If optimization is not applied at linkage, this option is ignored.

-samecode_forbid = <function name> [,...]

R20UT3248EJ0110 Rev.1.10 Page 268 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-section_forbid

< Optimizing Linkage Editor (rlink) Options / Optimize Options >

[Format]

[Description]

- Disables optimization for the specified section. If an input file name or library module name is also specified, the opti-
mization can be disabled for a specific file, not only the entire section.

[Remarks]

- If optimization is not applied at linkage, this option is ignored.

- To disable optimization for an input file with its path name, type the path with the file name when specifying
section_forbid.

-section_forbid = <sub>[,...]
 <sub>: [<file name>|<module name>](<section name>[,...])

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 269 of 1053
Nov 01, 2020

-absolute_forbid

< Optimizing Linkage Editor (rlink) Options / Optimize Options >

[Format]

[Description]

- Disables optimization regarding address + size specification.

[Remarks]

- If optimization is not applied at linkage, this option is ignored.

-absolute_forbid = <address> [+<size>] [,...]

R20UT3248EJ0110 Rev.1.10 Page 270 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

< Optimizing Linkage Editor (rlink) Options / Section Options >

The following section options are available.

- -start

- -fsymbol

- -aligned_section

Section Options

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 271 of 1053
Nov 01, 2020

-start

< Optimizing Linkage Editor (rlink) Options / Section Options >

[Format]

- [Default]
The section is allocated at 0.

[Description]

- Specifies the start address of the section. Specify an address as the hexadecimal.

- The section name can be specified with wildcards "*". Sections specified with wildcards are expanded according to
the input order.

- Two or more sections can be allocated to the same address (i.e., sections are overlaid) by separating them with a
colon ":".

- Sections specified at a single address are allocated in the specification order.

- Sections to be overlaid can be changed by enclosing them by parentheses "()".

- Objects in a single section are allocated in the specification order of the input file or the input library.

- If no address is specified, the section is allocated at 0.

- A section which is not specified with the start option is allocated after the last allocation address.

[Examples]

This example shows how sections are allocated when the objects are input in the following order (names enclosed by
parentheses are sections in the objects).

- tp1.obj(A,D1,E) -> tp2.obj(B,D3,F)) -> tp3.obj(C,D2,E,G) -> lib.lib(E)

-

- -start=A,B,E/400,C,D*:F:G/8000

- Sections C, F, and G separated by colons are allocated to the same address.

- Sections specified with wildcards "*" (in this example, the sections whose names start with D) are allocated in
the input order.

- Objects in the sections having the same name (E in this example) are allocated in the input order.

- An input library's section having the same name (E in this example) as those of input objects is allocated after
the input objects.

- -start=A,B,C,D1:D2,D3,E,F:G/400

-start = <sub> [,...]
 <sub>: [(] <section name> [{ : | , } <section name> [,...]] [)] [,...] [/
<address>]

E(tp1) E(tp3) E(lib)A B

0x400

C D1 D3 D2

F

G

0x8000

R20UT3248EJ0110 Rev.1.10 Page 272 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

- The sections that come immediately after the colons (A, D2, and G in this example) are selected as the start and
allocated to the same address.

- -start=A,B,C,(D1:D2,D3),E,(F:G)/400

- When the sections to be allocated to the same address are enclosed by parentheses, the sections within paren-
theses are allocated to the address immediately after the sections that come before the parentheses (C and E in
this example).

- The section that comes after the parentheses (E in this example) is allocated after the last of the sections
enclosed by the parentheses.

[Remarks]

- When form={object | relocate | library} or strip is specified, this option is unavailable.

- Parentheses cannot be nested.

- One or more colons must be written within parentheses. Parentheses cannot be written without a colon.

- Colons cannot be written outside of parentheses.

- When this option is specified with parentheses, optimization with the linkage editor is disabled.

A B C D1

F

G

0x400

D2 D3 E

A B C D1 F

0x400

D2 D3

E

G

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 273 of 1053
Nov 01, 2020

-fsymbol

< Optimizing Linkage Editor (rlink) Options / Section Options >

[Format]

[Description]

- Outputs externally defined symbols in the specified section to a file in the assembler directive format.

- The file name is <output file>.fsy.

[Examples]

- Outputs externally defined symbols in sections sct2 and sct3 to test.fsy.

- [Output example of test.fsy]

[Remarks]

- When form={object | relocate | library} or strip is specified, this option is unavailable.

-fsymbol = <section name> [,...]

fsymbol = sct2, sct3
output=test.abs

;RENESAS OPTIMIZING LINKER GENERATED FILE 2012.07.19
;fsymbol = sct2, sct3
;SECTION NAME = sct2
 .glb_f
_f: .equ 00000000h
 .glb_g
_g: .equ 00000016h
;SECTION NAME = sct3
 .glb _main
_main: .equ 00000020h
 .end

R20UT3248EJ0110 Rev.1.10 Page 274 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-aligned_section

< Optimizing Linkage Editor (rlink) Options / Section Options >

[Format]

[Description]

- Changes the alignment value for the specified section to 16 bytes.

[Remarks]

- When form={object | relocate | library}, extract, or strip is specified, this option is unavailable.

-aligned_section = <section name>[,...]

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 275 of 1053
Nov 01, 2020

< Optimizing Linkage Editor (rlink) Options / Verify Options >

The following verify options are available.

- -cpu

- -contiguous_section

Verify Options

R20UT3248EJ0110 Rev.1.10 Page 276 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-cpu

< Optimizing Linkage Editor (rlink) Options / Verify Options >

[Format]

[Description]

- When cpu=stride is not specified, a section larger than the specified range of addresses leads to an error.

- When cpu=stride is specified, a section larger than the specified range of addresses is allocated to the next area of
the same memory type or the section is divided.

[Examples]

- When the stride suboption is not specified:

- The result is normal when D1 and D2 are respectively allocated within the ranges from 100 to 1FF and from 200
to 2FF. If they are not allocated within the ranges, an error will be output.

- When the stride suboption is specified:

- The result is normal when D1 and D2 are allocated within the ROM area (regardless of whether the section is
divided). A linkage error occurs when they are not allocated within the ROM area even though the section is
divided.

- Specify an address range in which a section can be allocated in hexadecimal notation. The memory type attri-
bute is used for the inter-module optimization.

- FIX for <memory type> is used to specify a memory area where the addresses are fixed (e.g. I/O area).

- If the address range of <start>-<end> specified for FIX overlaps with that specified for another memory type, the
setting for FIX is valid.

- When <memory type> is ROM or RAM and the section size is larger than the specified memory range,
sub-option STRIDE can be used to divide a section and allocate them to another area of the same memory
type. Sections are divided in module units.

- Checks that section addresses are allocated within the range from 0 to FFFF or from 10000 to 1FFFF.

- Object movement is not provided between different attributes with the inter-module optimization.

- When section addresses are not allocated within the range from 100 to 1FF, the linkage editor divides the sec-
tions in module units and allocates them to the range from 400 to 4FF.

-cpu={ <memory type> = <address range> [,...] | STRIDE}
 <memory type>: { ROm | RAm | FIX }
 <address range>: <start address> - <end address>

start=D1,D2/100
cpu=ROM=100-1FF,RAM=200-2FF

start=D1,D2/100
cpu=ROM=100-1FF,RAM=200-2FF,ROM=300-3FF
cpu=stride

cpu=ROM=0-FFFF,RAM=10000-1FFFF

cpu=ROM=100-1FF,ROM=400-4FF,RAM=500-5FF
cpu=stride

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 277 of 1053
Nov 01, 2020

[Remarks]

- When form={object | relocate | library} or strip is specified, this option is unavailable.

- When cpu=stride and memory=low are specified, this option is unavailable.

- When section B is divided by cpu=stride, the size of section C$BSEC increases by 8 bytes number of divisions
because this amount of information is required for initialization.

R20UT3248EJ0110 Rev.1.10 Page 278 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-contiguous_section

< Optimizing Linkage Editor (rlink) Options / Verify Options >

[Format]

[Description]

- Allocates the specified section to another available area of the same memory type without dividing the section when
cpu=stride is valid.

[Examples]

- Section P is allocated to address 100.

- If section PA which is specified as contiguous_section is over address 1FF, section PA is allocated to address 300
without being divided.

- If section PB which is not specified as contiguous_section is over address 3FF, section PB is divided and allocated
to address 500.

[Remarks]

- When cpu=stride is invalid, this option is unavailable.

-contiguous_section=<section name>[,...]

start=P,PA,PB/100
cpu=ROM=100-1FF,ROM=300-3FF,ROM=500-5FF
cpu=stride
contiguous_section=PA

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 279 of 1053
Nov 01, 2020

< Optimizing Linkage Editor (rlink) Options / Other Options >

The following other options are available.

- -s9

- -stack

- -compress

- -nocompress

- -memory

- -rename

- -lib_rename [V3.01.00 or later]

- -delete

- -replace

- -extract

- -strip

- -change_message

- -hide

- -total_size

- -verbose [V3.03.00 or later]

Other Options

R20UT3248EJ0110 Rev.1.10 Page 280 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-s9

< Optimizing Linkage Editor (rlink) Options / Other Options >

[Format]

[Description]

- Outputs the S9 record at the end even if the entry address exceeds 0x10000.

[Remarks]

- When form=stype is not specified, this option is unavailable.

-s9

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 281 of 1053
Nov 01, 2020

-stack

< Optimizing Linkage Editor (rlink) Options / Other Options >

[Format]

[Description]

- Outputs a stack information file.

- The file name is <output file name>.sni.

[Remarks]

- When form={object | relocate | library} or strip is specified, this option is unavailable.

-stack

R20UT3248EJ0110 Rev.1.10 Page 282 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-compress

< Optimizing Linkage Editor (rlink) Options / Other Options >

[Format]

- [Default]
If this option is omitted, the debugging information is not compressed.

[Description]

- The debugging information is compressed.

- By compressing the debugging information, the debugger loading speed is improved.

[Remarks]

- When form={object | relocate | library | hexadecimal | stype | binary} or strip is specified, this option is unavail-
able.

-compress

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 283 of 1053
Nov 01, 2020

-nocompress

< Optimizing Linkage Editor (rlink) Options / Other Options >

[Format]

- [Default]
If this option is omitted, the debugging information is not compressed.

[Description]

- The debugging information is not compressed.

- If the nocompress option is specified, the link time is reduced.

-nocompress

R20UT3248EJ0110 Rev.1.10 Page 284 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-memory

< Optimizing Linkage Editor (rlink) Options / Other Options >

[Format]

- [Default]
The default for this option is memory = high.

[Description]

- Specifies the memory size occupied for linkage.

- When memory = high is specified, the processing is the same as usual.

- When memory = low is specified, the linkage editor loads the information necessary for linkage in smaller units to
reduce the memory occupancy. This increases file accesses and processing becomes slower when the occupied
memory size is less than the available memory capacity.

- memory = low is effective when processing is slow because a large project is linked and the memory size occupied
by the linkage editor exceeds the available memory in the machine used.

[Remarks]

- When one of the following options is specified, the memory=low option is unavailable:

- When form=absolute, hexadecimal, stype, or binary is specified:
compress, delete, rename, map, stack, cpu=stride, or
list and show[={reference | xreference}] are specified in combination.

- When form=library is specified:
delete, rename, extract, hide, replace, or allow_duplicate_module_name

- When form=object or relocate is specified:
extract

- Some combinations of this option and the input or output file format are unavailable.

-memory = [High | Low]

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 285 of 1053
Nov 01, 2020

-rename

< Optimizing Linkage Editor (rlink) Options / Other Options >

[Format]

[Description]

- Modifies an external symbol name or a section name.

- Symbol names or section names in a specific file or library in a module can be modified.

- For a C/C++ variable name, add an underscore (_) at the head of the definition name in the program.

- When a function name is modified, the operation is not guaranteed.

- If the specified name matches both section and symbol names, the symbol name is modified.

- If there are several files or modules of the same name, the priority depends on the input order.

[Examples]

[Remarks]

- When extract or strip is specified, this option is unavailable.

- When form=absolute is specified, the section name of the input library cannot be modified.

- Operation is not guaranteed if this option is used in combination with compile option -merge_files.

-rename = <suboption> [,...]
 <suboption>: {[<file>] (<name> = <name> [,...])
 | [<module>] (<name> = <name> [,...]) }

rename=(_sym1=data) ; Modifies _sym1 to data.
rename=lib1(P=P1) ; Modifies the section P to P1
 ; in the library module lib1.

R20UT3248EJ0110 Rev.1.10 Page 286 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-lib_rename [V3.01.00 or later]

< Optimizing Linkage Editor (rlink) Options / Other Options >

[Format]

[Description]

- This option changes the name of global symbol or section included in a module within the library that was specified by
the -library option.

- Specify the symbol name or section name to be changed as <name 1>. Specify the symbol name or section name
after the change as <name 2>.

- When a C variable name is specified, add prefix "_" to the definition name in the program.

- If the specified name matches both section and symbol names, the symbol name is changed.

- If there are two or more files or modules with the same name, the priority depends on the input order.

- If this option is specified more than once, all specifications will be valid.

- An error will occur in any of the following cases.

- When the specified <name>, <file>, or <module> cannot be found

- When the parameter is omitted

[Examples]

- To change "_sym1" in b.lib and c.lib to "_data", describe as:

- To change "_sym1" in all modules in b.lib to "_data", describe as:

- To change "_sym1" in modules m1 and m2 in b.lib to "_data", describe as:

[Remarks]

- If this option is specified together with the -form={object|library}, -extract, or -strip option, an error will occur.

- When the -form={absolute|hexadecimal|stype|binary} option is specified, the -show=struct option cannot be
specified together. Thus, the section name of the input library cannot be changed.

- Correct operation is not guaranteed if this option is used in combination with the compiler option -merge_files.

-lib_rename = <name1>=<name2>[,...]
-lib_rename = <file>(<name1>=<name2>[,...])
-lib_rename = "<file>|<module>[|<module>...](<name1>=<name2>[,...])"

> rlink a.obj -lib=b.lib,c.lib -lib_rename=(_sym1=_data)

> rlink a.obj -lib=b.lib,c.lib -lib_rename=b.lib(_sym1=_data)

> rlink a.obj -lib=b.lib,c.lib -lib_rename="b.lib|m1|m2(_sym1=_data)"

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 287 of 1053
Nov 01, 2020

-delete

< Optimizing Linkage Editor (rlink) Options / Other Options >

[Format]

[Description]

- Deletes an external symbol name or library module.

- Symbol names or modules in the specified file can be deleted.

- For a C/C++ variable name or C function name, add an underscore (_) at the head of the definition name in the pro-
gram. For a C++ function name, enclose the definition name in the program with double-quotes including the param-
eter strings. If the parameter is void, specify as "<function name>()". If there are several files or modules of the same
name, the file that is input first is applied.

- When a symbol is deleted using this option, the object is not deleted but the attribute is changed to the internal sym-
bol.

[Examples]

[Remarks]

- When extract or strip is specified, this option is unavailable.

- When form=library has been specified, this option deletes modules.

- When form={absolute|relocate|hexadecimal|stype|binary} has been specified, this option deletes external sym-
bols.

- Operation is not guaranteed if this option is used in combination with compile option -merge_files.

-delete = <suboption> [,...]
 <suboption>: {[<file>] (<name>[,...]) | <module>}

delete=(_sym1) ; Deletes the symbol _sym1 in all files.
delete=file1.obj(_sym2) ; Deletes the symbol _sym2 in the file file1.obj.

R20UT3248EJ0110 Rev.1.10 Page 288 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-replace

< Optimizing Linkage Editor (rlink) Options / Other Options >

[Format]

[Description]

- Replaces library modules.

- Replaces the specified file or library module with the module of the same name in the library specified with the library
option.

[Examples]

[Remarks]

- When form={object | relocate | absolute | hexadecimal | stype | binary}, extract, or strip is specified, this option
is unavailable.

- Operation is not guaranteed if this option is used in combination with compile option -merge_files.

-replace = <suboption> [,...]
 <suboption>: <file name> [(<module name> [,...]) }

replace=file1.obj ; Replaces the module file1 with the module file1.obj.
replace=lib1.lib(mdl1) ; Replaces the module mdl1 with the module mdl1
 ; in the input library file lib1.lib.

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 289 of 1053
Nov 01, 2020

-extract

< Optimizing Linkage Editor (rlink) Options / Other Options >

[Format]

[Description]

- Extracts library modules.

- Extracts the specified library module from the library file specified using the library option.

[Examples]

[Remarks]

- When form={absolute | hexadecimal | stype | binary} or strip is specified, this option is unavailable.

- When form=library has been specified, this option deletes modules.

- When form={absolute|relocate|hexadecimal|stype|binary} has been specified, this option deletes external sym-
bols.

-extract = <module name> [,...]

extract=file1 ; Extracts the module file1.

R20UT3248EJ0110 Rev.1.10 Page 290 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-strip

< Optimizing Linkage Editor (rlink) Options / Other Options >

[Format]

[Description]

- Deletes debugging information in an absolute file or library file.

- When the strip option is specified, one input file should correspond to one output file.

[Examples]

- Deletes debugging information of file1.abs, file2.abs, and file3.abs, and outputs this information to file1.abs,
file2.abs, and file3.abs, respectively. Files before debugging information is deleted are backed up in file1.abk,
file2.abk, and file3.abk.

[Remarks]

- When form={object | relocate | hexadecimal | stype | binary} is specified, this option is unavailable.

-strip

input=file1.abs file2.abs file3.abs
strip

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 291 of 1053
Nov 01, 2020

-change_message

< Optimizing Linkage Editor (rlink) Options / Other Options >

[Format]

[Description]

- Modifies the level of information, warning, and error messages.

- Specifies the execution continuation or abort at the message output.

- When a message number is specified, the error level of the message with the specified error number changes to the
given level.

- A range of error message numbers can be specified by using a hyphen (-).

- Each error number must consist of a component number (05), phase (6), and a four-digit value (e.g. 2310 in the case
of E0562310).

- If no error number is specified, all messages will be changed to the specified level.

[Examples]

- This changes E0562310 to a warning-level message so that linkage proceeds even if E0562310 is output.

- This changes all information and warning messages to error level messages.
When a message is output, the execution is aborted.

-change_message = <suboption> [,...]
 <suboption>: <error level> [= <error number> [-<error number>] [,...]
]
 <error level>: {Information | Warning | Error}

change_message=warning=2310

change_message=error

R20UT3248EJ0110 Rev.1.10 Page 292 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-hide

< Optimizing Linkage Editor (rlink) Options / Other Options >

[Format]

[Description]

- Deletes local symbol name information from the output file. Since all the name information regarding local symbols is
deleted, local symbol names cannot be checked even if the file is opened with a binary editor. This option does not
affect the operation of the generated file.

- Use this option to keep the local symbol names secret.

- The following types of symbol names are hidden:

- C source: Variable or function names specified with the static qualifiers

- C source: Label names for the goto statements

- Assembly source: Symbol names of which external definition (reference) symbols are not declared

Note The entry function name is not hidden.

[Examples]

- The following is a C source example in which this option is valid:

-hide

int g1;
int g2=1;
const int g3=3;
static int s1; //<- The static variable name will be hidden.
static int s2=1; //<- The static variable name will be hidden.
static const int s3=2; //<- The static variable name will be hidden.

static int sub1() //<- The static function name will be hidden.
{
 static int s1; //<- The static variable name will be hidden.
 int l1;
 s1 = l1; l1 = s1;
 return(l1);
}

int main()
{
 sub1();
 if (g1==1)
 goto L1;
 g2=2;
L1: //<- The label name of the goto statement will be hidden.
 return(0);
}

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 293 of 1053
Nov 01, 2020

[Remarks]

- This option is available only when the output file format is specified as absolute, relocate, or library.

- When the input file was compiled or assembled with the goptimize option specified, this option is unavailable if the
output file format is specified as relocate or library.

- To use this option with the external variable access optimization, do not use this option for the first linkage, and use it
only for the second linkage.

- The symbol names in the debugging information are not deleted by this option.

R20UT3248EJ0110 Rev.1.10 Page 294 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-total_size

< Optimizing Linkage Editor (rlink) Options / Other Options >

[Format]

[Description]

- Sends total sizes of sections after linkage to standard output. The sections are categorized as follows, with the overall
size of each being output.

- Executable program sections

- Non-program sections allocated to the ROM area

- Sections allocated to the RAM area

- This option makes it easy to see the total sizes of sections allocated to the ROM and RAM areas.

[Remarks]

- The show=total_size option must be used if total sizes of sections are to be output in the linkage listing.

- When the ROM-support function (rom option) has been specified for a section, the section will be used by both the
source (ROM) and destination (RAM) of the transfer. The sizes of sections of this type will be added to the total sizes
of sections in both ROM and RAM.

-total_size

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 295 of 1053
Nov 01, 2020

-verbose [V3.03.00 or later]

< Optimizing Linkage Editor (rlink) Options / Other Options >

[Format]

[Description]

- This option displays the contents specified by the suboption in the standard error output.

- The suboption below can be specified.

[Example]

- To display the CRC operation result and its output address in the standard error output, describe as:

-verbose=<sub>[, ...]
sub : crc

CRC This suboption displays the CRC operation result and its output address.
Valid when the crc option is specified.

> rlink a.obj -form=stype -start=.SEC1/1000 -crc=2000=1000-10ff/CCITT -verbose=crc

R20UT3248EJ0110 Rev.1.10 Page 296 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

< Optimizing Linkage Editor (rlink) Options / Subcommand File Option >

The following subcommand file option is available.

- -subcommand

Subcommand File Option

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 297 of 1053
Nov 01, 2020

-subcommand

< Optimizing Linkage Editor (rlink) Options / Subcommand File Option >

[Format]

[Description]

- Specifies options with a subcommand file.

- The format of the subcommand file is as follows:
<option> { = | } [<suboption> [,…]] [&] [;<comment>]

- The option and suboption are separated by an "=" sign or a space.

- For the input option, suboptions are separated by a space.

- One option is specified per line in the subcommand file.

- If a subcommand description exceeds one line, the description can be allowed to overflow to the next line by using an
ampersand (&).

[Examples]

- Command line specification:

- Subcommand specification:

- Option contents specified with a subcommand file are expanded to the location at which the subcommand is specified
on the command line and are executed.

- The order of file input is file1.obj, file2.obj, file3.obj, and file4.obj.

-subcommand = <file name>

rlink file1.obj -sub=test.sub file4.obj

input file2.obj file3.obj ; This is a comment.
library lib1.lib, & ; Specifies line continued.
lib2.lib

R20UT3248EJ0110 Rev.1.10 Page 298 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

< Optimizing Linkage Editor (rlink) Options / Options Other Than Above >

The following options other than above are available.

- -logo

- -nologo

- -end

- -exit

Options Other Than Above

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 299 of 1053
Nov 01, 2020

-logo

< Optimizing Linkage Editor (rlink) Options / Options Other Than Above >

[Format]

- [Default]
When this option is omitted, the copyright notice is output.

[Description]

- The copyright notice is output.

-logo

R20UT3248EJ0110 Rev.1.10 Page 300 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-nologo

< Optimizing Linkage Editor (rlink) Options / Options Other Than Above >

[Format]

- [Default]
When this option is omitted, the copyright notice is output.

[Description]

- Output of the copyright notice is disabled.

-nologo

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 301 of 1053
Nov 01, 2020

-end

< Optimizing Linkage Editor (rlink) Options / Options Other Than Above >

[Format]

[Description]

- Executes option strings specified before END. After the linkage processing is terminated, option strings that are spec-
ified after END are input and the linkage processing is continued.

- This option cannot be specified on the command line.

[Examples]

- Executes the processing from (1) to (3) and outputs a.abs. Then executes the processing from (4) to (6) and outputs
a.mot.

-end

input=a.obj,b.obj ; Processing (1)
start=P,C,D/100,B/8000 ; Processing (2)
output=a.abs ; Processing (3)
end
input=a.abs ; Processing (4)
form=stype ; Processing (5)
output=a.mot ; Processing (6)

R20UT3248EJ0110 Rev.1.10 Page 302 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-exit

< Optimizing Linkage Editor (rlink) Options / Options Other Than Above >

[Format]

[Description]

- Specifies the end of the option specifications.

- This option cannot be specified on the command line.

[Examples]

- Command line specification:

- test.sub:

- Executes the processing from (1) to (3) and outputs a.abs.

- The nodebug option specified on the command line after exit is executed is ignored.

-exit

rlink -sub=test.sub -nodebug

input=a.obj,b.obj ; Processing (1)
start=P,C,D/100,B/8000 ; Processing (2)
output=a.abs ; Processing (3)
exit

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 303 of 1053
Nov 01, 2020

2.5.4 Library Generator Options

Classification Option Description

Library Options -head Specifies a configuration library.

-output Specifies an output library file name.

-nofloat Creates a simple I/O function.

-reent [To be supported by V2.03 and later versions]
Creates a reentrant library.

-lang Selects the set of functions available from the C standard library.

-simple_stdio Creates a functionally cut down version of the set of I/O functions.

-secure_malloc
[Professional Edi-
tion only]
[V2.05.00 or later]

Generates the calloc, free, malloc and realloc with security facility.

-logo
-nologo

Outputs the copyright.
Disables output of the copyright.

R20UT3248EJ0110 Rev.1.10 Page 304 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

< Library Generator Options / Library Options >

The following library options are available.

- -head

- -output

- -nofloat

- -reent

- -lang

- -simple_stdio

- -secure_malloc [Professional Edition only] [V2.05.00 or later]

- -logo

- -nologo

Library Options

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 305 of 1053
Nov 01, 2020

-head

< Library Generator Options / Library Options >

[Format]

- [Default]
The default for this option is head=all.

[Description]

- This option specifies a configuration file with a header file name.

- When head=all is specified, all header file names will be configured.

- The runtime library is always configured.

-head=<sub>[,...]
<sub>:{ all | runtime | ctype | math | mathf | stdarg | stdio | stdlib | string | ios |
 new | complex | cppstring | c99_complex | fenv | inttypes | wchar | wctype}

R20UT3248EJ0110 Rev.1.10 Page 306 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-output

< Library Generator Options / Library Options >

[Format]

- [Default]
The default for this option is output=stdlib.lib.

[Description]

- This option specifies an output file name.

-output=<file name>

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 307 of 1053
Nov 01, 2020

-nofloat

< Library Generator Options / Library Options >

[Format]

[Description]

- This option creates simple I/O functions that do not support the conversion of floating-point numbers (%f, %e, %E,
%g, %G).

- When inputting or outputting files that do not require the conversion of floating-point numbers, ROM can be saved.
Target functions: fprintf, fscanf, printf, scanf, sprintf, sscanf, vfprintf, vprintf, and vsprintf

[Remarks]

- In a library created with this option specified, correct operation cannot be guaranteed when floating-point numbers are
input to or output from the target functions.

-nofloat

R20UT3248EJ0110 Rev.1.10 Page 308 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-reent

< Library Generator Options / Library Options >

[Format]

[Description]

- This option creates reentrant libraries.

- Note that the rand, srand and EC++ library functions are not reentrant libraries.

[Remarks]

- This option is available in V2.03 and later versions of this compiler.

- When reentrant libraries are linked, use #define to define the macro name of _REENTRANT before including stan-
dard include files in the program or use the -define option to define _REENTRANT at compilation.

-reent

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 309 of 1053
Nov 01, 2020

-lang

< Library Generator Options / Library Options >

[Format]

- [Default]
The default for this option is lang=c.

[Description]

- This option selects which functions are to be usable in the C standard library.

- When lang=c is specified, only the functions conforming to the C89 standard are included in the C standard library,
and the extended functions of the C99 standard are not included. When lang=c99 is specified, the functions conform-
ing to the C89 standard and the functions conforming to the C99 standard are included in the C standard library.

[Remarks]

- There are no changes in the functions included in the C++ and EC++ standard libraries.

- When lang=c99 is specified, all functions including those specified by the C99 standard can be used. Since the num-
ber of available functions is greater than when lang=c is specified, however, generating a library may take a long
time.

-lang = { c | c99 }

R20UT3248EJ0110 Rev.1.10 Page 310 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-simple_stdio

< Library Generator Options / Library Options >

[Format]

[Description]

- This option creates a functional cutdown version of I/O functions.

- The functional cutdown version does not include the conversion of floating-point numbers (same as the function not
supported with the nofloat option), the conversion of long long type, and the conversion of 2-byte code. When input-
ting or outputting files that do not require these functions, ROM can be saved.

Target functions:fprintf, fscanf, printf, scanf, sprintf, sscanf, vfprintf, vprintf, and vsprintf

[Remarks]

- In a library created with this option specified, correct operation cannot be guaranteed when a cutdown function is
used in the target functions.

- This function is disabled during C++ and EC++ program compilation.

-simple_stdio

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 311 of 1053
Nov 01, 2020

-secure_malloc [Professional Edition only] [V2.05.00 or later]

< Library Generator Options / Library Options >

[Format]

[Description]

This option creates the calloc, free, malloc, and realloc functions to which a security facility for detecting illegal opera-
tions to storage areas has been added.

When one of the following operations is performed, the __heap_chk_fail function is called.

- The pointer to an area other than that allocated by calloc, malloc, or realloc is passed to free or realloc.

- The pointer to an area released by free is passed again to free or realloc.

- A value is written to up to four bytes before and after the area allocated by calloc, malloc, or realloc and the pointer to
that area is passed to free or realloc.

The same facility is also added to the new and delete operators in C++ programs.
The __heap_chk_fail function needs to be defined by the user and it describes the processing to be executed when an

error occurs in management of dynamic memory.
Note the following points when defining the __heap_chk_fail function.

- The only possible type of return value is void and the __heap_chk_fail function does not have formal parameters.

- When defining the __heap_chk_fail function in a C++ program, add extern "C".

- Corruption of heap space should not be detected recursively in the __heap_chk_fail function.

- Do not define the function as static.

[Example]

-secure_malloc

#include <stdlib.h>

void sub(int *ip) {
 ...
 free(ip);
}

int func(void) {
 int *ip;
 if ((ip = malloc(40 * sizeof(int))) == NULL)
 if ((ip = malloc(10 * sizeof(int))) == NULL) return(1);
 else sub(ip); /* First appearance of free */
 else
 ...
 free(ip); /* Second appearance of free */
 return(0);
}

#ifdef __cplusplus
extern "C" {
#endif
void __heap_chk_fail(void) {
 /* Processing when corruption of heap memory area is detected */
}
#ifdef __cplusplus
}
#endif

R20UT3248EJ0110 Rev.1.10 Page 312 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

[Remarks]

The calloc, malloc, and realloc functions for the security facility allocate four extra bytes before and after each allocated
area for the purpose of detecting writing to addresses outside the allocated area. This consumes more heap memory area
than with the usual functions. Using the new operators in C++ programs will also consume more heap memory area.

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 313 of 1053
Nov 01, 2020

-logo

< Library Generator Options / Library Options >

[Format]

- [Default]
When this option is omitted, the copyright notice is output.

[Description]

- The copyright notice is output.

-logo

R20UT3248EJ0110 Rev.1.10 Page 314 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

-nologo

< Library Generator Options / Library Options >

[Format]

- [Default]
When this option is omitted, the copyright notice is output.

[Description]

- Output of the copyright notice is disabled.

-nologo

CC-RX 2.　COMMAND REFERENCE

R20UT3248EJ0110 Rev.1.10 Page 315 of 1053
Nov 01, 2020

In addition to the options in 2.5.4 Library Generator Options, the C/C++ compiler options can be specified in the library
generator as options used for library compilation. However, the options listed below are invalid; they are not selected at
library compilation.

Table 2.19 Invalid Options

Compiler Options That Become Invalid

No. Options that Become Invalid Conditions for Inval-
idation

Library Configuration When Made Invalid

1 lang Always invalid None

2 include Always invalid None

3 define Always invalid None

4 undefined Always invalid None

5 message
nomessage

Always invalid nomessage

6 change_message Always invalid None

7 file_inline_path Always invalid None

8 comment Always invalid None

9 check Always invalid None

10 output Always invalid output=obj

11 noline Always invalid None

12 debug
nodebug

Always invalid nodebug

13 listfile
nolistfile
show

Always invalid nolistfile

14 file_inline Always invalid None

15 asmcmd Always invalid None

16 lnkcmd Always invalid None

17 asmopt Always invalid None

18 lnkopt Always invalid None

19 logo
nologo

Always invalid nologo

20 euc
sjis
latin1
utf8

Always invalid None

21 outcode Always invalid None

22 subcommand Always invalid None

23 alias Always invalid alias=noansi

24 pic
pid

lang=cpp or at C++
source
compilationNote1

None

R20UT3248EJ0110 Rev.1.10 Page 316 of 1053
Nov 01, 2020

CC-RX 2.　COMMAND REFERENCE

Notes 1. Warning W0511171 is output.

Notes 2. Error F0593305 is output. (This library cannot be generated.)

Notes 3. Any specification of <file name> is ignored. Even if <file name> does not exist, no error is output.

25 ip_optimize Always invalid None

26 merge_files Always invalid None

27 whole_program Always invalid None

28 big5
gb2312

Always invalid Note2 None

29 map
[V3.02.00 or later]

Always invalid Note3 smap

30 control_flow_integrity Always invalid None

31 create_unfilled_area
[V3.00.00 or later]

Always invalid None

32 stack_protector
[V3.00.00 or later]

Always invalid None

33 stack_protector_all
[V3.00.00 or later]

Always invalid None

34 misra2004 Always invalid None

35 misra2012
[V3.00.00 or later]

Always invalid None

36 misra_intermodule
[V3.01.00 or later]

Always invalid None

37 tfu
[V3.01.00 or later]

Always invalid None

38 truncated_address_initializer
[V3.01.00 or later]

Always invalid None

39 g_line
[V3.02.00 or later]

Always invalid None

No. Options that Become Invalid Conditions for Inval-
idation

Library Configuration When Made Invalid

CC-RX 3.　OUTPUT FILES

R20UT3248EJ0110 Rev.1.10 Page 317 of 1053
Nov 01, 2020

3. OUTPUT FILES

This chapter describes the format and other aspects of files output by a build via each command.

3.1 Assemble List File

This section covers the contents and format of the assemble list file output by the assembler.
The source list file contains the compilation and assembly results. Table 3.1 shows the structure and contents of the

source list.

Table 3.1 Structure and Contents of Source List

Note Valid when the -listfile option is specified.

3.1.1 Source Information

The source information is included in the object information when the -show=source option is specified. For an example
of source information, refer to the next section, Object Information.

3.1.2 Object Information

Figure 3.1 shows an example of object information output.

No Output Information Contents SuboptionNote When -show Option is
not Specified

1 Source information C/C++ source code corresponding to
assembly source code

-show=source Not output

2 Object information Machine code used in object programs
and the assembly source code

None Output

3 Statistics information Total number of errors, number of
source program lines, and size of each
section

None Output

4 Command specifica-
tion information

File names and options specified by
the command

None Output

* RX FAMILY ASSEMBLER V2.00.00 [15 Feb 2013] * SOURCE LIST Mon Feb 18 20:15:19 2013
(1) (2) (3) (4)
LOC. OBJ. 0XMDA SOURCE STATEMENT

 ;RX Family C/C++ Compiler (V2.00.00 [15 Feb 2013])
18-Feb-2013 20:15:19

 ;*** CPU TYPE ***

 ;-ISA=RXV1

 ;*** COMMAND PARAMETER ***

 ;-output=src=sample.src
 ;-listfile
 ;-show=source
 ;sample.c

 .glb_x

R20UT3248EJ0110 Rev.1.10 Page 318 of 1053
Nov 01, 2020

CC-RX 3.　OUTPUT FILES

 .glb_func02
 .glb_func03
 .glb_func01
 (5) (6)
 ;LineNo. C-SOURCE STATEMENT

 .SECTIONP,CODE
00000000 _func02:
 .STACK_func02=12
 ; 1 #include "include.h"
 ; 2 int func01(int);
 ; 3 int func03(int);
 ; 4
 ; 5 int func02(int z)
00000000 6E67 PUSHM R6-R7
00000002 EF16 MOV.L R1, R6
 ; 6 {
 ; 7 x = func01(z);
00000004 05rrrrrr A BSR _func01
00000008 FB72rrrrrrrr MOV.L #_x, R7
0000000E E371 MOV.L R1, [R7]
 ; 8 if (z == 2) {
00000010 6126 CMP #02H, R6
00000012 18 S BNE L12
00000013 L11:; bb3
 ; 9 x++;
00000013 6211 ADD #01H, R1
00000015 08 S BRA L13
00000016 L12:; bb6
 ; 10 } else {
 ; 11 x = func03(x + 2);
00000016 6221 ADD #02H, R1
00000018 39rrrr W BSR _func03
0000001B L13:; bb13
0000001B E371 MOV.L R1, [R7]
 ; 12 }
 ; 13 return x;
 ; 14 }
0000001D 3F6702 RTSD #08H, R6-R7
00000020 _func03:
 .STACK_func03=4
 ; 15
 ; 16 int func03(int p)
 ; 17 {
 ; 18 return p+1;
00000020 6211 ADD #01H, R1
 ; 19 }
00000022 02 RTS
 .SECTIOND,ROMDATA,ALIGN=4
00000000 _y:
00000000 01000000 .lword00000001H
 .END

Item
Num-
ber

Description

(1) Location information (LOC.)
Location address of the object code that can be determined at assembly.

(2) Object code information (OBJ.)
Object code corresponding to the mnemonic of the source code.

CC-RX 3.　OUTPUT FILES

R20UT3248EJ0110 Rev.1.10 Page 319 of 1053
Nov 01, 2020

3.1.3 Statistics Information

The following figure shows an example of statistics information output.

(3) Line information (0XMDA)
Results of source code processing by the assembler. The following shows the meaning of each symbol.

0 X M D A Description

0-30 Shows the nesting level of include files.

X Shows the line where the condition is false in conditional assembly when
-show=conditions is specified.

M Shows the line expanded from a macro instruction when -show=expansions
is specified.

D Shows the line that defines a macro instruction when -show=definitions is
specified.

S Shows that branch distance specifier S is selected.

B Shows that branch distance specifier B is selected.

W Shows that branch distance specifier W is selected.

A Shows that branch distance specifier A is selected.

* Shows that a substitute instruction is selected for a conditional branch instruc-
tion.

(4) Source information (SOURCE STATEMENT)
Contents of the assembly-language source file.

(5) C/C++ source line number (LineNo.)

(6) C/C++ source statement (C-SOURCE STATEMENT)
C/C++ source statement output when the -show=source option is specified.

Information List (1)
TOTAL ERROR(S) 00000
TOTAL WARNING(S) 00000
TOTAL LINE(S) 00071 LINES
Section List (2)
Attr Size Name
CODE 0000000047(0000002FH) P
ROMDATA 0000000004(00000004H) D

Item
Num-
ber

Description

(1) Numbers of error messages and warning messages, and total number of source lines

(2) Section information (section attribute, size, and section name)

Item
Num-
ber

Description

R20UT3248EJ0110 Rev.1.10 Page 320 of 1053
Nov 01, 2020

CC-RX 3.　OUTPUT FILES

3.1.4 Compiler Command Specification Information

The file names and options specified on the command line when the compiler is invoked are output. The compiler com-
mand specification information is output at the beginning of the list file. The following figure shows an example of com-
mand specification information output.

3.1.5 Assembler Command Specification Information

The file names and options specified on the command line when the assembler is invoked are output. The assembler
command specification information is output at the end of the list file. The following figure shows an example of command
specification information output.

3.2 Link Map File

This section explains the link map file.
The link map has information of the link result. It can be referenced for information such as the section's allocation

addresses.

3.2.1 Structure of Linkage List

Table 3-3 shows the structure and contents of the linkage list.

Table 3.2 Structure and Contents of Linkage List

;*** CPU TYPE *** (1)
;-ISA=RXV1
;*** COMMAND PARAMETER *** (2)
;-output=src=C:\tmp\elp1894\sample.src
;-nologo
;-show=source
;sample.c

Item
Num-
ber

Description

(1) Selected microcomputer

(2) File names and options specified for the compiler

Cpu Type (1)
-ISA=RXV1
Command Parameter (2)
-output=sample.obj
-nologo
-listfile=sample.lst

Item
Num-
ber

Description

(1) Microcomputer selected for the assembler

(2) File names and options specified for the assembler

No Output Information Contents When -show Option-
Note is Specified

When -show Option is
not Specified

1 Option information Option strings specified by a com-
mand line or subcommand

None Output

CC-RX 3.　OUTPUT FILES

R20UT3248EJ0110 Rev.1.10 Page 321 of 1053
Nov 01, 2020

Note The -show option is valid when the list option is specified.

3.2.2 Option Information

The option strings specified by a command line or a subcommand file are output. The following figure shows an exam-
ple of option information output when rlink -subcommand=test.sub -list -show is specified.

2 Error information Error messages None Output

3 Linkage map infor-
mation

Section name, start/end
addresses, size, and type

None Output

When -show=relocation_attribute
is specified, the relocation attri-
bute is output.

-show=relocation_attri
bute

Not output

4 Symbol information Static definition symbol name,
address, size, and type in the
order of address
When -show=reference is speci-
fied:
Symbol reference count and opti-
mization information in addition to
the above information
When -show=struct is specified,
information on the structure and
union members is output.

-show =symbol
-show =reference

Not output
Not output

5 Symbol deletion
optimization infor-
mation

Symbols deleted by optimization -show =symbol Not output

6 Cross-reference
information

Symbol reference information -show =xreference Not output

7 Total section size Total sizes of RAM, ROM, and
program sections

-show=total_size Not output

8 Vector information Vector numbers and address
information

-show=vector Not output

9 CRC information CRC calculation result and output
addresses

None Always output when the
CRC option is specified

10 CFI information Contents of the function list for
use in detecting illegal indirect
function calls

-show=cfi Not output

(test.sub contents)
INPUT test .obj

*** Options ***
-sub=test.sub (1)
INPUT test .obj (2)
-list (1)
-show (1)

No Output Information Contents When -show Option-
Note is Specified

When -show Option is
not Specified

R20UT3248EJ0110 Rev.1.10 Page 322 of 1053
Nov 01, 2020

CC-RX 3.　OUTPUT FILES

3.2.3 Error Information

Error messages are output. The following figure shows an example of error information output.

Note As the number for the alignment of code sections whose address is determined after linkage, when big
endian is selected, a multiple of 4 is indicated regardless of the actual number for alignment at the time
of compiling and assembling.

3.2.4 Linkage Map Information

The start and end addresses, size, and type of each section are output in the order of address. The following figure
shows an example of linkage map information output.

Item
Num-
ber

Description

(1) Outputs option strings specified by a command line or a subcommand in the specified order.

(2) Subcommand in the test.sub subcommand file.

*** Error Information ***
** E0562310 (E) Undefined external symbol "strcmp" referred to in "test.obj" (1)

Item
Num-
ber

Description

(1) Outputs an error message.

*** Mapping List ***
(1) (2) (3) (4) (5) (6)
SECTION START END SIZE ALIGN ATTRIBUTE
P
 00001000 00001000 1 1 CODE
C
 00001004 00001007 4 4 ROMDATA
D_2
 00001008 000014dd 4d6 2 ROMDATA
B_2
 000014de 000050b3 3bd6 2 DATA

Item
Num-
ber

Description

(1) Section name

(2) Start address
OVER being displayed here indicates that the address exceeded the range that can be expressed by
32 bits.

(3) End address
OVER being displayed here indicates that the address exceeded the range that can be expressed by
32 bits.

(4) Section size

(5) Section boundary alignment value

(6) The relocation attribute is output

CC-RX 3.　OUTPUT FILES

R20UT3248EJ0110 Rev.1.10 Page 323 of 1053
Nov 01, 2020

Note As the number for the alignment of code sections whose address is determined after linkage, when big
endian is selected, a multiple of 4 is indicated regardless of the actual number for alignment at the time of
compiling and assembling.

3.2.5 Symbol Information

When -show=symbol is specified, the addresses, sizes, and types of externally defined symbols or static internally
defined symbols are output in the order of address. When -show=reference is specified, the symbol reference counts and
optimization information are also output. The following figure shows an example of symbol information output.

*** Symbol List ***
SECTION=(1)
(2) (3) (4) (5)
FILE= START END SIZE
 (6) (7) (8) (9) (10) (11)
 SYMBOL ADDR SIZE INFO COUNTS OPT
SECTION=P
FILE=test.obj
 00000000 00000428 428
 _main
 00000000 2 func ,g 0
 _malloc
 00000000 32 func ,l 0
FILE=mvn3
 00000428 00000490 68
 $MVN#3
 00000428 0 none ,g 0

Item
Num-
ber

Description

(1) Section name

(2) File name

(3) Start address of a section included in the file indicated by (2) above

(4) End address of a section included in the file indicated by (2) above

(5) Section size of a section included in the file indicated by (2) above

(6) Symbol name

(7) Symbol address
OVER being displayed here indicates that the address exceeded the range that can be expressed by
32 bits.

(8) Symbol size

(9) Symbol type as shown below
Data type:

func: Function name
data: Variable name
entry: Entry function name
none:Undefined (label, assembler symbol)

Declaration type
g: External definition
l: Internal definition

(10) Symbol reference count only when -show=reference is specified. * is output when show=reference is not
specified.

R20UT3248EJ0110 Rev.1.10 Page 324 of 1053
Nov 01, 2020

CC-RX 3.　OUTPUT FILES

When the -show=struct option is specified, the addresses for the structure and union members that are defined in the
source file for which the -debug option was specified at compilation are output. The output example of the symbol informa-
tion is shown below.

3.2.6 Symbol Deletion Optimization Information

The size and type of symbols deleted by symbol deletion optimization (-optimize=symbol_delete) are output.
The following figure shows an example of symbol deletion optimization information output.

(11) Optimization information as shown below.
ch: Symbol modified by optimization
cr: Symbol created by optimization
mv: Symbol moved by optimization

*** Symbol List ***

SECTION=
FILE= START END SIZE
 SYMBOL ADDR SIZE INFO COUNTS OPT
 (1) (2)
 STRUCT SIZE
 (3) (4) (5) (6)
 MEMBER ADDR SIZE INFO

SECTION=B
FILE=tp.obj
 00000000 0000000b c
 _st
 00000000 c data ,g 0
 struct {
 c
 _st.mem1
 00000000 1 char
 _st.mem2
 00000004 4 int
 _st.mem3
 00000008 2 short
 }

Number Desctiption

(1) struct is output for a structure or union is output for a union.

(2) Total size of the structure or union.

(3) The member name is concatenated after a symbol name with a dot (.).

(4) The member address is output.

(5) The member size is output.

(6) The member type is output.

*** Delete Symbols ***
(1) (2) (3)
SYMBOL SIZE INFO
 _Version
 4 data ,g

Item
Num-
ber

Description

CC-RX 3.　OUTPUT FILES

R20UT3248EJ0110 Rev.1.10 Page 325 of 1053
Nov 01, 2020

3.2.7 Cross-Reference Information

The symbol reference information (cross-reference information) is output when -show=xreference is specified. The fol-
lowing figure shows an example of cross-reference information output.

Item
Num-
ber

Description

(1) Deleted symbol name

(2) Deleted symbol size

(3) Deleted symbol type as shown below
Data type

func: Function name
data: Variable name

Declaration type
g: External definition
l: Internal definition

*** Cross Reference List ***
(1) (2) (3) (4) (5)
No Unit Name Global.Symbol Location External Information
0001 a
 SECTION=P _func
 00000100
 _func1
 00000116
 _main
 0000012c
 _g
 00000136
 SECTION=B
 _a
 00000190 0001(00000140:P)
 0002(00000178:P)
 0003(0000018c:P)
0002 b
 SECTION=P
 _func01
 00000154 0001(00000148:P)
 _func02
 00000166 0001(00000150:P)
0003 c
 SECTION=P
 _func03
 00000184

Item
Num-
ber

Description

(1) Unit number, which is an identification number in object units

(2) Object name, which specifies the input order at linkage

(3) Symbol name output in ascending order of allocation addresses for every section

R20UT3248EJ0110 Rev.1.10 Page 326 of 1053
Nov 01, 2020

CC-RX 3.　OUTPUT FILES

3.2.8 Total Section Size

The total sizes of ROM, RAM, and program sections are output. The following figure shows an example of total section
size output.

3.2.9 Vector Information

The contents of the variable vector table are output when -show=vector is specified. The following figure shows an
example of vector information output.

(4) Symbol allocation address, which is a relative value from the beginning of the section when -form=relocate
is specified
OVER being displayed here indicates that the address exceeded the range that can be expressed by
32 bits.

(5) Address of an external symbol that has been referenced
Output format: <Unit number> (<address or offset in section>:<section name>)

*** Total Section Size ***
RAMDATA SECTION : 00000660 Byte(s) (1)
ROMDATA SECTION : 00000174 Byte(s) (2)
PROGRAM SECTION : 000016d6 Byte(s) (3)

Item
Num-
ber

Description

(1) Total size of RAM data sections

(2) Total size of ROM data sections

(3) Total size of program sections

*** Variable Vector Table List ***
(1) (2)
NO. SYMBOL/ADDRESS
 0 $fdummy
 1 $fa
 2 00ff8800
 3 $fdummy
 :
<Omitted>

Item
Num-
ber

Description

(1) Vector number

(2) Symbol. When no symbol is defined for the vector number, the address is output.

Item
Num-
ber

Description

CC-RX 3.　OUTPUT FILES

R20UT3248EJ0110 Rev.1.10 Page 327 of 1053
Nov 01, 2020

3.2.10 CRC Information

The CRC calculation result and output address are output when the CRC option is specified.

3.2.11 CFI Information

If -show=cfi is specified, this option outputs the contents of the function list for use in detecting illegal indirect function
calls. The output example is given below.

*** CRC Code ***
CODE : cb0b (1)
ADDRESS : 00007ffe (2)

Item
Num-
ber

Description

(1) CRC calculation result

(2) Address where the CRC calculation result is output

*** CFI Function List ***

SYMBOL/ADDRESS

_func (1)
0000F100 (2)

Item
Num-
ber

Description

(1) Outputs the symbol for the function.

(2) Outputs the address of the function if a symbol for it has not been defined.

R20UT3248EJ0110 Rev.1.10 Page 328 of 1053
Nov 01, 2020

CC-RX 3.　OUTPUT FILES

3.3 Library List

This section covers the contents and format of the library list output by the optimizing linkage editor.

3.3.1 Structure of Library List

Table 3.4 shows the structure and contents of the library list.

Table 3.3 Structure and Contents of Library List

Note All options are valid when the -list option is specified.

3.3.2 Option Information

The option strings specified by a command line or a subcommand file are output.
The following figure shows an example of option information output when rlink -subcommand = test.sub -list -show is

specified.

No Output Information Contents SuboptionNote When -show Option is not
Specified

1 Option information Option strings specified by a com-
mand line or subcommand

- Output

2 Error information Error messages - Output

3 Library information Library information - Output

4 Information of mod-
ules, sections, and
symbols within library

Module within the library - Output

When show=symbol is specified:
List of symbol names in a module
within the library

-show=symbol Not output

When show=section is specified:
Lists of section names and sym-
bol names in a module within the
library

-show=section Not output

Item
Num-
ber

Description

(1) Outputs option strings specified by a command line or a subcommand in the specified order.

(2) Subcommand in the test.sub subcommand file.

(test.sub contents)
form library
in adhry.obj
output test.lib

*** Options ***
-sub=test.sub
form library
in adhry.obj
output test.lib
-list
-show

(2)

(1)

CC-RX 3.　OUTPUT FILES

R20UT3248EJ0110 Rev.1.10 Page 329 of 1053
Nov 01, 2020

3.3.3 Error Information

Messages for errors or warnings are output.
The following figure shows an example of error information output.

3.3.4 Library Information

The library type is output.
The following figure shows an example of library information output.

3.3.5 Module, Section, and Symbol Information within Library

A list of modules within the library is output.
When -show=symbol is specified, the symbol names in a module within the library are listed. When -show=section is

specified, the section names and symbol names in a module within the library are listed.
The following figure shows an output example of module, section, and symbol information within a library.

*** Error Information ***
** W0561200 (W) Backed up file "main.lib" into "main.lbk" (1)

Item
Num-
ber

Description

(1) Outputs a warning message.

*** Library Information ***
LIBRARY NAME =test.lib (1)
CPU=RX610 (2)
ENDIAN=Big (3)
ATTRIBUTE=system (4)
NUMBER OF MODULE =1 (5)

Item
Num-
ber

Description

(1) Library name

(2) CPU name

(3) Endian type

(4) Library file attribute: either system library or user library

(5) Number of modules within the library

R20UT3248EJ0110 Rev.1.10 Page 330 of 1053
Nov 01, 2020

CC-RX 3.　OUTPUT FILES

*** Library List ***
(1) (2)
MODULE LAST UPDATE
 (3)
 SECTION
 (4)
 SYMBOL
adhry
 29-Feb-2000 12:34:56
 P
 _main
 _Proc0
 _Proc1
 C
 D
 _Version
 B
 _IntGlob
 _CharGlob

Item
Num-
ber

Description

(1) Module name

(2) Module definition date
If the module is updated, the latest module update date is displayed.

(3) Section name within a module

(4) Symbol within a section

CC-RX 3.　OUTPUT FILES

R20UT3248EJ0110 Rev.1.10 Page 331 of 1053
Nov 01, 2020

3.4 S-Type and HEX File Formats

This section describes the S-type files and HEX files that are output by the optimizing linkage editor.

3.4.1 S-Type File Format

Figure 3.1 S-Type File Format

(a) Header record (S0 record)

30 30 45 30 30 30 30 XX XX53

 0 E S 0 0 0 0 0

Load address
Byte count [1]
Record format
Record header

Checksum [2]
File format extension (3 characters: 6 bytes)
Body of file name (8 characters: 16 bytes)

[3]

(b) Data record (S1, S2, and S3 records)

(i) When the load address is 0 to FFFF

31 XX XX XX XX XX XX53

 1 S

XX XX

[3]

(ii) When the load address is 10000 to FFFFFF

32 XX XX XX XX XX XX53

 2 S

XX XX

[3]

XX XX

Load address (2 bytes)
Byte count [1]
Record format
Record header

Checksum [2]
Data (16 bytes max.)

Load address (3 bytes)
Byte count [1]
Record format
Record header

Checksum [2]
Data (16 bytes max.)

R20UT3248EJ0110 Rev.1.10 Page 332 of 1053
Nov 01, 2020

CC-RX 3.　OUTPUT FILES

Figure 3.2 S-Type File Format (cont)

33 XX XX XX XX XX XX53

 3 S

XX XX

[3]

XX XX XX XX

39 30 33 XX XX XX XX53

 9 S [3]

38 30 34 XX XX XX XX53

 8 S

XX XX

[3]

XX XX

37 30 35 XX XX XX XX53

 7 S

XX XX

[3]

XX XX XX XX

 3 0

XX XX

 4 0

 5 0

(c) End record (S9, S8, and S7 records)

Notes: [1] The number of bytes from the load address (or the entry address) to the checksum.

[2] 1's complement of the sum of the byte count and the data between the checksum
and the byte count, in byte units.

[3] A new-line character is added immediately after the checksum.

(iii) When the load address is 1000000 to FFFFFFFF

Load address (4 bytes)
Byte count [1]
Record format
Record header

Checksum [2]
Data (16 bytes max.)

(i) When the entry address is 0 to FFFF

Entry address (2 bytes)
Byte count [1]
Record format
Record header

Checksum [2]

(ii) When the entry address is 10000 to FFFFFF

Entry address (3 bytes)
Byte count [1]
Record format
Record header

Checksum [2]

(iii) When the entry address is 1000000 to FFFFFFFF

Entry address (4 bytes)
Byte count [1]
Record format
Record header

Checksum [2]

CC-RX 3.　OUTPUT FILES

R20UT3248EJ0110 Rev.1.10 Page 333 of 1053
Nov 01, 2020

3.4.2 HEX File Format

The execution address of each data record is obtained as described below.

(1) Segment address
(Segment base address << 4) + (Address offset of the data record)

(2) Linear address
(Linear base address << 16) + (Address offset of the data record)

Figure 3.3 HEX File Format

0 0 0 0 0

Record type
Address offset
Byte count [1]
Start mark

XX XX

Checksum [2]
Data

0 XX XX XX XX1 0:

[3]

(b) End record (01 record)

0 0 0 0 0 0 0: 1 FF FF

[3]

0 2 0 0 0 0 2 XX XX: 0 XXXX XXXX

[3]

(a) Data record (00 record)

Address offset
Byte count [1]
Start mark

Checksum [2]
Record type

Record type
Address offset
Byte count [1]
Start mark

Checksum [2]
Segment base address

(c) Expansion segment address record (02 record)

R20UT3248EJ0110 Rev.1.10 Page 334 of 1053
Nov 01, 2020

CC-RX 3.　OUTPUT FILES

Figure 3.4 HEX File Format (cont)

0 2 0 0 0 0 4 XX XX: 0 XXXX XXXX

[3]

0 4 0 0 0 0 5 XX XX: 0 XXXX XXXX

[3]

XXXX XXXX

0 4 0 0 0 0 3 XX XX: 0 XXXX XXXX

[3]

XX XXXXXX

(d) Start address record (03 record)

(e) Expansion linear address record (04 record)

(f) 32-bit start linear address record (05 record)

Record type
Address offset
Byte count [1]
Start mark

Checksum [2]
Start address

Record type
Address offset
Byte count [1]
Start mark

Checksum [2]
Linear base address

Record type
Address offset
Byte count [1]
Start mark

Checksum [2]
Start address

Notes: [1] The number of bytes from the byte following the record type to the previous byte
of the checksum.

[2] 2's complement of the sum of the byte count and the data between the byte count
and checksum, in hexadecimal (lower 8 bits are valid).

[3] A new-line character is added immediately after the checksum.

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 335 of 1053
Nov 01, 2020

4. COMPILER LANGUAGE SPECIFICATIONS

4.1 Basic Language Specifications

The RXC supports the language specifications stipulated by the ANSI standards. These specifications include items
that are stipulated as processing definitions. This chapter explains the language specifications of the items dependent on
the processing system of the RX microcontrollers.

For extended language specifications explicitly added by the RXC, refer to section 4.2 Extended Language Specifica-
tions.

4.1.1 Unspecified Behavior

This section describes behavior that is not specified by the ANSI standard.

(1) Execution environment - initialization of static storage
Static data is output during compilation as a data section.

(2) Meanings of character displays - backspace (\b), horizontal tab (\t), vertical tab (\t)
This is dependent on the design of the display device.

(3) Types - floating point
Conforms to IEEE754*.

Note IEEE: Institute of Electrical and Electronics Engineers
IEEE754 is a system for handling floating-point calculations, providing a uniform standard for data
formats, numerical ranges, and the like handled.

(4) Expressions - evaluation order
In general, expressions are evaluated from left to right. The behavior when optimization has been applied, how-
ever, is undefined. Options or other settings could change the order of evaluation, so please do not code expres-
sions with side effects.

(5) Function calls - parameter evaluation order
In general, function arguments are evaluated from first to last. The behavior when optimization has been applied,
however, is undefined. Options or other settings could change the order of evaluation, so please do not code
expressions with side effects.

(6) Structure and union specifiers
These are adjusted so that they do no span bit field type alignment boundaries. If packing has been conducting
using options or a #pragma, then bit fields are packed, and not adjusted to alignment boundaries.

(7) Function definitions - storage of formal parameters
These are assigned to the stack and register. For details, refer to section 9.1.3 Rules Concerning Setting and Ref-
erencing Parameters.

(8) # operator
These are evaluated left to right.

4.1.2 Undefined Behavior

This section describes behavior that is not defined by the ANSI standard.

(1) Character set
A message is output if a source file contains a character not specified by the character set.

(2) Lexical elements
A message is output if there is a single or double quotation mark ("/") in the last category (a delimiter or a single
non-whitespace character that does not lexically match another preprocessing lexical type).

(3) Identifiers
Since all identifier characters have meaning, there are no meaningless characters.

(4) Identifier binding
A message is output if both internal and external binding was performed on the same identifier within a translation
unit.

R20UT3248EJ0110 Rev.1.10 Page 336 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

(5) Compatible type and composite type
All declarations referencing the same object or function must be compatible. Otherwise, a message will be output.

(6) Character constants
Specific non-graphical characters can be expressed by means of extended notation, consisting of a backslash (\)
followed by a lower-case letter. The following are available: \a, \b, \f, \n, \r, \t, and \v. There is no other
extended notation; other letters following a backslash (\) become that letter.

(7) String literals - concatenation
When a simple string literal is adjacent to a wide string literal token, simple string concatenation is performed.

(8) String literals - modification
Users modify string literals at their own risk. Although the string will be changed if it is allocated to RAM, it will not
be changed if it is allocated to ROM.

(9) Header names
If the following characters appear in strings between the delimiter characters < and >, or between two double quo-
tation marks ("), then they are treated as part of the file name: characters, comma (,), double quote ("), two slashes
(//), or slash-asterisk (/*). The backslash (\) is treated as a folder separator.

(10) Floating point type and integral type
If a floating-point type is converted into an integral type, and the integer portion cannot be expressed as an integral
type, then the value is truncated until it can.

(11) lvalues and function specifiers
A message is output if an incomplete type becomes an lvalue.

(12) Function calls - number of arguments
If there are too few arguments, then the values of the formal parameters will be undefined. If there are too many
arguments, then the excess arguments will be ignored when the function is executed, and will have no effect.
A message will be output if there is a function declaration before the function call.

(13) Function calls - types of extended parameters
If a function is defined without a function prototype, and the types of the extended arguments do not match the
types of the extended formal parameters, then the values of the formal parameters will be undefined.

(14) Function calls - incompatible types
If a function is defined with a type that is not compatible with the type specified by the expression indicating the
called function, then the return value of the function will be invalid.

(15) Function declarations - incompatible types
If a function is defined in a form that includes a function prototype, and the type of an extended argument is not
compatible with that of a formal parameter, or if the function prototype ends with an ellipsis, then it will be inter-
preted as the type of the formal parameter.

(16) Addresses and indirection operators
If an incorrect value is assigned to a pointer, then the behavior of the unary * operator will either obtain an unde-
fined value or result in an illegal access, depending on the hardware design and the contents of the incorrect
value.

(17) Cast operator - function pointer casts
If a typecast pointer is used to call a function with other than the original type, then it is possible to call the function.
If the parameters or return value are not compatible, then it will be invalid.

(18) Cast operator - integral type casts
If a pointer is cast into an integral type, and the amount of storage is too small, then the storage of the cast type
will be truncated.

(19) Multiplicative operators
A message will be output if a divide by zero is detected during compilation.
During execution, a divide by zero will raise an exception. If an error-handling routine has been coded, it will be
handled by this routine.

(20) Additive operators - non-array pointers
If addition or subtraction is performed on a pointer that does other than indicate elements in an array object, the
behavior will be as if the pointer indicates an array element.

(21) Additive operators - subtracting a pointer from another array
If subtraction is performed using two pointers that do not indicate elements in the same array object, the behavior
will be as if the pointers indicate array elements.

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 337 of 1053
Nov 01, 2020

(22) Bitwise shift operators
If the value of the right operand is negative, or greater than the bit width of the extended left operand, then the
result will be the shifted value of the right operand, masked by the bit width of the left operand.

(23) Function operators - pointers
If the objects referring to by the pointers being compared are not members of the same structure or union object,
then the relationship operation will be performed for pointers referring to the same object.

(24) Simple assignment
If a value stored in an object is accessed via another object that overlaps that object's storage area in some way,
then the overlapping portion must match exactly. Furthermore, the types of the two objects must have modified or
non-modified versions with compatible types. Assignment to non-matching overlapping storage could cause the
value of the assignment source to become corrupted.

(25) Structure and union specifiers
If the member declaration list does not include named members, then a message will be output warning that the
list has no effect. Note, however, that the same message will be output accompanied by an error if the -Xansi
option is specified.

(26) Type modifiers - const
A message will be output if an attempt is made to modify an object defined with a const modifier, using an lvalue
that is the non-const modified version. Casting is also prohibited.

(27) Type modifiers - volatile
A message will be output if an attempt is made to modify an object defined with a volatile modifier, using an lvalue
that is the non-volatile modified version.

(28) return statements
A message will be output if a return statement without an expression is executed, and the caller uses the return
value of the function, and there is a declaration. If there is no declaration, then the return value of the function will
be undefined.

(29) Function definitions
If a function taking a variable number of arguments is defined without a parameter type list that ends with an ellip-
sis, then the values of the formal parameters will be undefined.

(30) Conditional inclusion
If a replacement operation generates a "defined" token, or if the usage of the "defined" unary operator before
macro replacement does not match one of the two formats specified in the constraints, then it will be handled as
an ordinary "defined".

(31) Macro replacement - arguments not containing preprocessing tokens
A message is output if the arguments (before argument replacement) do not contain preprocessing tokens.

(32) Macro replacement - arguments with preprocessing directives
A message is output if an argument list contains a preprocessor token stream that would function as a processing
directive in another circumstance.

(33) # operator
A message is output if the results of replacement are not a correct simple string literal.

(34) ## operator
A message is output if the results of replacement are not a correct simple string literal.

4.1.3 Implementation-defined behavior of C90

(1) How to identify diagnostic messages (5.1.1.3).
Refer to "10. MESSAGES".

(2) The semantics of the arguments to main (5.1.2.2.1).
Not defined.

(3) What constitutes an interactive device (5.1.2.3).
Not defined for the configuration of an interactive device.

(4) The number of significant initial characters (beyond 31) in an identifier without external linkage (6.1.2).
The first 8,189 characters are handled as significant characters.

(5) The number of significant initial characters (beyond 6) in an identifier with external linkage (6.1.2).
The first 8,191 characters are handled as significant characters.

R20UT3248EJ0110 Rev.1.10 Page 338 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

(6) Whether case distinctions are significant in an identifier with external linkage (6.1.2).
Characters in an identifier are case sensitive.

(7) The members of the source and execution character sets, except as explicitly specified in the Standard (5.2.1).
The values of the members of the source and execution character sets are ASCII code, EUC, SJIS, UTF-8, big5,
and gb2312. Japanese and Chinese descriptions in comments and strings are supported.

(8) The shift states used for the encoding of multibyte characters (5.2.1.2).
A representation format that depends on the shift status is not supported.

(9) The number of bits in a character in the execution character set (5.2.4.2.1).
A character consists of 8 bits. A multibyte character consists of 16 bits.

(10) The mapping of members of the source character set (in character constants and string literals) to members of the
execution character set (6.1.3.4).
The members of the source character set match the members of the execution character set.

(11) The value of an integer character constant that contains a character or escape sequence not represented in the
basic execution character set or the extended character set for a wide character constant (6.1.3.4).
Specific non-graphical characters can be represented by means of extended notation, consisting of a backslash
(\) followed by a lower-case letter. The following are available: \a, \b, \f, \n, \r, \t, and \v. There is no other
extended notation; other letters following a backslash (\) become that letter.

(12) The value of an integer character constant that contains more than one character or a wide character constant that
contains more than one multibyte character (6.1.3.4).
If an integer character constant contains four-byte characters (equivalent to four characters in ASCII), all the four
bytes are valid values.
If the integer character constant contains five or more bytes, an error message is output.

(13) The current locale used to convert multibyte characters into corresponding wide characters (codes) for a wide
character constant (6.1.3.4).
No locale is supported.

(14) Whether a "plain" char has the same range of values as signed char or unsigned char (6.2.1.1).
The char type has the same range of values, the same representation format, and the same behavior as those of
the unsigned char type.
However, the char type can be switched to the signed char type by using the -signed_char option.

(15) The representations and sets of values of the various types of integers (6.1.2.5).
Refer to "4.1.5 Internal Data Representation and Areas".

(16) The result of converting an integer to a shorter signed integer, or the result of converting an unsigned integer to a
signed integer of equal length, if the value cannot be represented (6.2.1.2).
If an integer is converted to an integer containing less bits, the resultant bit string is masked by the bit width of the
less number of bits (with the upper bits deleted). If an unsigned integer is converted to a signed integer containing
the same number of bits, the bit string is copied as is.

(17) The results of bitwise operations on signed integers (6.3).
Arithmetic shift is performed for a shift operator. For other operators, a signed integer is calculated as an unsigned
value (as a bit image).

(18) The sign of the remainder on integer division (6.3.5).
If an operand has a negative value, the result of the "%" operator has the same sign as that of the first operand
(dividend).

Escape sequence Value (ASCII)

\a 0x07

\b 0x08

\f 0x0C

\n 0x0A

\r 0x0D

\t 0x09

\v 0x0B

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 339 of 1053
Nov 01, 2020

(19) The result of a right shift of a negative-valued signed integral type (6.3.7).
In the case of "E1 >> E2", if E1 is a negative-valued signed type, arithmetic shift is performed.

(20) The representations and sets of values of the various types of floating-point numbers (6.1.2.5).
Refer to "4.1.5 Internal Data Representation and Areas".

(21) The direction of truncation when an integral number is converted to a floating-point number that cannot exactly
represent the original value (6.2.1.3).
Rounded in the direction of the nearest value if any of these conditions is met:
-nofpu is specified.
-cpu=rx200 is specified.
-cpu=rx600 or -isa=rxv1 is specified, and the integer to be converted is unsigned.
In other cases, the result of conversion to the single-precision floating-point type is in accordance with the setting
of the RM[0:1] bit in the FPSW.
[V3.01.00 or later] If -dpfpu is specified, the result of conversion to the double-precision floating-point type is in
accordance with the setting of the DRM[0:1] bit in the DPSW.

(22) The direction of truncation or rounding when a floating-point number is converted to a narrower floating-point num-
ber (6.2.1.4).
Rounded to the nearest representable direction.

(23) The type of integer required to hold the maximum size of an array --- that is, the type of the sizeof operator, size_t
(6.3.3.4, 7.1.1).
Unsigned long type

(24) The result of casting a pointer to an integer or vice versa (6.3.4).
- Integer-to-pointer conversion result

If the size of an integer type is larger than or equal to that of a pointer type, the lower-byte value of the integer
type is used. If the size of the integer type is smaller than that of the pointer type, the sign-extended value is
used.

- Pointer-to-integer conversion result
If the size of a pointer type is larger than or equal to that of an integer type, the lower-byte value of the pointer
type is used. If the size of a pointer type is smaller than that of an integer type, the zero-extended value is used.

(25) The type of integer required to hold the difference between two pointers to members of the same array, ptrdiff_t
(6.3.4, 7.1.1).
Int type

(26) The extent to which objects can actually be placed in registers by use of the register storage-class specifier
(6.5.1).
Optimization is performed so that objects are accessed as fast as possible regardless of whether the register stor-
age-class specifier is declared.

(27) A member of a union object is accessed using a member of a different type (6.3.2.3).
The internal data representation is determined by the type that is to be accessed.

(28) The padding and alignment of members of structures (6.5.2.1).
Refer to "4.1.5 Internal Data Representation and Areas".

(29) Whether a "plain" int bit-field is treated as a signed int bit-field or as an unsigned int bit-field (6.5.2.1).
A bit field that was declared without specifying a sign is treated as an unsigned int type.

(30) The order of allocation of bit-fields within an int (6.5.2.1).
The first declared bit-field is allocated from the lowest-order bit in the area with the size of the type when the
bit-field was declared. This can be changed by the option.
Refer to "4.1.5 Internal Data Representation and Areas".

(31) Whether a bit-field can straddle a storage-unit boundary (6.5.2.1).
A bit-field is allocated to the next area instead of straddling a storage-unit boundary.
Refer to "4.1.5 Internal Data Representation and Areas".

(32) The integer type chosen to represent the values of an enumeration type (6.5.2.2).
Signed long type. If the -auto_enum option is specified, the minimum type that an enumerated type fits in is used.

(33) What constitutes an access to an object that has volatile-qualified type (6.5.3).
Not defined.

(34) The maximum number of declarators that may modify an arithmetic, structure, or union type (6.5.4).
128

(35) The maximum number of case values in a switch statement (6.6.4.2).

R20UT3248EJ0110 Rev.1.10 Page 340 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

There are no limits.

(36) Whether the value of a single-character character constant in a constant expression that controls conditional inclu-
sion matches the value of the same character constant in the execution character set. Whether such a character
constant may have a negative value (6.8.1).
The value for the character constant specified in conditional inclusion matches the character constant value that
appears in other expressions.
Such a character constant does not have a negative value.

(37) The method for locating includable source files (6.8.2).
Files are searched in the following order, and a file having the same name in the folder is identified as the header:
1. Folder specified by the path (if it is full-path). If full-path is not specified:
2. Folder having the source file
3. Folder specified by the -include option
4. Standard include file folder specified in the INC_RXA environment variable

(38) The support for quoted names for includable source files (6.8.2).
Files are searched in the following order:
1. Folder specified by the path (if it is full-path). If full-path is not specified:
2. Folder having the source file
3. Folder specified by the -include option
4. Standard include file folder specified in the INC_RXA environment variable

(39) The mapping of source file character sequences (6.8.2).
A preprocessing token string enclosed in < and > or in double quotation marks (") is mapped to the header name
as is. If the preprocessing token string is converted to the <character string> or "character string" format by
expanding a macro, the content is mapped to the header name.

(40) The behavior on each recognized #pragma directive (6.8.6).
Refer to "4.2.3 #pragma Directive".

(41) The definitions for __DATE__ and __TIME__ when respectively, the date and time of translation are not available
(6.8.8).
A date and time are always obtained.

(42) The null pointer constant to which the macro NULL expands (7.1.6).
0

(43) The diagnostic printed by and the termination behavior of the assert function (7.2).
The display varies depending on the -lang option specified at compilation.
If -lang=c99 is not specified (for C(C89), C++, or EC++ language):
ASSERTION FAILED: Expression FILE file-name,LINE line-number
If -lang=c99 is specified (for C(C99) language):
ASSERTION FAILED: Expression FILE file-name,LINE line-number FUNCNAME function-name
The behavior when the assert function ends is not defined. As per low-level interface routine specifications.

(44) The sets of characters tested for by the isalnum, isalpha, iscntrl, islower, isprint, and isupper functions (7.3.1).
Unsigned char type (0 to 255) and EOF (-1)

(45) The values returned by the mathematics functions on domain errors (7.5.1).
A NaN is returned.
Refer to "(5) Floating-Point Number Specifications" in "4.1.5 Internal Data Representation and Areas".

(46) Whether the mathematics functions set the integer expression errno to the value of the macro ERANGE on under-
flow range errors (7.5.1).
For details about the functions that set ERANGE in errno when an underflow occurs, refer to "10.5.6 Standard
Library Error Messages". Other functions do not set ERANGE in errno.

(47) Whether a domain error occurs or zero is returned when the fmod function has a second argument of zero
(7.5.6.4).
A domain error occurs. For details, see the description about the fmod function group.

(48) The set of signals for the signal function (7.7.1.1).
The signal function is not supported.

(49) The semantics for each signal recognized by the signal function (7.7.1.1).
The signal function is not supported.

(50) The default handling and the handling at program startup for each signal recognized by the signal function
(7.7.1.1).
The signal function is not supported.

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 341 of 1053
Nov 01, 2020

(51) If the equivalent of signal(sig, SIG_DFL); is not executed prior to the call of a signal handler, the blocking of the
signal that is performed (7.7.1.1).
The signal function is not supported.

(52) Whether the default handling is reset if the SIGILL signal is received by a handler specified to the signal function
(7.7.1.1).
The signal function is not supported.

(53) Whether the last line of a text stream requires a terminating new-line character (7.9.2).
Not defined. As per low-level interface routine specifications.

(54) Whether space characters that are written out to a text stream immediately before a new-line character appear
when read in (7.9.2).
Not defined. As per low-level interface routine specifications.

(55) The number of null characters that may be appended to data written to a binary stream (7.9.2).
Not defined. As per low-level interface routine specifications.

(56) Whether the file position indicator of an append mode stream is initially positioned at the beginning or end of the
file (7.9.3).
Not defined. As per low-level interface routine specifications.

(57) Whether a write on a text stream causes the associated file to be truncated beyond that point (7.9.3).
Not defined. As per low-level interface routine specifications.

(58) The characteristics of file buffering (7.9.3).
Not defined. As per low-level interface routine specifications.

(59) Whether a zero-length file actually exists (7.9.3).
Not defined. As per low-level interface routine specifications.

(60) The rules for composing valid file names (7.9.3).
Not defined. As per low-level interface routine specifications.

(61) Whether the same file can be open multiple times (7.9.3).
Not defined. As per low-level interface routine specifications.

(62) The effect of the remove function on an open file (7.9.4.1).
The remove function is not supported.

(63) The effect if a file with the new name exists prior to a call to the rename function (7.9.4.2).
The rename function is not supported.

(64) The output for %p conversion in the fprintf function (7.9.6.1).
Hexadecimal output

(65) The input for %p conversion in the fscanf function (7.9.6.2).
Hexadecimal input

(66) The interpretation of a - character that is neither the first nor the last character in the scan list for %[conversion in
the fscanf function (7.9.6.2).
The - character indicates the range between the previous character and the next character unless the previous
character is a ^ character.

(67) The value to which the macro errno is set by the fgetpos or ftell function on failure (7.9.9.1, 7.9.9.4).
The fgetpos function is not supported.
Not defined for the ftell function. As per low-level interface routine specifications.

(68) The messages generated by the perror function (7.9.10.4).
Refer to "7.4 Library Function".

(69) The behavior of the calloc, malloc, or realloc function if the size requested is zero (7.10.3).
NULL is returned.

(70) The behavior of the abort function with regard to open and temporary files (7.10.4.1).
Not defined. As per low-level interface routine specifications.

(71) The status returned by the exit function if the value of the argument is other than zero, EXIT_SUCCESS, or
EXIT_FAILURE (7.10.4.3).
The exit function is not supported.

(72) The set of environment names and the method for altering the environment list used by the getenv function
(7.10.4.4).
The getenv function is not supported.

R20UT3248EJ0110 Rev.1.10 Page 342 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

(73) The contents and mode of execution of the string by the system function (7.10.4.5).
The system function is not supported.

(74) The contents of the error message strings returned by the strerror function (7.11.6.2).
Refer to "10.5.6 Standard Library Error Messages".

(75) The local time zone and Daylight Saving Time (7.12.1).
The time.h is not supported.

(76) The era for the clock function (7.12.2.1).
The clock function is not supported.

4.1.4 Implementation-defined behavior of C99

(1) How a diagnostic is identified (3.10, 5.1.1.3).
Refer to "10. MESSAGES".

(2) Whether each non-empty sequence of white-space characters other than new-line is retained or replaced by one
space character in translation phase 3 (5.1.1.2).
Retained as they are.

(3) The mapping between physical source file multi-byte characters and the source character set in translation phase
1 (5.1.1.2).
Multibyte characters are mapped to the corresponding source character set according to the compile option.

(4) The name and type of the function called at program startup in a freestanding environment (5.1.2.1).
Not defined. Depends on the startup implementation.

(5) The effect of program termination in a freestanding environment (5.1.2.1).
Depends on startup in a normal termination. Create an exit processing routine if the program needs to terminate
abnormally.

(6) An alternative manner in which the main function may be defined (5.1.2.2.1).
Not defined because of a freestanding environment.

(7) The values given to the strings pointed to by the argv argument to main (5.1.2.2.1).
Not defined because of a freestanding environment.

(8) What constitutes an interactive device (5.1.2.3).
Not defined for the configuration of an interactive device.

(9) The set of signals, their semantics, and their default handling (7.14).
The signal handling functions are not supported.

(10) Signal values other than SIGFPE, SIGILL, and SIGSEGV that correspond to a computational exception (7.14.1.1).
The signal handling functions are not supported.

(11) Signals for which the equivalent of signal(sig, SIG_IGN); is executed at program startup (7.14.1.1).
The signal handling functions are not supported.

(12) The set of environment names and the method for altering the environment list used by the getenv function
(7.20.4.5).
The getenv function is not supported.

(13) The manner of execution of the string by the system function (7.20.4.6).
The system function is not supported.

(14) Which additional multibyte characters may appear in identifiers and their correspondence to universal character
names (6.4.2).
Multibyte characters cannot be used as identifiers.

(15) The number of significant initial characters in an identifier (5.2.4.1, 6.4.2).
The entire identifier is handled as meaningful. The length of an identifier is unlimited.

(16) The number of bits in a byte (3.6).
8 bits.

(17) The values of the members of the execution character set (5.2.1).
The element values of the execution character set are ASCII code, EUC, SJIS, UTF-8, big5 and gb2312 values.

(18) The unique value of the member of the execution character set produced for each of the standard alphabetic
escape sequences (5.2.2).

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 343 of 1053
Nov 01, 2020

(19) The value of a char object into which has been stored any character other than a member of the basic execution
character set (6.2.5).
Value that is type-converted to char type.

(20) Which of signed char or unsigned char has the same range, representation, and behavior as "plain" char (6.2.5,
6.3.1.1).
The char type has the same range of values, the same representation format and the same behavior as the
unsigned char type. However, it can be switched to the signed char type by the -signed_char option.

(21) The mapping of members of the source character set (in character constants and string literals) to members of the
execution character set (6.4.4.4, 5.1.1.2).
When the character code selection of the input program is the same as the character code selection of the output
file according to an option specification, association with the element having the same value is performed. If they
are different according to the option specification, the value of the corresponding character code is used.

(22) The value of an integer character constant containing more than one character or containing a character or
escape sequence that does not map to a single-byte execution character (6.4.4.4).
A integer character constant consisting of up to four characters has a four-byte value with the lower byte being the
last character and the upper byte being the first character. A character constant having five or more characters
results in an error. A character which is not represented by basic execution environment character set is regarded
as a integer character constant having that value. In an invalid escape sequence, the backslash is ignored and the
next character is regarded as a integer character constant.

(23) The value of a wide character constant containing more than one multibyte character, or containing a multibyte
character or escape sequence not represented in the extended execution character set (6.4.4.4).
Left-most character value as a multibyte character.

(24) The current locale used to convert a wide character constant consisting of a single multi-byte character that maps
to a member of the extended execution character set into a corresponding wide character code (6.4.4.4).
Locale is not supported.

(25) The current locale used to convert a wide string literal into corresponding wide character codes (6.4.5).
Locale is not supported.

(26) The value of a string literal containing a multi-byte character or escape sequence not represented in the execution
character set (6.4.5).
Corresponding byte value for escape sequence or corresponding each byte value for a multibyte character.

(27) Any extended integer types that exist in the implementation (6.2.5).
No extended integer types are provided.

(28) Whether signed integer types are represented using sign and magnitude, two's complement, or one's comple-
ment, and whether the extraordinary value is a trap representation or an ordinary value (6.2.6.2).
The signed integer type is represented in two's complement, and there are no trap representations.

(29) The rank of any extended integer type relative to another extended integer type with the same precision (6.3.1.1).
No extended integer types are provided.

(30) The result of, or the signal raised by, converting an integer to a signed integer type when the value cannot be rep-
resented in an object of that type (6.3.1.3).
Bit string masked by the width of the conversion target type (with the upper bits truncated).

(31) The results of some bit-wise operations on signed integers (6.5).

Escape Sequence Value (ASCII)

"\a" 0x07

"\b" 0x08

"\f" 0x0C

"\n" 0x0A

"\r" 0x0D

"\t" 0x09

"\v" 0x0B

R20UT3248EJ0110 Rev.1.10 Page 344 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

Arithmetic shift is performed for a shift operator. For other operators, a signed integer is calculated as an unsigned
value (as a bit image).

(32) The accuracy of the floating-point operations and of the library functions in <math.h> and <complex.h> that return
floating-point results (5.2.4.2.2).
Unknown.

(33) The rounding behaviors characterized by non-standard values of FLT_ROUNDS (5.2.4.2.2).
No nonstandard value is defined for FLT_ROUNDS.

(34) The evaluation methods characterized by non-standard negative values of FLT_EVAL_METHOD (5.2.4.2.2).
No nonstandard value is defined for FLT_EVAL_METHOD.

(35) The direction of rounding when an integer is converted to a floating-point number that cannot exactly represent the
original value (6.3.1.4).
Rounded to the nearest direction if any of these conditions is met:

-nofpu is specified.
-cpu=rx200 is specified.
-cpu=rx600 or -isa=rxv1 is specified and the integer to be converted is unsigned.

Otherwise, the setting in the RM[0:1] bits in FPSW is followed.
[V3.01.00 or later] When -dpfpu is specified, the result of conversion to the double-precision floating-point type is
in accord with the setting of the DRM[0:1] bits in the DPSW.

(36) The direction of rounding when a floating-point number is converted to a narrower floating-point number (6.3.1.5).
As per the option (-round) specification and microcomputer settings.

(37) How the nearest representable value or the larger or smaller representable value immediately adjacent to the
nearest representable value is chosen for certain floating constants (6.4.4.2).
As per the option (-round) specification.

(38) Whether and how floating expressions are contracted when not disallowed by the FP_CONTRACT pragma (6.5).
Contraction of expressions depends on each option specification.
The FP_CONTRACT pragma does not work.
#pragma STDC FP_CONTRACT is ignored even if it is specified.

(39) The default state for the FENV_ACCESS pragma (7.6.1).
The default state of the FENV_ACCESS pragma is ON.
#pragma STDC FENV_ACCESS is ignored even if it is specified.

(40) Additional floating-point exceptions, rounding modes, environments, and classifications, and their macro names
(7.6, 7.12).
As per the math.h and fenv.h libraries provided by the compiler. There are no additional definitions.

(41) The default state for the FP_CONTRACT pragma (7.12.2).
The default state of the FP_CONTRACT pragma is ON.

(42) Whether the "inexact" floating-point exception can be raised when the rounded result actually does equal the
mathematical result in an IEC 60559 conformant implementation (F.9).
No "inexact" floating-point exception is generated for the nearbyint, nearbyintf or nearbyintl function. An "inexact"
floating-point exception may be generated for the rint, rintf or rintl function.

(43) Whether the underflow (and inexact) floating-point exception can be raised when a result is tiny but not inexact in
an IEC 60559 conformant implementation (F.9).
As per the option (-round) specification and microcomputer settings.

(44) The result of converting a pointer to an integer or vice versa (6.3.2.3).
- Integer-to-pointer conversion result

If the size of an integer type is larger than that of a pointer type, the lower-byte value of the integer type is used.
If the size of the integer type is equal to that of the pointer type, the bit pattern of the integer type is retained as
is. If the size of the integer type is smaller than that of the pointer type, the resultant value of an extension to a
long type is retained as is.

- Pointer-to-integer conversion result
If the size of a pointer type is larger than that of an integer type, the lower-byte value of the pointer type is used.
If the size of the pointer type is equal to that of the integer type, the bit pattern of the pointer type is retained as
is. If the size of a pointer type is smaller than that of an integer type, the zero-extended value of the pointer type
is used.

(45) The size of the result of subtracting two pointers to elements of the same array (6.5.6).
The resultant type is the signed long type.

(46) The extent to which suggestions made by using the register storage-class specifier are effective (6.7.1).

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 345 of 1053
Nov 01, 2020

User requests for register variables are not honored.

(47) The extent to which suggestions made by using the inline function specifier are effective (6.7.4).
Inlining is always tried. However, inlining may not be performed depending on the condition.

(48) Whether a "plain" int bit-field is treated as signed int bit-field or as an unsigned int bit-field (6.7.2, 6.7.2.1).
Treated as an unsigned int type. However, this can be changed by the -signed_bitfield option.

(49) Allowable bit-field types other than _Bool, signed int, and unsigned int (6.7.2.1).
All integer types are allowed.

(50) Whether a bit-field can straddle a storage-unit boundary (6.7.2.1).
When structure type packing is not specified, a bit-field cannot straddle a strage-unit boundary, but it is allocated to
the next area.
When structure type packing is specified, a bit-field may straddle a strage-unit boundary.

(51) The order of allocation of bit-fields within a unit (6.7.2.1).
Allocated from the lower order. Selectable by the -bit_order option or #pragma bit_order.

(52) The alignment of non-bit-field members of structures (6.7.2.1).
Refer to "4.1.5 Internal Data Representation and Areas".

(53) The integer type compatible with each enumerated type (6.7.2.2).
Signed long type. However, the minimum type that an enumerated type fits in if the -auto_enum option is speci-
fied.

(54) What constitutes an access to an object that has volatile-qualified type (6.7.3).
Although the order and number of accesses are as described in the C source, this does not apply to those
accesses to a type for which the microcomputer does not have a corresponding instruction. An object qualified as
volatile might be accessed in a smaller size than a declaration type.

(55) How sequences in both forms of header names are mapped to headers or external source file names (6.4.7).
A character string described in the #include is interpreted as the character code specified as the source character
set and is associated with a header name or an external source file name.

(56) Whether the value of a character constant in a constant expression that controls conditional inclusion matches the
value of the same character constant in the execution character set (6.10.1).
A value for the character constant specified in conditional inclusion is equal to the character constant value that
appears in other expressions.

(57) Whether the value of a single-character character constant in a constant expression that controls conditional inclu-
sion may have a negative value (6.10.1).

(58) The places that are searched for an included < > delimited header, and how the places are specified other header
is identified (6.10.2).
Folders are searched in this order and a file having the same name in the folder is identified as the header.
1. Folder specified by the path (if it is full-path)
2. Folder specified by the -include option
3. Standard include file folder (..\inc folder with a relative path from the bin folder where the compiler is placed)

(59) How the named source file is searched for in an included " " delimited header (6.10.2).
Searched in this order:
1. Folder specified by the path (if it is full-path)
2. Folder having the source file
3. Folder specified by the -include option
4. Standard include file folder (..\inc folder with a relative path from the bin folder where the compiler is placed)

(60) The method by which preprocessing tokens (possibly resulting from macro expansion) in a #include directive are
combined into a header name (6.10.2).
Treated as a preprocessing token of a single header or file name only in a macro that replaces preprocessing
tokens with a single <character string> or "character string" format.

(61) The nesting limit for #include processing (6.10.2).
There are no limits.

(62) Whether the # operator inserts a \ character before the \ character that begins a universal character name in a
character constant or string literal (6.10.3.2).
A \ character is not inserted in front of the first \ character.

(63) The behavior on each recognized non-STDC #pragma directive (6.10.6).
Refer to "4.2.3 #pragma Directive".

R20UT3248EJ0110 Rev.1.10 Page 346 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

(64) The definitions for __DATE__ and __TIME__ when respectively, the date and time of translation are not available
(6.10.8).
A date and time are always obtained.

(65) Any library facilities available to a freestanding program, other than the minimal set required by clause 4 (5.1.2.1).
Refer to "7. LIBRARY FUNCTIONAL SPECIFICATION".

(66) The format of the diagnostic printed by the assert macro (7.2.1.1).
As follows:
Assertion failed: Expression FILE file-name,LINE line-number FUNCNAME function-name

(67) The representation of the floating-point status flags stored by the fegetexceptflag function (7.6.2.2).
One or combination of the following:
_FE_DIVBYZERO 0x04
_FE_INEXACT 0x10
_FE_INVALID 0x01
_FE_OVERFLOW 0x02
_FE_UNDERFLOW 0x08

(68) Whether the feraiseexcept function raises the "inexact" floating-point exception in addition to the "overflow" or
"underflow" floating-point exception (7.6.2.3).
An "inexact" floating-point exception may be generated if the E0 flag is set to 0 when an "overflow" floating-point
exception is generated. Otherwise, no "inexact" floating-point exception is generated.

(69) Strings other than "C" and "" that may be passed as the second argument to the setlocale function (7.11.1.1).
The setlocale function is not supported.

(70) The types defined for float_t and double_t when the value of the FLT_EVAL_METHOD macro is less than zero or
greater than two (7.12).
float_t is defined as the float type and double_t as the double type.

(71) Domain errors for the mathematics functions, other that those required by this International Standard (7.12.1).
Refer to (72).

(72) The values returned by the mathematics functions on domain errors (7.12.1).

acosh function
group

The argument is x. If x < 1 is true, a domain error occurs. In this case, the
return value is a NaN.

atanh function
group

The argument is x. If -1 < x < 1 is true, a domain error occurs. In this case, the
return value is a NaN.

ccosh function
group

The argument is x.
- If the real part of x is 0 and the imaginary part of x is ±∞, a domain error

occurs. In this case, the return value is NaN + 0 × i.
- If the real part of x is ±∞ and the imaginary part of x is ±∞, a domain error

occurs. In this case, the return value is ∞ + NaN × i.
- If the real part of x is a finite value and the imaginary part of x is ±∞, a

domain error occurs. In this case, the return value is NaN + NaN × i.

cexp function
group

The argument is x.
- If the real part of x is +∞ and the imaginary part of x is ±∞, a domain error

occurs. In this case, the return value is +∞ + NaN × i.
- If the real part of x is a finite value and the imaginary part of x is ±∞, a

domain error occurs. In this case, the return value is NaN + NaN × i

csinh function
group

The argument is x.
- If the real part of x is 0 or ±∞ and the imaginary part of x is ±∞, a domain

error occurs. In this case, the return value is the real part of x + NaN × i.
- If the real part of x is a finite value and the imaginary part of x is ±∞, a

domain error occurs. In this case, the return value is NaN + NaN × i.

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 347 of 1053
Nov 01, 2020

fma function group The first argument is x1, the second argument is x2, and the third argument is
x3.
- If x1 is ±∞, x2 is 0, and x3 is not a NaN, a domain error occurs. In this case,

the return value is a NaN.
- If x1 is 0 , x2 is ±∞, and x3 is not a NaN, a domain error occurs (no defini-

tion). In this case, the return value is a NaN.
- If x1, x2, and x3 are ±∞ and the sign of x1 and x2 is different from that of x3,

(that is, subtraction between ∞ occurs), a domain error occurs. In this case,
the return value is a NaN.

llrint function
group

The argument is x.
- If x is a finite value that cannot be represented in the longlong type, a

domain error occurs. In this case, the return value is 0.
- If x is a NaN or ±∞, a domain error occurs. In this case, the return value is 0.

llround function
group

The argument is x.
- If x is a finite value that cannot be represented in the longlong type, a

domain error occurs. In this case, the return value is 0.
- If x is a NaN or ±∞, a domain error occurs. In this case, the return value is 0.

log1p function
group

The argument is x. If x satisfies x < -1, a domain error occurs. In this case, the
return value is a NaN.

lrint function group The argument is x.
- If x is a finite value that cannot be represented in the long type, a domain

error occurs. In this case, the return value is 0.
- If x is a NaN or ±∞, a domain error occurs. In this case, the return value is 0.

lround function
group

The argument is x.
- If x is a finite value that cannot be represented in the long type, a domain

error occurs. In this case, the return value is 0.
- If x is a NaN or ±∞, a domain error occurs. In this case, the return value is 0.

remquo function
group

The first argument is x1, the second argument is x2, and the third argument is
x3.
- If x1 is ±∞ and x2 is not a NaN, a domain error occurs. In this case, the

return value is a NaN. Note that x3 points to 0.
- If x1 is not a NaN and x2 is 0, a domain error occurs. In this case, the return

value is a NaN. Note that x3 points to 0.

tgamma function
group

The argument is x. If x is -∞ or a negative integer, a domain error occurs. In
this case, the return value is a NaN.

carg function
group

The argument is x. If the real part and imaginary part of x are 0, a domain
error occurs. In this case, the return value is a NaN.

ccos function
group

The argument is x.
- If the real part of x is ±∞ and the imaginary part of x is 0, a domain error

occurs. In this case, the return value is NaN + 0 × i.
- If the real part of x is ±∞ and the imaginary part of x is ±∞, a domain error

occurs. In this case, the return value is ∞ + NaN × i.
- If the real part of x is ±∞ and the imaginary part of x is a finite value, a

domain error occurs. In this case, the return value is NaN + NaN × i.

clog function
group

The argument is x. If the real part of x is ±∞ and the imaginary part of x is ±∞,
a domain error occurs. In this case, the return value is ±∞ + NaN × i.

R20UT3248EJ0110 Rev.1.10 Page 348 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

cpow function
group

The first argument is x1 and the second argument is x2.
- If the imaginary part of x1 is 0 and, as a result of multiplying x2 by the real

part of x1, the real part is +∞ and the imaginary part is ±∞, a domain error
occurs. In this case, the return value is +∞ + NaN × i.

- If the imaginary part of x1 is 0 and, as a result of multiplying x2 by the real
part of x1, the real part is a finite value and the imaginary part is ±∞, a
domain error occurs. In this case, the return value is NaN + NaN × i.

- If the real part of x1 or x2 is a NaN and the imaginary parts of x1 and x2 are
0, a domain error occurs. In this case, the return value is NaN + 0 × i.

- If the real part of x1 is 0, the real part of x2 is 0 or smaller, and the imaginary
parts of x1 and x2 are 0, a domain error occurs. In this case, the return value
is NaN + 0 × i.

- If the real part of x1 is a negative number, the real part of x2 is a noninteger,
and the imaginary parts of x1 and x2 are 0, a domain error occurs. In this
case, the return value is NaN + 0 × i.

remainder function
group

The first argument is x1 and the second argument is x2.
- If x1 is ±∞ and x2 is not a NaN, a domain error occurs. In this case, the

return value is a NaN.
- If x1 is not a NaN and x2 is 0, a domain error occurs. In this case, the return

value is a NaN.

acos function
group

The argument is x.
- If x satisfies x < -1 or 1 < x, a domain error occurs. In this case, the return

value is a NaN.
- If x is a NaN, a domain error occurs. In this case, the return value is a NaN.

asin function
group

The argument is x.
- If x satisfies x < -1 or 1 < x, a domain error occurs. In this case, the return

value is a NaN.
- If x is a NaN, a domain error occurs. In this case, the return value is a NaN.

atan function
group

The argument is x. If x is a NaN, a domain error occurs. In this case, the
return value is a NaN.

cosh function
group

The argument is x. If x is a NaN, a domain error occurs. In this case, the
return value is a NaN.

exp function group The argument is x. If x is a NaN, a domain error occurs. In this case, the
return value is a NaN.

frexp function
group

The first argument is x1 and the second argument is x2. If x1 is a NaN, a
domain error occurs. In this case, the return value is a NaN. Note that the
pointing target of x2 does not change.

log10 function
group

The argument is x.
- If x < 0 is true, a domain error occurs. In this case, the return value is a NaN.
- If x is a NaN, a domain error occurs. In this case, the return value is a NaN.

log function group The argument is x.
- If x is a NaN, a domain error occurs. In this case, the return value is a NaN.
- If x < 0 is true, a domain error occurs. In this case, the return value is a NaN.

sin function group The argument is x. If x is ±∞ or NaN, a domain error occurs. In this case, the
return value is a NaN.

cos function group The argument is x. If x is ±∞ or NaN, a domain error occurs. In this case, the
return value is a NaN.

sinh function
group

The argument is x. If x is a NaN, a domain error occurs. In this case, the
return value is a NaN.

tan function group The argument is x. If x is ±∞ or NaN, a domain error occurs. In this case, the
return value is a NaN.

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 349 of 1053
Nov 01, 2020

(73) The values returned by the mathematics functions on underflow range errors, whether errno is set to the value of
the macro ERANGE when the integer expression math_errhandling & MATH_ERRNO is nonzero, and whether
the "underflow" floating-point exception is raised when the integer expression math_errhandling &
MATH_ERREXCEPT is nonzero. (7.12.1).
The return value is 0. ERANGE is set in errno in case of an underflow. An "underflow" floating-point exception is
generated.

(74) Whether a domain error occurs or zero is returned when an fmod function has a second argument of zero
(7.12.10.1).
A domain error is generated. For details, see the description about the fmod function group.

(75) The base-2 logarithm of the modulus used by the remquo functions in reducing the quotient (7.12.10.3).
31.

(76) Whether the equivalent of signal(sig, SIG_DFL); is executed prior to the call of a signal handler, and, if not, the
blocking of signals that is performed (7.14.1.1).
The signal handling functions are not supported.

(77) The null pointer constant to which the macro NULL expands (7.17).
0.

(78) Whether the last line of a text stream requires a terminating new-line character (7.19.2).
As per low-level interface routine specifications.

tanh function
group

The argument is x. If x is a NaN, a domain error occurs. In this case, the
return value is a NaN.

atan2 function
group

The first argument is x1 and the second argument is x2.
- If x1 and x2 are 0, a domain error occurs. In this case, the return value is a

NaN.
- If x1 or x2 is a NaN, a domain error occurs. In this case, the return value is a

NaN.
- If x1 and X2 are ±∞, a domain error occurs. In this case, the return value is a

NaN.

ceil function group The argument is x. If x is a NaN, a domain error occurs. In this case, the
return value is a NaN.

floor function
group

The argument is x. If x is a NaN, a domain error occurs. In this case, the
return value is a NaN.

fmod function
group

The first argument is x1 and the second argument is x2.
- If x2 is 0, a domain error occurs. In this case, the return value is a NaN.
- If x1 or x2 is a NaN, a domain error occurs. In this case, the return value is a

NaN.
- If x1 is ±∞, a domain error occurs. In this case, the return value is a NaN.

ldexp function
group

The first argument is x1 and the second argument is x2. If x1 is a NaN, a
domain error occurs. In this case, the return value is a NaN.

modf function
group

The first argument is x1 and the second argument is x2. If x1 is a NaN, a
domain error occurs. In this case, the return value is a NaN. Note that x2
points to the NaN.

pow function
group

The first argument is x1 and the second argument is x2.
- If x1 or x2 is a NaN, a domain error occurs. In this case, the return value is a

NaN.
- If x1 is 0 and x2 is 0 or smaller, a domain error occurs. In this case, the

return value is a NaN.
- If x1 satisfies x1 < 0 and x2 is not an integer, a domain error occurs. In this

case, the return value is a NaN.

sqrt function group The argument is x.
- If x satisfies x < 0, a domain error occurs. In this case, the return value is a

NaN.
- If x is a NaN, a domain error occurs. In this case, the return value is a NaN.

R20UT3248EJ0110 Rev.1.10 Page 350 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

(79) Whether space characters that are written out to a text stream immediately before a new-line character appear
when read in (7.19.2).
As per low-level interface routine specifications.

(80) The number of null characters that may be appended to data written to a binary stream (7.19.2).
As per low-level interface routine specifications.

(81) Whether the file position indicator of an append-mode stream is initially positioned at the beginning or end of the
file (7.19.3).
As per low-level interface routine specifications.

(82) Whether a write on a text stream causes the associated file to be truncated beyond that point (7.19.3).
As per low-level interface routine specifications.

(83) The characteristics of file buffering (7.19.3).
As per low-level interface routine specifications.

(84) Whether a zero-length file actually exists (7.19.3).
As per low-level interface routine specifications.

(85) The rules for composing valid file names (7.19.3).
As per low-level interface routine specifications.

(86) Whether the same file can be simultaneously open multiple times (7.19.3).
As per low-level interface routine specifications.

(87) The nature and choice of encodings used for multibyte characters in files (7.19.3).
The shift state is not supported as the representation form of multibyte characters.

(88) The effect of the remove function on an open file (7.19.4.1).
The remove function is not supported.

(89) The effect if a file with the new name exists prior to a call to the rename function (7.19.4.2).
The rename function is not supported.

(90) Whether an open temporary file is removed upon abnormal program termination (7.19.4.3).
The tmpfile function is not supported.

(91) Which changes of mode are permitted (if any), and under what circumstances (7.19.5.4).
If filename is a null pointer, it changes the mode of the current stream to the specified mode.

(92) The style used to print an infinity or NaN, and the meaning of any n-char or n-wchar sequence printed for a NaN
(7.19.6.1, 7.24.2.1).
++++++ is output for the positive infinity, ------ for a negative infinity, and ****** for a NaN.
n character strings or n wide character strings are not supported when a NaN is written.

(93) The output for %p conversion in the fprintf or fwprintf function (7.19.6.1, 7.24.2.1).
Hexadecimal notation.

(94) The interpretation of a - character that is neither the first nor the last character, nor the second where a ^ character
is the first, in the scanlist for %[conversion in the fscanf() or fwscanf() function (7.19.6.2, 7.24.2.1).
Indicates a range between the previous character and the next character.

(95) The set of sequences matched by a %p conversion and the interpretation of the corresponding input item in the
fscanf() or fwscanf() function (7.19.6.2, 7.24.2.2).
Hexadecimal number.

(96) The value to which the macro errno is set by the fgetpos, fsetpos, or ftell functions on failure (7.19.9.1, 7.19.9.3,
7.19.9.4).
The ftell function conforms with the low-level interface routine specifications.
The fgetpos and fsetpos functions are not supported.

(97) The meaning of any n-char or n-wchar sequence in a string representing a NaN that is converted by the strtod(),
strtof(), strtold(), wcstod(), wcstof(), or wcstold() function (7.20.1.3, 7.24.4.1.1).
Interpreted as qNaN in case of the strtof, strtold, wcstod, wcstof, or wcstold function. Interpreted as a value other
than a number of floating-point type in case of the strtod function.

(98) Whether or not the strtod, strtof, strtold, wcstod, wcstof, or wcstold function sets errno to ERANGE when under-
flow occurs (7.20.1.3, 7.24.4.1.1).
The strtod, strtof, strtold, wcstod, wcstof and wcstold functions set ERANGE in global variable errno.

(99) Whether the calloc, malloc, and realloc functions return a null pointer or a pointer to an allocated object when the
size requested is zero (7.20.3).

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 351 of 1053
Nov 01, 2020

NULL is returned.

(100) Whether open streams with unwritten buffered data are flushed, open streams are closed, or temporary files are
removed when the abort or _Exit function is called (7.20.4.1, 7.20.4.4).
As per low-level interface routine specifications.

(101) The termination status returned to the host environment by the abort, exit, or _Exit function (7.20.4.1, 7.20.4.3,
7.20.4.4).
The abort, exit and _Exit functions are not supported.

(102) The value returned by the system function when its argument is not a null pointer (7.20.4.6).
The system function is not supported.

(103) The local time zone and Daylight Saving Time (7.23.1).
time.h is not supported.

(104) The range and precision of times representable in clock_t and time_t (7.23).
time.h is not supported.

(105) The era for the clock function (7.23.2.1).
time.h is not supported.

(106) The replacement string for the %Z specifier to the strftime, and wcsftime functions in the "C" locale (7.23.3.5,
7.24.5.1).
time.h is not supported.

(107) Whether or when the trigonometric, hyperbolic, base-e exponential, base-e logarithmic, error, and log gamma
functions raise the "inexact" floating-point exception in an IEC 60559 conformant implementation (F.9).
An "inexact" floating-point exception may be generated if the hypot, ldexp, lgamma, tgamma, erfc, pow, scalbln,
tan, exp, or nexttoward function group resulted in an overflow or underflow.

(108) Whether the functions in <math.h> honor the rounding direction mode in an IEC 60559 conformant implementa-
tion (F.9).
The lround function group may not follow the rounding direction mode.

(109) The values or expressions assigned to the macros specified in the headers <float.h>, <limits.h>, and <stdint.h>
(5.2.4.2, 7.18.2, 7.18.3).
Refer to each header and file in "7. LIBRARY FUNCTIONAL SPECIFICATION".

(110) The number, order, and encoding of bytes in any object (when not explicitly specified in this International Stan-
dard) (6.2.6.1).
Refer to "4.1.5 Internal Data Representation and Areas".

(111) The value of the result of the sizeof operator (6.5.3.4).
Refer to "4.1.5 Internal Data Representation and Areas".

Translation limits
The table below shows the translation limits of CC-RX.
The upper limit depends on the memory situation of the host environment for the item "No limit".

Item Limit

Number of nesting levels of blocks No limit

Number of nesting levels of conditional inclusion No limit

Number of pointers, arrays, and function declarators (in any combinations) qualifying an arith-
metic, structure, union, or incomplete type in a declaration

128

Number of nesting levels of parenthesized declarators within a full declarator No limit

Number of nesting levels of parenthesized expressions within a full expression No limit

Number of significant initial characters in an internal identifier or a macro name No limit

Number of significant initial characters in an external identifier No limit

Number of external identifiers in one translation unit No limit

Number of identifiers with block scope declared in one block No limit

Number of macro identifiers simultaneously defined in one preprocessing translation unit No limit

R20UT3248EJ0110 Rev.1.10 Page 352 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

4.1.5 Internal Data Representation and Areas

This section explains the data type and the internal data representation. The internal data representation is determined
according to the following four items:

- Size
Shows the memory size necessary to store the data.

- Boundary alignment
Restricts the addresses to which data is allocated. There are three types of alignment; 1-byte alignment in which data
can be allocated to any address, 2-byte alignment in which data is allocated to even byte addresses, and 4-byte align-
ment in which data is allocated to addresses of multiples of four bytes.

- Data range
Shows the range of data of scalar type (C) or basic type (C++).

- Data allocation example
Shows an example of assignment of element data of compound type (C) or class type (C++).

(1) Scalar Type (C), Basic Type (C++)
Table 3.15 shows internal representation of scalar type data in C and basic type data in C++.

Table 4.1 Internal Representation of Scalar-Type and Basic-Type Data

Number of parameters in one function definition No limit

Number of arguments in one function call No limit

Number of parameters in one macro definition No limit

Number of arguments in one macro invocation No limit

Number of characters in a logical source line No limit

Number of characters in a character string literal or wide string literal (after concatenation) No limit

Number of bytes in an object (in a hosted environment only) 2147483647

Number of nesting levels for #included files No limit

Number of case labels for a switch statement (excluding those for any nested switch state-
ments)

2147483647

Number of members in a single structure or union No limit

Number of enumeration constants in a single enumeration No limit

Number of levels of nested structure or union definitions in a single struct-declaration-list No limit

No Data Type Size
(bytes)

Align-
ment

(bytes)

Signed/
Unsigned

Data Range

Minimum Value Maximum Value

1 char *1 1 1 Unsigned 0 28–1 (255)

2 signed char 1 1 Signed –27 (–128) 27–1 (127)

3 unsigned char 1 1 Unused 0 28–1 (255)

4 short 2 2 Signed –215 (–32768) 215–1 (32767)

5 signed short 2 2 Signed –215 (–32768) 215–1 (32767)

6 unsigned short 2 2 Unsigned 0 216–1 (65535)

7 int *2 4 4 Signed –231 (–2147483648) 231–1 (2147483647)

Item Limit

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 353 of 1053
Nov 01, 2020

Notes 1. When the signed_char option is specified, the char type has the same value range as the signed
char type.

Notes 2. When the int_to_short option is specified, the int type has the same value range as the short
type, the signed int type has the same value ranges as the signed short type, and the unsigned
int type has the same value range as the unsigned short type.

Notes 3. When the auto_enum option is specified, the smallest type that holds enumeration values is
selected.

Notes 4. When dbl_size=8 is specified, the size of the double type and long double type is 8 bytes.

Notes 5. This data type is only valid for compilation of C++ programs or C programs including stdbool.h.

Notes 6. These data types are only valid for compilation of C++ programs.

Notes 7. Pointers to function and virtual function members are represented in the following data structure.

Notes 8. This data type is only valid when compiling a C99 program or C program in which stdbool.h has
been included.

8 signed int *2 4 4 Signed –231 (–2147483648) 231–1 (2147483647)

9 unsigned int*2 4 4 Unsigned 0 232–1 (4294967295)

10 long 4 4 Signed –231 (–2147483648) 231–1 (2147483647)

11 signed long 4 4 Signed –231 (–2147483648) 231–1 (2147483647)

12 unsigned long 4 4 Unsigned 0 232–1 (4294967295)

13 long long 8 4 Signed –263 (–
9223372036854775808)

263–1
(9223372036854775807)

14 signed long,
long

8 4 Signed –263 (–
9223372036854775808)

263–1
(9223372036854775807)

15 unsigned long,
long

8 4 Unsigned 0 264–1
(18446744073709551615)

16 float 4 4 Signed – ∞ + ∞

17 double,
long double

4 *4 4 Signed – ∞ + ∞

18 size_t 4 4 Unsigned 0 232–1 (4294967295)

19 ptrdiff_t 4 4 Signed –231 (–2147483648) 231–1 (2147483647)

20 enum*3 4 4 Signed –231 (–2147483648) 231–1 (2147483647)

21 Pointer 4 4 Unsigned 0 232–1 (4294967295)

22 bool *5

_Bool *8
1 *9 1 *9 -*9 - -

23 Reference *6 4 4 Unsigned 0 232–1 (4294967295)

24 Pointer to a
data member
*6

4 4 Signed 0 232–1 (4294967295)

25 Pointer to a
function mem-
ber *6*7

12 4 - *10 - -

No Data Type Size
(bytes)

Align-
ment

(bytes)

Signed/
Unsigned

Data Range

Minimum Value Maximum Value

R20UT3248EJ0110 Rev.1.10 Page 354 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

Notes 9. When C89 is used for compiling, the size, number of bytes for alignment, and sign are the same as
for the unsigned long type.

Notes 10. This data type does not include a concept of sign.

(2) Compound Type (C), Class Type (C++)
This section explains internal representation of array type, structure type, and union type data in C and class type
data in C++.
Table 4.2 shows internal representation of compound type and class type data.

Table 4.2 Internal Representation of Compound Type and Class Type Data

In the following examples, a rectangle () indicates four bytes. The diagonal line () represents an
unused area for alignment. The address increments from right to left (the left side is located at a higher address).

(a) Structure Data Allocation
When structure members are allocated, an unused area may be generated between structure members to align
them to boundaries.

Example

If a structure has 4-byte alignment and the last member ends at an 1-, 2-, or 3-byte address, the following three,
two, or one byte is included in this structure.

Example

Data Type Alignment (bytes) Size (bytes) Data Allocation Example

Array Array element alignment Number of array elements
 element size

char a[10];
Alignment: 1 byte
Size: 10 bytes

Structure Maximum structure member
alignment

Total size of members.
Refer to (a) Structure Data Allo-
cation, below.

struct {
 char a,b;
};

Alignment: 1 byte
Size: 2 bytes

Union Maximum union member
alignment

Maximum size of member.
Refer to (b) Union Data Alloca-
tion, below.

union {
 char a,b;
};

Alignment: 1 byte
Size: 1 byte

Class 1. Always 4 if a virtual
function is included
2. Other than 1 above:
maximum member align-
ment

Sum of data members, pointer
to the virtual function table, and
pointer to the virtual base class.
Refer to (c) Class Data Alloca-
tion, below.

class B:public A {
 virtual void f();
};

Alignment: 4 bytes
Size: 8 bytes

class A {
 char a;
};

Alignment: 1 byte
Size: 1 byte

struct {
 char a;
 int b;
} obj

obj.a

obj.b

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 355 of 1053
Nov 01, 2020

(b) Union Data Allocation
When an union has 4-byte alignment and its maximum member size is not a multiple of four, the remaining
bytes up to a multiple of four is included in this union.

Example

(c) Class Data Allocation
For classes having no base class or virtual functions, data members are allocated according to the allocation
rules of structure data.

Example

If a class is derived from a base class of 1-byte alignment and the start member of the derived class is 1-byte
data, data members are allocated without unused areas.

Example

struct {
 int a;
 char b;
} obj

union {
 int a;
 char b[7];
} o;

class A{
 char data1;
 int data2;
public:
 A();
 int getData1(){return data1;}
}obj;

obj.a

obj.b

o.a

o.b[3] o.b[2] o.b[1] o.b[0]

o.b[6] o.b[5] o.b[4]

obj.data1

obj.data2

R20UT3248EJ0110 Rev.1.10 Page 356 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

For a class having a virtual base class, a pointer to the virtual base class is allocated.

Example

For a class having virtual functions, the compiler creates a virtual function table and allocates a pointer to the
virtual function table.

Example

An example is shown for class having virtual base class, base class, and virtual functions.

Example

class A{
 char data1;
};
class B:public A{
 char data2;
 short data3;
}obj;

class A{
 short data1;
};
class B: virtual protected A{
 char data2;
}obj;

class A{
 char data1;
 public:
 virtual int getData1();
}obj;

obj.data1obj.data2obj.data3

obj.data2

Pointer to the virtual base class (generated by the compiler)

obj.data1

obj.data1

Pointer to the virtual base class (generated by the compiler)

0

A::getData1

Virtual function table (generated by the compiler)

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 357 of 1053
Nov 01, 2020

For an empty class, a 1-byte dummy area is assigned.

Example

class A{
 char data1;
 virtual short getData1();
};
class B:virtual public A{
 char data2;
 char getData2();
 short getData1();
};
class C:virtual protected A{
 int data3;
};
class D:virtual public A,public B,public C{
 public:
 int data4;
 short getData1();
}obj;

class A{
 void fun();
}obj;

-18

A::getData1

Virtual function table (generated by the compiler)

obj.data2

Pointer to the virtual function table (generated by the compiler)

Pointer to the virtual base class (generated by the compiler)

obj.data3

obj.data4

obj.data1

Pointer to the virtual base class (generated by the compiler)

0

B::getData1

Pointer to the virtual function table (generated by the compiler)

Virtual function table (generated by the compiler)

R20UT3248EJ0110 Rev.1.10 Page 358 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

For an empty class having an empty class as its base class, the dummy area is one byte.

Example

Dummy areas shown in the above two examples are allocated only when the class size is 0. No dummy area is
allocated if a base class or a derived class has a data member or has a virtual function.

Example

(3) Bit Fields
A bit field is a member allocated with a specified size in a structure, a union, or a class. This section explains how
bit fields are allocated.

(a) Bit Field Members
Table 3.17 shows the specifications of bit field members.

Table 4.3 Bit Field Member Specifications

class A{
 void fun();
};
class B: A{
 void sub();
}obj;

class A{
 void fun();
};
class B: A{
 char data1;
}obj;

No. Item Specifications

1 Type specifier allowed for bit fields (unsigned)char, signed char, bool*1, _Bool*5,
(unsigned)short, signed short, enum,
(unsigned)int, signed int,
(unsigned)long, signed long,
(unsigned)long long, signed long long

2 How to treat a sign when data is
extended to the declared type*2

Unsigned: Zero extension*3

Signed: Sign extension*4

3 Sign type for the type without sign speci-
fication

Unsigned.
When the signed_bitfield option is specified, the signed
type is selected.

4 Sign type for enum type Signed.
When the auto_enum option is specified, the resultant
type is selected.

Dummy area

One byte

Dummy area

One byte

obj.data1

One byte

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 359 of 1053
Nov 01, 2020

Notes 1. The bool type is only valid for compilation of C++ programs or C programs including stdbool.h.

Notes 2. To use a bit field member, data in the bit field is extended to the declared type. One-bit field data
declared with a sign is interpreted as the sign, and can only indicate 0 and 1.

Notes 3. Zero extension: Zeros are written to the upper bits to extend data.

Notes 4. Sign extension: The most significant bit of a bit field is used as a sign and the sign is written to
the upper bits to extend data.

Notes 5. This data type is only valid for programs in C99. The _Bool type is treated as the bool type in
compilation.

(b) Bit Field Allocation
Bit field members are allocated according to the following five rules:

- Bit field members are placed in an area beginning from the right, that is, the least significant bit.

Example

- Consecutive bit field members having type specifiers of the same size are placed in the same area as much
as possible.

Example

- Bit field members having type specifiers with different sizes are allocated to separate areas.

Example

struct b1 {
 int a:2;
 int b:3;
} x;

struct b1 {
 long a:2;
 unsigned int b:3;
} y;

struct b1 {
 int a:5;
 char b:4;
} z;

x.a

3

x.b

2

31 Bit 0

y.a

3

y.b

2

31 Bit 0

R20UT3248EJ0110 Rev.1.10 Page 360 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

- If the number of remaining bits in an area is less than the next bit field size, even though the type specifiers
indicate the same size, the remaining area is not used and the next bit field is allocated to the next area.

Example

- If a bit field member with a bit field size of 0 is declared, the next member is allocated to the next area.

Example

Note It is also possible to place bit field members from the upper bit. For details, refer to the descrip-
tion on the bit_order option in Compiler Options, and the description on #pragma bit_order in
4.2 Extended Language Specifications.

(4) Memory Allocation in Big Endian
In big endian, data are allocated in the memory as follows:

(a) One-Byte Data (char, signed char, unsigned char, bool*1, and _Bool*1 types)
The order of bits in one-byte data for the little endian and the big endian is the same.

Notes 1. When C89 is used for compiling, the size and the number of bytes for alignment are 4.

(b) Two-Byte Data ((signed) short and unsigned short types)
The upper byte and the lower byte will be reversed in two-byte data between the little endian and the big endian.

Example When two-byte data 0x1234 is allocated at address 0x100:
Little Endian: Address 0x100: 0x34 Big Endian: Address 0x100: 0x12

 Address 0x101: 0x12 Address 0x101: 0x34

(c) Four-Byte Data ((signed) int*2, unsigned int*2, (signed) long, unsigned long, and float types)
The order of bytes will be reversed in four-byte data between the little endian and the big endian.

struct b2 {
 char a:5;
 char b:4;
} v;

struct b2 {
 char a:5;
 char :0;
 char c:3;
} w;

z.a

5

31

z.b

4

Bit 0

v.a

5

15

4

8 7

v.b

Bit 0

w.a

5

15

3

8 7

w.c

Bit 0

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 361 of 1053
Nov 01, 2020

Notes 2. When the int_to_short option is specified, the signed int and unsigned int types have the
same size and number of bytes for alignment as the signed short and unsigned short types,
respectively.

Example When four-byte data 0x12345678 is allocated at address 0x100:
Little Endian: Address 0x100: 0x78 Big Endian: Address 0x100: 0x12

 Address 0x101: 0x56 Address 0x101: 0x34
 Address 0x102: 0x34 Address 0x102: 0x56
 Address 0x103: 0x12 Address 0x103: 0x78

(d) Eight-Byte Data ((signed) long long, unsigned long long, and double types)
The order of bytes will be reversed in eight-byte data between the little endian and the big endian.

Example When eight-byte data 0x123456789abcdef is allocated at address 0x100:
Little Endian: Address 0x100: 0xef Big Endian: Address 0x100: 0x01

 Address 0x101: 0xcd Address 0x101: 0x23
 Address 0x102: 0xab Address 0x102: 0x45
 Address 0x103: 0x89 Address 0x103: 0x67
 Address 0x104: 0x67 Address 0x104: 0x89
 Address 0x105: 0x45 Address 0x105: 0xab
 Address 0x106: 0x23 Address 0x106: 0xcd
 Address 0x107: 0x01 Address 0x107: 0xef

(e) Compound-Type and Class-Type Data
Members of compound-type and class-type data will be allocated in the same way as that of the little endian.
However, the order of byte data of each member will be reversed according to the rule of data size.

Example When the following function exists at address 0x100:

Little Endian: Address 0x100: 0x34 Big Endian: Address 0x100: 0x12
 Address 0x101: 0x12 Address 0x101: 0x34
 Address 0x102: Unused area Address 0x102: Unused area
 Address 0x103: Unused area Address 0x103: Unused area
 Address 0x104: 0xbc Address 0x104: 0x56
 Address 0x105: 0x9a Address 0x105: 0x78
 Address 0x106: 0x78 Address 0x106: 0x9a
 Address 0x107: 0x56 Address 0x107: 0xbc

(f) Bit Field
Bit fields will be allocated in the same way as that of the little endian. However, the order of byte data in each
area will be reversed according to the rule of data size.

Example When the following function exists at address 0x100:

Little Endian: Address 0x100: 0x01 Big Endian: Address 0x100: 0x00
 Address 0x101: 0x00 Address 0x101: 0x01
 Address 0x102: 0x01 Address 0x102: 0x00
 Address 0x103: 0x00 Address 0x103: 0x01
 Address 0x104: 0x01 Address 0x104: 0x00
 Address 0x105: 0x00 Address 0x105: 0x01
 Address 0x106: Unused area Address 0x106: Unused area
 Address 0x107: Unused area Address 0x107: Unused area

(5) Floating-Point Number Specifications

(a) Internal Representation of Floating-Point Numbers

struct {
 short a;
 int b;
}z= {0x1234, 0x56789abc};

struct {
 long a:16;
 unsigned int b:15;
 short c:5;
}y= {1,1,1};

R20UT3248EJ0110 Rev.1.10 Page 362 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

Floating-point numbers handled by this compiler are internally represented in the standard IEEE format. This
section outlines the internal representation of floating-point numbers in the IEEE format.
This section assumes that the dbl_size=8 option is specified. When the dbl_size=4 option is specified, the
internal representation of the double type and long double type is the same as that of the float type.

(b) Format for Internal Representation
float types are represented in the IEEE single-precision (32-bit) format, while double types and long double
types are represented in the IEEE double-precision (64-bit) format.

(c) Structure of Internal Representation
Figure 3.1 shows the structure of the internal representation of float, double, and long double types.

Figure 4.1 Structure of Internal Representation of Floating-Point Numbers

The internal representation format consists of the following parts:
i. Sign

Shows the sign of the floating-point number. 0 is positive, and 1 is negative.
ii. Exponent

Shows the exponent of the floating-point number as a power of 2.
iii. Mantissa

Shows the data corresponding to the significant digits (fraction) of the floating-point number.

(d) Types of Values Represented as Floating-Point Numbers
In addition to the normal real numbers, floating-point numbers can also represent values such as infinity. The
following describes the types of values represented by floating-point numbers.
i. Normalized number

Represents a normal real value; the exponent is not 0 or not all bits are 1.
ii. Denormalized number

Represents a real value having a small absolute number; the exponent is 0 and the mantissa is other than 0.
iii. Zero

Represents the value 0.0; the exponent and mantissa are 0.
iv. Infinity

Represents infinity; all bits of the exponent are 1 and the mantissa is 0.
v. Not-a-number

Represents the result of operation such as "0.0/0.0", "/", or "–", which does not correspond to a number
or infinity; all bits of the exponents are 1 and the mantissa is other than 0.
Table 3.18 shows the types of values represented as floating-point numbers.

Mantissa (23 bits)

float type

31 30 23 22 0

double type and long double type

63 62 52 51 0

Exponent (8 bits)

Sign (1 bit)

Mantissa (53 bits)Exponent (11 bits)

Sign (1 bit)

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 363 of 1053
Nov 01, 2020

Table 4.4 Types of Values Represented as Floating-Point Numbers

Note Denormalized numbers are floating-point numbers of small absolute values that are outside the
range represented by normalized numbers. There are fewer valid digits in a denormalized num-
ber than in a normalized number. Therefore, if the result or intermediate result of a calculation is
a denormalized number, the number of valid digits in the result cannot be guaranteed.
When denormalize=off is specified, denormalized numbers are processed as 0.
When denormalize=on is specified, denormalized numbers are processed as denormalized
numbers.

Mantissa Exponent

0 Not 0 or Not All Bits are 1 All Bits are 1

0 0 Normalized number Infinity

Other than 0 Denormalized number Not-a-number

R20UT3248EJ0110 Rev.1.10 Page 364 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

(e) float Type
The float type is internally represented by a 1-bit sign, an 8-bit exponent, and a 23-bit mantissa.
i. Normalized numbers

The sign indicates the sign of the value, either 0 (positive) or 1 (negative). The exponent is between 1 and
254 (28 – 2). The actual exponent is gained by subtracting 127 from this value. The range is between –126
and 127. The mantissa is between 0 and 223 – 1. The actual mantissa is interpreted as the value of which
223rd bit is 1 and this bit is followed by the decimal point. Values of normalized numbers are as follows:
(–1)sign 2exponent–127 (1 + (mantissa) 2–23)

Example

Sign: –
Exponent: 10000000(2) – 127 = 1, where (2) indicates binary
Mantissa: 1.11(2) = 1.75
Value: –1.75 21 = –3.5

ii. Denormalized numbers
The sign indicates the sign of the value, either 0 (positive) or 1 (negative). The exponent is 0 and the actual
exponent is –126. The mantissa is between 1 and 223–1, and the actual mantissa is interpreted as the value
of which 223rd bit is 0 and this bit is followed by the decimal point. Values of denormalized numbers are as fol-
lows:
(–1)sign 2–126 ((mantissa) 2–23)

Example

Sign: +
Exponent: –126
Mantissa: 0.11(2) = 0.75, where (2) indicates binary
Value: 0.75 2–126

iii. Zero
The sign is 0 (positive) or 1 (negative), indicating +0.0 or –0.0, respectively. The exponent and mantissa are
both 0.
+0.0 and –0.0 are both the value 0.0.

iv. Infinity
The sign is 0 (positive) or 1 (negative), indicating + or –, respectively.
The exponent is 255 (28–1).
The mantissa is 0.

v. Not-a-number
The exponent is 255 (28–1).
The mantissa is a value other than 0.

Note A not-a-number is called a quiet NaN when the MSB of the mantissa is 1, or a signaling NaN
when the MSB of the mantissa is 0. There are no stipulations regarding the values of the rest of
the mantissa and of the sign.

(f) double Types and long double Types
The double and long double types are internally represented by a 1-bit sign, an 11-bit exponent, and a 52-bit
mantissa.
i. Normalized numbers

The sign indicates the sign of the value, either 0 (positive) or 1 (negative). The exponent is between 1 and
2046 (211–2). The actual exponent is gained by subtracting 1023 from this value. The range is between –1022
and 1023. The mantissa is between 0 and 252–1. The actual mantissa is interpreted as the value of which
252nd bit is 1 and this bit is followed by the decimal point. Values of normalized numbers are as follows:
(–1)sign 2exponent–1023 (1+(mantissa) 2–52)

Example

Sign: +
Exponent: 1111111111(2) –1023 = 0, where (2) indicates binary

10000000 110000000000000000000001

31 30 23 22 0

00000000 110000000000000000000000

31 30 23 22 0

01111111111 11100

63 62 52 51 0

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 365 of 1053
Nov 01, 2020

Mantissa: 1.111(2) = 1.875
Value: 1.875 20 = 1.875

ii. Denormalized numbers
The sign indicates the sign of the value, either 0 (positive) or 1 (negative). The exponent is 0 and the actual
exponent is –1022. The mantissa is between 1 and 252–1, and the actual mantissa is interpreted as the value
of which 252nd bit is 0 and this bit is followed by the decimal point. Values of denormalized numbers are as
follows:
(–1)sign 2–1022 ((mantissa) 2–52)

Example

Sign: –
Exponent: –1022
Mantissa: 0.111(2) = 0.875, where (2) indicates binary
Value: 0.875 2–1022

iii. Zero
The sign is 0 (positive) or 1 (negative), indicating +0.0 or –0.0, respectively. The exponent and mantissa are
both 0.
+0.0 and –0.0 are both the value 0.0.

iv. Infinity
The sign is 0 (positive) or 1 (negative), indicating + or –, respectively. The exponent is 2047 (211–1).
The mantissa is 0.

v. Not-a-number
The exponent is 2047 (211–1).
The mantissa is a value other than 0.

Note A not-a-number is called a quiet NaN when the MSB of the mantissa is 1, or signaling NaN when
the MSB of the mantissa is 0. There are no specifications regarding the values of other mantissa
fields or the sign.

4.1.6 Operator Evaluation Order

When an expression includes multiple operators, the evaluation order of these operators is determined according to the
precedence and the associativity indicated by right or left.

Table 3.19 shows each operator precedence and associativity.

Table 4.5 Operator Precedence and Associativity

Precedence Operators Associativity Applicable Expression

1 ++ -- (postfix) () [] -> . Left Postfix expression

2 ++ -- (prefix) ! ~ + - * & sizeof Right Unary expression

3 (Type name) Right Cast expression

4 * / % Left Multiplicative expression

5 + - Left Additive expression

6 << >> Left Bitwise shift expression

7 < <= > >= Left Relational expression

8 == != Left Equality expression

9 & Left Bitwise AND expression

10 ^ Left Bitwise exclusive OR
expression

11 | Left Bitwise inclusive OR
expression

00000000000 1110001

63 62 52 51 0

R20UT3248EJ0110 Rev.1.10 Page 366 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

4.1.7 Conforming Language Specifications

(1) C Language Specifications (When the lang=c Option is Selected)
ANSI/ISO 9899-1990 American National Standard for Programming Languages -C

(2) C Language Specifications (When the lang=c99 Option is Selected)
ISO/IEC 9899:1999 INTERNATIONAL STANDARD Programming Languages - C

(3) C++ Language Specifications (When the lang=cpp Option is Selected)
Based on the language specifications compatible with Microsoft Visual C/C++ 6.0

12 && Left Logical AND operation

13 || Left Logical inclusive OR
expression

14 ?: Right Conditional expression

15 = += -= *= /= %= <<= >>= &= |= ^= Right Assignment expression

16 , Left Comma expression

Precedence Operators Associativity Applicable Expression

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 367 of 1053
Nov 01, 2020

4.2 Extended Language Specifications

This section explains the extended language specifications supported by the CCRX.
The compiler supports the following extended specifications:

- #pragma extension specifiers and keywords

- Intrinsic functions

- Section address operators

4.2.1 Macro Names

The following shows supported macro names.

Table 4.6 Predefined Macros of Compiler

No. Option Predefined Macro

1 - __DATE__ Date of translating source file
(character string constant in the
form of "Mmm dd yyyy".) Here, the
name of the month is the same as
that created by the asctime func-
tion stipulated by ANSI standards
(3 alphabetic characters with only
the first character is capital letter)
(The first character of dd is blank if
its value is less than 10).

2 - __FILE__ Name of assumed source file
(character string constant).

3 - __LINE__ Line number of source line at that
point (decimal).

4 - __STDC__ 1

5 lang=c99 __STDC_HOSTED__ 1

6 lang=c*1

lang=c99
__STDC_VERSION__ 199409L (lang = c*1)

199901L (lang = c99)

7 lang=c99 __STDC_IEC_559__ 1

8 lang=c99 __STDC_IEC_559_COMPLEX__ 1

9 lang=c99 __STDC_ISO_10646__ 199712L

10 lang=cpp*2

lang=ecpp
__cplusplus 1

11 - __TIME__ Translation time of source file
(character string constant having
format "hh:mm:ss").

12 isa=rxv1
isa=rxv2
isa=rxv3

#define __RXV1
#define __RXV2
#define __RXV3 [V3.00.00 or later]

1
1
1

13 endian=big
endian=little

#define __BIG
#define __LIT

1
1

14 dbl_size=4
dbl_size=8

#define __DBL4
#define __DBL8

1
1

15 int_to_short #define __ INT_SHORT 1

R20UT3248EJ0110 Rev.1.10 Page 368 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

Notes 1. Includes cases where a file with the .c extension is compiled without specifying the -lang option.

Notes 2. Includes cases where a file with the .cpp, .cp, or .cc extension is compiled without specifying the -lang
option.

Notes 3. Always defined regardless of the option.

Notes 4. When the Compiler version is VXX.YY.ZZ, the value of __RENESAS_VERSION__ is 0xXXYYZZ00.
Example
For V3.01.00: #define __RENESAS_VERSION__ 0x03010000

16 signed_char
unsigned_char

#define __SCHAR
#define __UCHAR

1
1

17 signed_bitfield
unsigned_bitfield

#define __SBIT
#define __UBIT

1
1

18 round=zero
round=nearest

#define __ROZ
#define __RON

1
1

19 denormalize=off
denormalize=on

#define __DOFF
#define __DON

1
1

20 bit_order=left
bit_order=right

#define __BITLEFT
#define __BITRIGHT

1
1

21 auto_enum #define __AUTO_ENUM 1

22 library=function
library=intrinsic

#define __FUNCTION_LIB
#define __INTRINSIC_LIB

1
1

23 fpu #define __FPU 1

24 - #define __RENESAS__ *3 1

25 - #define __RENESAS_VERSION__ *3 0xXXYYZZ00 *4

26 - #define __RX *3 1

27 pic #define __PIC 1

28 pid #define __PID 1

29 cpu=rx600
cpu=rx200

#define __RX600
#define __RX200

1
1

30 - #define __CCRX__ *3 1

31 isa=rxv1
isa=rxv2
isa=rxv3

#define __RX_ISA_VERSION__
[V3.00.00 or later]

1
2
3

32 dpfpu #define __DPFPU
[V3.01.00 or later]

1

33 tfu=intrinsic
tfu=intrinsic,mathlib

#define __TFU [V3.01.00 or later] 1

34 tfu=intrinsic,mathlib #define __TFU_MATHLIB
[V3.01.00 or later]

1

No. Option Predefined Macro

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 369 of 1053
Nov 01, 2020

4.2.2 Keywords

The CCRX adds the following characters as a keyword to implement the extended function. These words are similar to
the ANSI C keywords, and cannot be used as a label or variable name.

Keywords that are added by the CCRX are listed below.
__evenaccess, far, _far, near, and _near

Table 4.7 Keywords

4.2.3 #pragma Directive

(1) Section Switch
This extension changes the section name to be output by the compiler.
For details on the description, refer to(1) Section Switch.

(2) Stack Section Creation
This extension creates the stack section.
For details on the description, refer to (2) Stack Section Creation.

(3) Interrupt Function Creation
This extension creates the interrupt function.
For details on the description, refer to (3) Interrupt Function Creation.

(4) Inline Expansion of Function
This extension expands a function.
For details on the description, refer to (4) Inline Expansion of Function.

No. Keyword Function

1 #pragma STDC
CX_LIMITED_RANGE
#pragma STDC FENV_ACCESS
#pragma STDC FP_CONTRACT

Reserved keywords that are only valid when C99 is selected
(these are only for grammatical checking and not for checking the
correctness of the code).

2 #pragma keywords Provides language extensions. For details, refer to 4.2.3 #pragma
Directive.

3 __evenaccess Guarantees access in the size of the variable type.

4 far
_far
near
_near

Reserved keywords (these are ignored even though they are rec-
ognized as type names)

5 _RAM_BASE Reserved keyword.
(Only in -base=ram sepcified.)

6 _ROM_BASE Reserved keyword.
(Only in -base=rom sepcified.)

7 _PID_TOP Reserved keyword.
(Only in -pid sepcified.)

8 _builtin_xxx Reserved keyword.
This means all functions those names begin with _builtin_.

#pragma section [<section type>] [D<new section name>]
<section type>: { P | C | D | B }

#pragma stacksize { si=<constant> | su=<constant> }

#pragma interrupt [(]<function name>[(<interrupt specification>[,...])][,...][)]

#pragma inline [(]<function name>[,...][)]

R20UT3248EJ0110 Rev.1.10 Page 370 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

(5) Cancellation of Inline Expansion of Function
This extension cancels expansion of a function.
For details on the description, refer to (4) Inline Expansion of Function.

(6) Inline Expansion of Assembly-Language Function
This extension creates the assembly-language inline functions.
For details on the description, refer to (5) Inline Expansion of Assembly-Language Function.

(7) Entry Function Specification
This extension specifies the entry function.
For details on the description, refer to (6) Entry Function Specification.

(8) Bit Field Order Specification
This extension specifies the order of the bit field.
For details on the description, refer to (7) Bit Field Order Specification.

(9) 1-Byte Alignment Specification for Structure Members and Class Members
This extension specifies the boundary alignment value of structure members and class members as 1 byte.
For details on the description, refer to (8) Alignment Value Specification for Structure Members and Class Mem-
bers.

(10) Default Alignment Specification for Structure Members and Class Members
This extension specifies the boundary alignment value for structure members and class members as the value for
members.
For details on the description, refer to (8) Alignment Value Specification for Structure Members and Class Mem-
bers.

(11) Option Alignment Specification for Structure Members and Class Members
This extension specifies the option of the boundary alignment value for structure members and class members.
For details on the description, refer to (8) Alignment Value Specification for Structure Members and Class Mem-
bers.

(12) Allocation of a Variable to the Absolute Address
This extension allocates the specified variable to the specified address.
For details on the description, refer to (9) Allocation of a Variable to the Absolute Address.

(13) Endian Specification for Initial Values
This extension specifies an endian for initial values.
For details on the description, refer to (10) Endian Specification for Initial Values.

(14) Specification of Function in which Instructions at Branch Destinations are Aligned to 4-Byte Boundaries
This extension specifies the function in which instructions at branch destinations are aligned to 4-byte boundaries.
For details on the description, refer to (11) Specification of Function in which Instructions at Branch Destinations
are Aligned for Execution.

#pragma noinline [(]<function name>[,...][)]

#pragma inline_asm[(]<function name>[,...][)]

#pragma entry[(]<function name>[)]

#pragma bit_order [{left | right}]

#pragma pack

#pragma unpack

#pragma packoption

#pragma address [(]<variable name>=<absolute address>[,...][)]

#pragma endian [{big | little}]

#pragma instalign4 [(]<function name>[(<branch destination type>)][,...][)]

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 371 of 1053
Nov 01, 2020

(15) Specification of Function in which Instructions at Branch Destinations are Aligned to 8-Byte Boundaries
This extension specifies the function in which instructions at branch destinations are aligned to 8-byte boundaries.
For details on the description, refer to (11) Specification of Function in which Instructions at Branch Destinations
are Aligned for Execution.

(16) Specification of Function in which Instructions at Branch Destinations are not Aligned
This extension specifies the function in which instructions at branch destinations are not aligned.
For details on the description, refer to (11) Specification of Function in which Instructions at Branch Destinations
are Aligned for Execution.

(17) Specification of Function for generating a code for detection of stack smashing [Professional Edition only]
[V2.04.00 or later]
This extension generates a code for detection of stack smashing.
For details on the description, refer to (12) Specification of Function for generating a code for detection of stack
smashing [Professional Edition only] [V2.04.00 or later].

(18) Specification of not generating a code for detection of stack smashing [Professional Edition only] [V2.04.00 or
later]
This extension suppress generating generate a code for detection of stack smashing.
For details on the description, refer to (12) Specification of Function for generating a code for detection of stack
smashing [Professional Edition only] [V2.04.00 or later].

4.2.4 Using Extended Specifications

This section explains using the following extended specifications.

- Section switch

- Stack section creation

- Interrupt function creation

- Inline expansion of function

- Inline expansion of assembly-language function

- Entry function specification

- Bit field order specification

- Alignment value specification for structure members and class members

- Allocation of a variable to the absolute address

- Endian specification for initial values

- Specification of function in which instructions at branch destinations are aligned for execution

- Specification of function for generating a code for detection of stack smashing

(1) Section Switch

This extension changes the section name to be output by the compiler.
When both a section type and a new section name are specified, the section names for all functions written after
the #pragma declaration are changed if the specified section type is P. If the section type is C, D, or B, the names
of all sections defined after the #pragma declaration are changed.

#pragma instalign8 [(]<function name>[(<branch destination type>)][,...][)]

#pragma noinstalign [(]<function name>[,...][)]

#pragma stack_protector [(] function name [(num=<integer value>)] [)]

#pragma no_stack_protector [(] function name [)]

#pragma section [<section type>] [D<new section name>]
<section type>: { P | C | D | B }

R20UT3248EJ0110 Rev.1.10 Page 372 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

When only a new section name is specified, the section names for the program, constant, initialized data, and
uninitialized data areas after the #pragma declaration are changed. In this case, the default section name post-
fixed with the string specified by <new section name> is used as the new section name.
When neither a section type nor a new section name is specified, the section names for the program, constant, ini-
tialized data, and uninitialized data areas after the #pragma declaration are restored to the default section names.
The default section name for each section type is determined by the section option when specified. If the default
section name is not specified by the section option, the section type name is used instead.
[Earlier than V3.02.00] #pragma section must be specified outside function definitions.
[V3.02.00 or later] #pragma section can be specified within function definitions. The opening and closing paren-
theses of a function do not affect the valid range of #pragma.
[V3.02.00 or later] #pragma section has effect on the name of the section containing static variables within the
function, static data members, and their initial values. However, there is no effect on the names of the following
sections:

- Section that contains static variables within the function and their initial values specified in a function template
(not specialized)

- Section that contains static data members and their initial values specified in a class template

Examples 1. When a section name and a section type are specified

Examples 2. When the section type is omitted

#pragma section B Ba
int i; // Allocated to the Ba section
void func(void)
{
(omitted)
}

#pragma section B Bb
int j;// Allocated to the Bb section
void sub(void)
{
(omitted)
}

#pragma section abc
int a; // Allocated to the Babc section
const int c=1; // Allocated to the Cabc section
void f(void)// Allocated to the Pabc section
{
 a=c;
}

#pragma section
int b;// Allocated to the B section
void g(void)// Allocated to the P section
{
 b=c;
}

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 373 of 1053
Nov 01, 2020

Examples 3. Specification for static class members

Examples 4. Specification of a section for static variables within the function [V3.02.00 or later]

The section name of the following items cannot be changed by this extension. The section option needs to be
used.
(1) String literal and initializers for use in the dynamic initialization of aggregates
(2) Branch table of switch statement
Up to 2045 sections can be specified by #pragma section in one file.
When specifying the section for static class member variables, be sure to specify #pragma section for both the
class member declaration and definition.

/*
** Class member declaration
*/

class A {
 private:
 // No initial value specified
#pragma section DATA
 static int data_;
#pragma section
 // Initial value specified
#pragma section TABLE
 static int table_[2];
#pragma section
};

/*
** Class member definition
*/

// No initial value specified
#pragma section DATA
int A::data_;
#pragma section

// Initial value specified
#pragma section TABLE
int A::table_[2] = { 0, 1 };
#pragma section

oid test1(void) {
#pragma section B B1
 static int b1; // B1
#pragma section B B2
 static int b2; // B2
}

// The valid range is not affected by the parentheses of the function definition.
int b3; // B2

void test2(void) {
 static int b4; // B2
#pragma section
 static int b5; // B
}

R20UT3248EJ0110 Rev.1.10 Page 374 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

Example

(2) Stack Section Creation

When si=<constant> is specified, a data section is created to be used as the stack of size <constant> with section
name SI.
When su=<constant> is specified, a data section is created to be used as the stack of size <constant> with section
name SU.
C source description:

Example of expanded code:

si and su can each be specified only once in a file.
<constant> must always be specified as a multiple of four.
A value from 4 to 2147483644(0x7ffffffc) is specifiable for <constant>.

/*
 ** Class member declaration
 */

class A
{
private:

// No initial value specified
#pragma section DATA
static int data_;
#pragma section

// Initial value specified
#pragma section TABLE
static int table_[2];
#pragma section
};

/*
** Class member definition
*/

// No initial value specified
#pragma section DATA
int A::data_;
#pragma section

// Initial value specified
#pragma section TABLE
int A::table_[2]={0, 1};
#pragma section

#pragma stacksize { si=<constant> | su=<constant> }

#pragma stacksize si=100
#pragma stacksize su=200

.SECTION SI,DATA,ALIGN=4

.BLKB 100

.SECTION SU,DATA,ALIGN=4

.BLKB 200

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 375 of 1053
Nov 01, 2020

(3) Interrupt Function Creation

This extension declares an interrupt function.
A global function or a static function member can be specified for the function name.
Table 4.24 lists the interrupt specifications.

Table 4.8 Interrupt Specifications

An interrupt function declared by #pragma interrupt guarantees register values before and after processing (all
registers used by the function are pushed onto and popped from the stack when entering and exiting the function).
The RTE instruction directs execution to return from the function in most cases.
An interrupt function with no interrupt specifications is processed as a simple interrupt function.

When use of the vector table is specified (vect=), the interrupt function address is stored in the specified vector
table number location in the C$VECT section.
[V3.00.00 or later] When the -split_vect option is specified in the optimizing linkage editor, the C$VECT section is
split by vector table number and each section has the name of "C$VECT<vector table number>".

When use of fast interrupt processing is specified (fint), the RTFI instruction is used to return from the function.
When the fint_register option is also specified, the registers specified through the option are used by the interrupt
function without being saved or restored.

When a limitation on registers in interrupt function is specified (save), the registers that can be used in the inter-
rupt function are limited to R1 to R5 and R14 to R15. R6 to R13 are not used and the instructions for saving and
restoring them are not generated.

When enable is specified, the I flag in PSW is set to 1 at the beginning of the function to enable nested interrupts.

When Accumulator saving (acc) is specified, if another function is called from a function specified with #pragma
interrupt or the function uses an instruction that modifies the ACC, an instruction to save and restore the ACC is
generated. When RXv1 is selected as ISA*1, the ACC is saved and restored. When a value other than RXv1 is
selected as ISA*1, ACC0 and ACC1 are saved and restored.

#pragma interrupt [(]<function name>[(<interrupt specification>[,...])][,...][)]

No. Item Form Options Specifications

1 Vector table vect= <vector number> Specifies the vector number for which
the interrupt function address is stored.

2 Fast interrupt fint None Specifies the function used for fast inter-
rupts.
This RTFI instruction is used to return
from the function.

3 Limitation on registers
in interrupt function

save None Limits the number of registers used in
the interrupt function to reduce save and
restore operations.

4 Nested interrupt enable enable None Sets the I flag in PSW to 1 at the begin-
ning of the function to enable nested
interrupts.

5 Accumulator saving acc None Saves and restores Accumulator in the
interrupt function.

6 Accumulator non-sav-
ing

no_acc None Does not save and restore Accumulator
in the interrupt function.

7 Enable the register
bank save function
[V3.01.00 or later]

bank= <bank number> Enables the register bank save function.
Specify the number of the bank in which
the values of registers will be saved.

R20UT3248EJ0110 Rev.1.10 Page 376 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

When Accumulator non-saving is specified (no_acc), an instruction to save and restore the ACC is not generated.
If neither acc nor no_acc is specified, the result depends on the setting of the compiler option -save_acc.

[V3.01.00 or later] When bank = <bank number> is specified, the CC-RX enables the use of the register bank
save function (for which the SAVE and RSTR instructions are provided) in cases where it is considered necessary.
The destination for saving data is the save register bank with the number specified in <bank number>. Refer to
the User's Manual: Hardware for the target MCU and specify a bank number that is actually available.
When this facility is enabled, the values of ACC0 and ACC1 are also saved and restored even if the -save_acc
option is not specified or no_acc (not saving accumulator values) is specified. Specifying bank = <bank number>
when RXv1 or RXv2 is selected as ISA*1 will lead to an error. When you specify bank = <bank number>, also
specify the assembler option -bank. If you are using an integrated development environment from Renesas,
-bank is specified automatically upon selection of an MCU that has save register banks.

Note *1) This means a selection by the -isa option or the ISA_RX environment variable.

The function must return only void data. No return value can be specified for the return statement. If attempted,
an error will be output.

Examples 1. Correct declaration and wrong declaration

Examples 2. General interrupt function
C source description:

Output code:

Examples 3. Interrupt function that calls another function
In addition to the registers used in the interrupt function, the registers that are not guaranteed
before and after a function call are also saved at the entry and restored at the exit.

C source description:

#pragma interrupt (f1, f2)
void f1(){...}// Correct declaration.
int f2(){...}// An error will be output
// because the return value is not
// void data.

#pragma interrupt func
void func(){ }

_func:
PUSHM R1-R3; Saves the registers used in the function.
....
(R1, R2, and R3 are used in the function)
....
POPM R1-R3; Restores the registers saved at the entry.
RTE

#pragma interrupt func
void func(){
 ...
 sub();
 ...
}

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 377 of 1053
Nov 01, 2020

Output code:

Examples 4. Use of interrupt specification fint
C source description: Compiles with the fint_register=2 option specified

Output code:

Examples 5. Use of interrupt specification acc
C source description:

_func:
 PUSHM R14-R15
 PUSHM R1-R5
 ...
 BSR _sub
 ...
 POPM R1-R5
 POPM R14-R15
 RTE

#pragma interrupt func1(fint)
void func1(){ a=1; } // Interrupt function
void func2(){ a=2; } // General function

_func1:
 PUSHM R1-R3 ; Saves the registers used in the function.
 ... ; (Note that R12 and R13 are not saved.)
 ...
 (R1, R2, R3, R12, and R13 are used in the function.)
 ...
 POPM R1-R3 ; Restores the registers saved at the entry.
 RTFI

_func2:
 ... ; In the functions without #pragma interrupt fint
 ... ; specification, do not use R12 and R13.
 RTE

void func5(void);
#pragma interrupt accsaved_ih(acc) /* Specifies acc */
void accsaved_ih(void)
{
 func5();
}

R20UT3248EJ0110 Rev.1.10 Page 378 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

Output code:

[Remarks]
Due to the specifications of the RX instruction set, only the upper 48 bits of ACC can be saved and restored with
the acc flag. The lower 16 bits of ACC are not saved and restored.
Each interrupt specification can be specified only with alphabetical lowercase letters. When specified with upper-
case letters, an error will occur.
When vect is used as an interrupt specification, the address of empty vectors for which there is no specification is
0. You can specify a desired address value or symbol for an address with the optimizing linkage editor. For details,
refer to the descriptions on the VECT and VECTN options.
Parameters are not definable for #pragma interrupt functions. Although defining parameters for such functions
does not lead to an error, values read out from the parameters are undefined.
Purpose of acc and no_acc:
acc and no_acc take into account the following purposes:

- Solution for decrease in the interrupt response speed when compensation of ACC is performed by save_acc
(no_acc)
Though the save_acc option is valid for compensation of ACC in an existing interrupt function, the interrupt
response speed is degraded in some cases. Therefore, no_acc is provided as a means to disable saving and
restoring of unnecessary ACC for each function independently.

- Control of saving and restoring of ACC through source code
Explicitly selecting acc or no_acc for an interrupt function for which saving and restoring of ACC has already
been considered allows saving and restoring of ACC to be defined in the source program without using the
save_acc option.

Examples 6. Use of interrupt specification bank
C source description:

Output code:

_accsaved_ih:
 PUSHM R14-R15
 PUSHM R1-R5
 MVFACMI R4
 SHLL #10H, R4
 MVFACHI R5
 PUSHM R4-R5
 BSR _func5
 POPM R4-R5
 MVTACLO R4
 MVTACHI R5
 POPM R1-R5
 POPM R14-R15
 RTE

#pragma interrupt func(bank=3) /* Specifies "bank=3" */
void func(void)
{
 ...
}

_func:
 SAVE #03H ; Instruction for saving values in save register bank 3
 ...
 RSTR #03H ; Instruction for restoring values from save register bank 3
 RTE

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 379 of 1053
Nov 01, 2020

Examples 7. Use of interrupt specification vect and bank in combination
C source description:

Output code:

(4) Inline Expansion of Function

#pragma inline declares a function for which inline expansion is performed.
Even when the noinline option is specified, inline expansion is done for the function specified by #pragma inline.
#pragma noinline declares a function for which the inline option effect is canceled.
A global function or a static function member can be specified as a function name.
A function specified by #pragma inline or a function with specifier inline (C++ and C (C99)) are expanded where
the function is called.

Example Source file:

Inline expansion image:

Inline expansion will not be applied in the following functions even when #pragma inline is specified.

- The function has variable parameters.

#pragma interrupt func(vect=64, bank=4) /* Specifies "vect=64" and "bank=4" */
void func(void)
{
 ...
}

_func:
 .RVECTOR 64,_func ; Vector table number registration
 SAVE #04H ; Instruction for saving values in save register bank 4
 ...
 RSTR #04H ; Instruction for restoring values from save register bank 4
 RTE

#pragma inline [(]<function name>[,...][)
#pragma noinline [(]<function name>[,...][)]

#pragma inline(func)
static int func (int a, int b)
{
 return (a+b)/2;
}
int x;
main()
{
 x=func(10,20);
}

int x;
main()
{
 int func_result;
 {
 int a_1=10, b_1=20;
 func_result=(a_1+b_1)/2;
 }
 x=func_result;
}

R20UT3248EJ0110 Rev.1.10 Page 380 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

- Another function is called by using the address of the function to be expanded.
#pragma inline does not guarantee inline expansion; inline expansion might not be applied due to restrictions on
increasing compilation time or memory size. If inline expansion is canceled, try specifying the noscope option;
inline expansion may be applied in some cases.
Specify #pragma inline before defining a function.
An external definition is generated for a function specified by #pragma inline.
When #pragma inline is specified for a static function, the function definition is deleted after inline expansion.
The C++ compiler does not create external definitions for inline-specified functions.
The C (C99) does not create external definitions for inline-specified functions unless they include extern declara-
tions.

(5) Inline Expansion of Assembly-Language Function

This extension declares an assembly-language function for which inline expansion is performed.
The general function calling rules are also applied to the calls of assembly-language inline functions.

Example C source description:

Output code:

Specify #pragma inline_asm before defining a function.
An external definition is generated for a function which is not a static function but for which #pragma inline_asm
is specified.
When the registers whose values are saved and restored at the entry and exit of a function (seeTable 9.1 Rules to
Use Registers) are used in an assembly-language inline function, these registers must be saved and restored at
the start and end of the function.

[Remarks]

- In an assembly-language inline function, use only the RX Family instruction and temporary labels. Other labels
cannot be defined and assembler directives cannot be used.

- Do not use RTS at the end of an assembly-language inline function.

- Function members cannot be specified as function names.

- When #pragma inline_asm is specified for a static function, the function definition is deleted after inline expan-
sion.

- Assembly-language descriptions are processed by the preprocessor; take special care when defining through
#define a macro with the same name as an instruction or a register used in the assembly language (such as
MOV or R5).

- A stack information file handles the assembly code for a #pragma inline_asm directive as not consuming stack
area. Be careful when the assembly code includes an instruction with R0 as an operand.

#pragma inline_asm[(]<function name>[,...][)]

#pragma inline_asm func
static int func(int a, int b){
ADD R2,R1; Assembly-language description
}
main(int *p){
*p = func(10,20);
}

_main:
 PUSH.L R6
 MOV.L R1, R6
 MOV.L #20, R2
 MOV.L #10, R1
 ADD R2,R1; Assembly-language description
 MOV.L R1, [R6]
 MOV.L #0, R1
 RTSD #04H, R6-R6

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 381 of 1053
Nov 01, 2020

(6) Entry Function Specification

This specifies that the function specified as <function name> is handled as an entry function.
The entry function is created without any code to save and restore the contents of registers.
When #pragma stacksize is declared, the code that makes the initial setting of the stack pointer will be output at
the beginning of the function.
When the base option is specified, the base register specified by the option is set up.

Example C source description: -base=rom=R13 is specified

Output code:

Be sure to specify #pragma entry before declaring a function.
Do not specify more than one entry function in a load module.

(7) Bit Field Order Specification

This extension switches the order of bit field assignment.
When left is specified, bit field members are assigned from the upper-bit side. When right is specified, members
are assigned from the lower-bit side.
The default is right.
If left or right is omitted, the order is determined by the option specification.

Example

#pragma entry[(]<function name>[)]

#pragma stacksize su=100
#pragma entry INIT
void INIT() {
:
}

.SECTION SU,DATA,ALIGN=4

.BLKB 100

.SECTION P,CODE
_INIT:
MVTC (TOPOF SU + SIZEOF SU),USP
MOV.L #__ROM_TOP,R13

#pragma bit_order [{left | right}]

C Source Bit Assignment

#pragma bit_order right
struct tbl_r {
 unsigned char a:2;
 unsigned char b:3;
} x;

#pragma bit_order left
struct tbl_l {
 unsigned char a:2;
 unsigned char b:3;
} y;

x.b x.a

: Unused area

012457

x.b x.a

023567

R20UT3248EJ0110 Rev.1.10 Page 382 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

(8) Alignment Value Specification for Structure Members and Class Members

#pragma pack specifies the boundary alignment value for structure members and class members after the
#pragma pack written in the source program.
When #pragma pack is not specified or after #pragma packoption is specified, the boundary alignment value for
the structure members and class members is determined by the pack option. Table 4.23 shows #pragma pack
specifications and the corresponding alignment values.

Table 4.9 #pragma pack Specifications and Corresponding Member Alignment Values

Example

// Different-size members
#pragma bit_order right
struct tbl_r {
 unsigned short a:4;
 unsigned char b:3;
} x

// Larger than the size of the type
#pragma bit_order right
struct tbl_r {
 unsigned char a:4;
 unsigned char b:5;
} x;

#pragma pack
#pragma unpack
#pragma packoption

Member Type #pragma pack #pragma
unpack

#pragma packoption or
No Extension Specification

(signed) char 1 1 1

(unsigned) short 1 2 Determined by the pack option

(unsigned) int *, (unsigned) long,
(unsigned) long long, floating-point
type, and pointer type

1 4 Determined by the pack option

#pragma pack
struct S1 {
 char a;/* Byte offset = 0*/
 int b;/* Byte offset = 1*/
 char c;/* Byte offset = 5*/
} ST1;/* Total size: 6 bytes*/

#pragma unpack
struct S2 {
 char a;/* Byte offset = 0*/
/* 3-byte empty area*/
 int b;/* Byte offset = 4*/
 char c;/* Byte offset = 8*/
/* 3-byte empty area*/
} ST2;/* Total size: 12 bytes*/

C Source Bit Assignment

x.b

0236

x.a

015 34

x.a

07 34

x.b

07 45

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 383 of 1053
Nov 01, 2020

The boundary alignment value for structure and class members can also be specified by the pack option. When
both the option and #pragma extension specifier are specified together, the #pragma specification takes priority.

(9) Allocation of a Variable to the Absolute Address

This extension allocates the specified variable to the specified address. The compiler assigns a section for each
specified variable, and the variable is allocated to the specified absolute address during linkage. If variables are
specified for contiguous addresses, these variables are assigned to a single section.

Example C source description:

Output code:

[Remarks]

- Specify #pragma address before declaring a variable.

- If an object that is neither a structure/union member nor a variable is specified, an error will be output.

- If #pragma address is specified for a single variable more than one time, an error will be output.

- A static variable that is validated by #pragma address and not referred from the source file may be removed by
a compiler optimization.

- We recommend not applying #pragma address to a variable which has an initial value but does not have the
const qualifier. If this case applies for any variables, take note of the restrictions below.

- The -rom option (RAMization of the ROM area) of the optimizing linkage editor (rlink) cannot be applied to
sections containing such variables.

- Error messages or warnings will not be displayed for code that includes such a variable.

- When a section containing such variables is allocated to the RAM, all initial values must be written to the cor-
responding RAM areas when starting up the program or in advance of that.

(10) Endian Specification for Initial Values

This extension specifies the endian for the area that stores static objects.
The specification of this extension is applied from the line containing #pragma endian to the end of the file or up
to the line immediately before the line containing the next #pragma endian.
big specifies big endian. When the endian=little option is specified, data is assigned to the section with the sec-
tion name postfixed with _B.

#pragma address [(]<variable name>=<absolute address>[,...][)]

#pragma address X=0x7f00
int X;
main(){
 X=0;
}

_main:
MOV.L #0,R5
MOV.L #7F00H,R14;
MOV.L R5,[R14]
RTS
.SECTION $ADDR_B_7F00
.ORG 7F00H
.glb _X
_X:; static: X
.blkl 1

#pragma endian [{big | little}]

R20UT3248EJ0110 Rev.1.10 Page 384 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

little specifies little endian. When the endian=big option is specified, data is assigned to the section with the sec-
tion name postfixed with _L.
When big or little is omitted, endian is determined by the option specification.

Example When the endian=little option is specified (default state)
C source description:

Output code:

If areas of the long long type, double type (when the dbl_size=8 option is specified), and long double type
(when the dbl_size=8 option is specified) are included in objects to which #pragma endian (differed from the
endian option) is applied, do not make indirect accesses to these areas using addresses or pointers. In such a
case, correct operation will not be guaranteed. If a code that acquires an address in such an area is included, a
warning message is displayed.
If bit fields of the long long type are included in objects to which #pragma endian (differed from the endian
option) is applied, do not make writes to these areas. In such a case, correct operation will not be guaranteed.
The endian of the following items cannot be changed by this extension. The endian option needs to be used.
(1) String literal and initializers for use in the dynamic initialization of aggregates
(2) Branch table of switch statement
(3) Objects declared as external references (objects declared through extern without initialization expression)
(4) Objects specified as #pragma address

(11) Specification of Function in which Instructions at Branch Destinations are Aligned for Execution

Specifies the function in which instructions at branch destinations are aligned for execution.
Instruction allocation addresses in the specified function are adjusted to be aligned to 4-byte boundaries when
#pragma instalign4 is specified or to 8-byte boundaries when #pragma instalign8 is specified.
In the function specified with #pragma noinstalign, alignment of allocation addresses is not adjusted.
The branch destination type should be selected from the following*:
No specification:Head of function and case and default labels of switch statement
inmostloop: Head of each inmost loop, head of function, and case and default labels of switch statement
loop: Head of each loop, head of function, and case and default labels of switch statement

Note Alignment is adjusted only for the branch destinations listed above; alignment of the other destina-
tions is not adjusted. For example, when loop is selected, alignment of the head of a loop is
adjusted but alignment is not adjusted at the branch destination of an if statement that is used in
the loop but does not generate a loop.

 Except that each #pragma extension specification is valid only in the specified function, these specifiers work in
the same way as the instalign4, instalign8, and noinstalign options. When both the options and #pragma
extension specifiers are specified together, the #pragma specifications take priority.
 In the code section that contains a function specified with instalign4 or instalign8, the alignment value is
changed to 4 (instalign4 is specified) or 8 (instalign8 is specified). If a single code section contains both a func-

#pragma endian big
int A=100;/* D_B section */
#pragma endian
int B=200;/* D section */

 .glb _A
 .glb _B
 .SECTION D,ROMDATA,ALIGN=4
_B:
 .lword 200
 .SECTION D_B,ROMDATA,ALIGN=4
 .ENDIAN BIG
_A:
 .lword 100

#pragma instalign4 [(]<function name>[(<branch destination type>)][,...][)]
#pragma instalign8 [(]<function name>[(<branch destination type>)][,...][)]
#pragma noinstalign [(]<function name>[,...][)]

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 385 of 1053
Nov 01, 2020

tion specified with instalign4 and that specified with instalign8, the alignment value in the code section is set to 8.
 The other detailed functions of these #pragma extension specifiers are the same as those of the instalign4,
instalign8, and noinstalign options; refer to the description of each option.

(12) Specification of Function for generating a code for detection of stack smashing [Professional Edition only]
[V2.04.00 or later]
#pragma stack_protector [(] function name [(num=<integer value>)] [,...] [)]
#pragma no_stack_protector [(] function name [,...] [)]

Generates a code for detection of stack smashing at the entry and the end of a function. A code for detection of
stack smashing consists of instructions executing the three processes shown below.

(1) A 4-byte area is allocated just before (in the direction towards address 0xFFFFFFFF) the local variable area
at the entry to a function, and the value specified by <number> is stored in the allocated area.
(2) At the end of the function, whether the 4-byte area in which <number> was stored has been rewritten is
checked.
(3) If the 4-byte area has been rewritten in (2), the __stack_chk_fail function is called as the stack has been
smashed.

A decimal number from 0 to 4294967295 should be specified in <number>. If the specification of <number> is
omitted, the compiler automatically selects the number.
The __stack_chk_fail function needs to be defined by the user. It should contain postprocesses for the detected
stack smashing.
Note the following items when defining the __stack_chk_fail function.

- The only possible type of return value is void and any formal parameters not allowed.

- It is prohibited to call the __stack_chk_fail function as a normal function.

- The __stack_chk_fail function does not generate a code for detection of stack smashing regardless of the
-stack_protector and -stack_protector_all options, and #pragma stack_protector.

- In a C++ program, add extern "C" to the definition or the declaration for __stack_chk_fail function.

- Prevent returning to the caller (the function where stack smashing was detected) by taking measures such as
calling abort() in __stack_chk_fail function and terminating the program.

- Do not define the function as static.
A code for detection of stack smashing is not generated for a function for which #pragma no_stack_protector
has been specified regardless of the -stack_protector option and -stack_protector_all option.
If these options are used simultaneously with #pragma stack_protector, the -stack_protector option, or the
-stack_protector_all option, the specification by #pragma becomes valid.
An error will occur when #pragma stack_protector and #pragma no_stack_protector are specified simultane-
ously for the same function within a single translation unit.
When the function specified by #pragma stack_protector is specified as any one of the following functions, an
error message is output.
#pragma inline
#pragma inline_asm
#pragma entry

R20UT3248EJ0110 Rev.1.10 Page 386 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

4.2.5 Using a Keyword

This section explains using the following keyword.

- Description of access in specified size

(1) Description of Access in Specified Size

A variable is accessed in the declared or defined size.
This extension guarantees access in the size of the target variable.
Access size is guaranteed for 4-byte or smaller scalar integer types (signed char, unsigned char, signed short,
unsigned short, signed int, unsigned int, signed long, and unsigned long).

Example C source description:

Output code (__evenaccess not specified):

Output code (__evenaccess specified):

The __evenaccess is invalid to the case of accessing of members by a lump of these structure and union frame.
When __evenaccess is specified for a structure or a union, __evenaccess is applied to all members. In this case,
the access size is guaranteed for 4-byte or smaller scalar integer types, but the size of access in structure or union
units is not guaranteed.

__evenaccess <type specifier> <variable name>
<type specifier> __evenaccess <variable name>

#pragma address A=0xff0178
unsigned long __evenaccess A;
void test(void)
{
 A &= ~0x20;
}

_test:
 MOV.L #16712056,R1
 BCLR #5,[R1] ; Memory access in 1 byte
 RTS

_test:
 MOV.L #16712056,R1
 MOV.L [R1],R5 ; Memory access in 4 bytes
 BCLR #5,R5
 MOV.L R5,[R1] ; Memory access in 4 bytes
 RTS

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 387 of 1053
Nov 01, 2020

4.2.6 Intrinsic Functions

In the CCRX, some of the assembler instructions can be described in C source as "Intrinsic Functions". However, it is
not described "as assembler instruction", but as a function format set in the CCRX. When an intrinsic function is used, the
compiler inserts the corresponding code into the program.

Table 4.10 Intrinsic Functions

No. Item Specifications Function Restriction in
User Mode*

1 Maximum value
and minimum
value

signed long max(signed long data1, signed
long data2)

Selects the maximum
value.

O

signed long __max(signed long data1,
signed long data2) [V2.05.00 or later]

2 signed long min(signed long data1, signed
long data2)

Selects the minimum
value.

O

signed long __min(signed long data1,
signed long data2) [V2.05.00 or later]

3 Byte switch unsigned long revl(unsigned long data) Reverses the byte order
in longword data.

O

unsigned long __revl(unsigned long data)
[V2.05.00 or later]

4 unsigned long revw(unsigned long data) Reverses the byte order
in longword data in word
units.

O

unsigned long __revw(unsigned long data)
[V2.05.00 or later]

5 Data exchange void xchg(signed long *data1, signed long
*data2)

Exchanges data. O

void __xchg(signed long *data1, signed
long *data2) [V2.05.00 or later]

6 Multi-
ply-and-accu-
mulate
operation

long long rmpab(long long init, unsigned
long count, signed char *addr1, signed char
*addr2)

Multiply-and-accumulate
operation (byte).

O

long long __rmpab(long long init, unsigned
long count, signed char *addr1, signed char
*addr2) [V2.05.00 or later]

7 long long rmpaw(long long init, unsigned
long count, short *addr1, short *addr2)

Multiply-and-accumulate
operation (word).

O

long long __rmpaw(long long init, unsigned
long count, short *addr1, short *addr2)
[V2.05.00 or later]

8 long long rmpal(long long init, unsigned
long count, long *addr1, long *addr2)

Multiply-and-accumulate
operation (longword).

O

long long __rmpal(long long init, unsigned
long count, long *addr1, long *addr2)
[V2.05.00 or later]

R20UT3248EJ0110 Rev.1.10 Page 388 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

9 Rotation unsigned long rolc(unsigned long data) Rotates data including
the carry to left by one bit.

O

unsigned long __rolc(unsigned long data)
[V2.05.00 or later]

10 unsigned long rorc(unsigned long data) Rotates data including
the carry to right by one
bit.

O

unsigned long __rorc(unsigned long data)
[V2.05.00 or later]

11 unsigned long rotl(unsigned long data,
unsigned long num)

Rotates data to left. O

unsigned long __rotl(unsigned long data,
unsigned long num) [V2.05.00 or later]

12 unsigned long rotr(unsigned long data,
unsigned long num)

Rotates data to right. O

unsigned long __rotr(unsigned long data,
unsigned long num) [V2.05.00 or later]

13 Special instruc-
tions

void brk(void) BRK instruction excep-
tion.

O

void __brk(void) [V2.05.00 or later]

14 void int_exception(signed long num) INT instruction exception. O

void __int_exception(signed long num)
[V2.05.00 or later]

15 void wait(void) Stops program execution.

void __wait(void) [V2.05.00 or later]

16 void nop(void) Expanded to a NOP
instruction.

O

void __nop(void) [V2.05.00 or later]

17 Processor inter-
rupt priority
level (IPL)

void set_ipl(signed long level) Sets the interrupt priority
level.

void __set_ipl(signed long level) [V2.05.00
or later]

18 unsigned char get_ipl(void) Refers to the interrupt pri-
ority level.

O

unsigned char __get_ipl(void) [V2.05.00 or
later]

19 Processor sta-
tus word (PSW)

void set_psw(unsigned long data) Sets a value for PSW.

void __set_psw(unsigned long data)
[V2.05.00 or later]

20 unsigned long get_psw(void) Refers to PSW value. O

unsigned long __get_psw(void) [V2.05.00
or later]

No. Item Specifications Function Restriction in
User Mode*

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 389 of 1053
Nov 01, 2020

21 Floating-point
status word
(FPSW)

void set_fpsw(unsigned long data) Sets a value for FPSW. O

void __set_fpsw(unsigned long data)
[V2.05.00 or later]

22 unsigned long get_fpsw(void) Refers to FPSW value. O

unsigned long __get_fpsw(void) [V2.05.00
or later]

23 User stack
pointer (USP)

void set_usp(void *data) Sets a value for USP. O

void __set_usp(void *data) [V2.05.00 or
later]

24 void *get_usp(void) Refers to USP value. O

void *__get_usp(void) [V2.05.00 or later]

25 Interrupt stack
pointer (ISP)

void set_isp(void *data) Sets a value for ISP.

void __set_isp(void *data) [V2.05.00 or
later]

26 void *get_isp(void) Refers to ISP value. O

void *__get_isp(void) [V2.05.00 or later]

27 Interrupt table
register (INTB)

void set_intb(void *data) Sets a value for INTB.

void __set_intb(void *data) [V2.05.00 or
later]

28 void *get_intb(void) Refers to INTB value. O

void *__get_intb(void) [V2.05.00 or later]

29 Backup PSW
(BPSW)

void set_bpsw(unsigned long data) Sets a value for BPSW.

void __set_bpsw(unsigned long data)
[V2.05.00 or later]

30 unsigned long get_bpsw(void) Refers to BPSW value. O

unsigned long __get_bpsw(void) [V2.05.00
or later]

31 Backup PC
(BPC)

void set_bpc(void *data) Sets a value for BPC.

void __set_bpc(void *data) [V2.05.00 or
later]

32 void *get_bpc(void) Refers to BPC value. O

void *__get_bpc(void) [V2.05.00 or later]

33 Fast interrupt
vector register
(FINTV)

void set_fintv(void *data) Sets a value for FINTV.

void __set_fintv(void *data) [V2.05.00 or
later]

34 void *get_fintv(void) Refers to FINTV value. O

void *__get_fintv(void) [V2.05.00 or later]

No. Item Specifications Function Restriction in
User Mode*

R20UT3248EJ0110 Rev.1.10 Page 390 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

35 Significant
64-bit multipli-
cation

signed long long emul(signed long data1,
signed long data2)

Signed multiplication of
significant 64 bits.

O

signed long long __emul(signed long data1,
signed long data2) [V2.05.00 or later]

36 unsigned long long emulu(unsigned long
data1, unsigned long data2)

Unsigned multiplication of
significant 64 bits.

O

unsigned long long __emulu(unsigned long
data1, unsigned long data2) [V2.05.00 or
later]

37 Processor
mode (PM)

void chg_pmusr(void) Switches to user mode.

void __chg_pmusr(void) [V2.05.00 or later]

38 Accumulator
(ACC)

void set_acc(signed long long data) Sets the ACC. O

void __set_acc(signed long long data)
[V2.05.00 or later]

39 signed long long get_acc(void) Refers to the ACC. O

signed long long __get_acc(void) [V2.05.00
or later]

40 Control of the
interrupt enable
bits

void setpsw_i(void) Sets the interrupt enable
bit to 1.

void __setpsw_i(void) [V2.05.00 or later]

41 void clrpsw_i(void) Clears the interrupt
enable bit to 0.

void __clrpsw_i(void) [V2.05.00 or later]

42 Multi-
ply-and-accu-
mulate
operation

long macl(short *data1, short *data2,
unsigned long count)

Multiply-and-accumulate
operation of 2-byte data.

O

long __macl(short *data1, short *data2,
unsigned long count) [V2.05.00 or later]

43 short macw1(short *data1, short *data2,
unsigned long count)
short macw2(short *data1, short *data2,
unsigned long count)

Multiply-and-accumulate
operation of fixed-point
data.

O

short __macw1(short *data1, short *data2,
unsigned long count) [V2.05.00 or later]
short __macw2(short *data1, short *data2,
unsigned long count) [V2.05.00 or later]

44 Exception vec-
tor table register
(EXTB)

void set_extb(void *data) Sets a value for EXTB.

void __set_extb(void *data) [V2.05.00 or
later]

45 void *get_extb(void) Refers to EXTB value. O

void *__get_extb(void) [V2.05.00 or later]

No. Item Specifications Function Restriction in
User Mode*

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 391 of 1053
Nov 01, 2020

Note * Indicates whether the function is limited when the RX processor mode is user mode.
O: Has no restriction.
: Must not be used in user mode because a privileged instruction exception occurs.
: Has no effect when executed in user mode.

46 Bit manipulation void __bclr(unsigned char *data, unsigned
long bit) [V2.05.00 or later]

Clears one bit. O

47 void __bset(unsigned char *data, unsigned
long bit) [V2.05.00 or later]

Sets one bit. O

48 void __bnot(unsigned char *data, unsigned
long bit) [V2.05.00 or later]

Reverses one bit. O

49 Double-preci-
sion float-
ing-point status
word (DPSW)

void __set_dpsw(unsigned long data)
[V3.01.00 or later]

Sets a value in DPSW. O

50 unsigned long __get_dpsw(void)
[V3.01.00 or later]

Refers to the DPSW
value.

O

51 Double-preci-
sion float-
ing-point
exception han-
dling operation
control register
(DECNT)

void __set_decnt(unsigned long data)
[V3.01.00 or later]

Sets a value in DECNT. O

52 unsigned long __get_decnt(void)
[V3.01.00 or later]

Refers to the DECNT
value.

O

53 Double-preci-
sion float-
ing-point
exception pro-
gram counter
(DEPC)

void *__get_depc(void)
[V3.01.00 or later]

Refers to the DEPC
value.

O

54 Trigonometric
function unit

void __init_tfu(void)
[V3.01.00 or later]

Initializes the trigonomet-
ric function unit.

O

55 void __sincosf(float f, float *sin, float *cos)
[V3.01.00 or later]

Uses the trigonometric
function unit to calculate
the sine and cosine of an
angle at the same time
(single precision).

O

56 void __atan2hypotf(float y, float x, float
*atan2, float *hypot)
[V3.01.00 or later]

Uses the trigonometric
function unit to calculate
the arc tangent of x and y
and the square root of the
sum of squares of these

values () at
the same time (single
precision).

O

No. Item Specifications Function Restriction in
User Mode*

x2 y2+

R20UT3248EJ0110 Rev.1.10 Page 392 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

[Description]
Selects the greater of two input values (this function is expanded into a MAX instruction).

[Header]
<machine.h>

[Parameters]
data1 Input value 1
data2 Input value 2

[Return value]
The greater value of data1 and data2

[Example]

[Remarks]
The header does not have to be included when using an intrinsic function whose name starts with __.

[Description]
Selects the smaller of two input values (this function is expanded into a MIN instruction).

[Header]
<machine.h>

[Parameters]
data1 Input value 1
data2 Input value 2

[Return value]
The smaller value of data1 and data2

[Example]

[Remarks]
The header does not have to be included when using an intrinsic function whose name starts with __.

signed long max(signed long data1, signed long data2)
signed long __max(signed long data1, signed long data2) [V2.05.00 or later]

#include <machine.h>
extern signed long ret,in1,in2;
void main(void)
{
 ret = max(in1,in2);// Stores the greater value of in1 and in2 in ret.
}

signed long min(signed long data1, signed long data2)
signed long __min(signed long data1, signed long data2) [V2.05.00 or later]

#include <machine.h>
extern signed long ret,in1,in2;
void main(void)
{
 ret = min(in1,in2);// Stores the smaller value of in1 and in2 in ret.
}

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 393 of 1053
Nov 01, 2020

[Description]
Reverses the byte order in 4-byte data (this function is expanded into a REVL instruction).

[Header]
<machine.h>

[Parameters]
data Data for which byte order is to be reversed

[Return value]
Value of data with the byte order reversed

[Example]

[Remarks]
The header does not have to be included when using an intrinsic function whose name starts with __.

[Description]
Reverses the byte order within each of the upper and lower two bytes of 4-byte data (this function is expanded into a
REVW instruction).

[Header]
<machine.h>

[Parameters]
data Data for which byte order is to be reversed

[Return value]
Value of data with the byte order reversed within the upper and lower two bytes

[Example]

[Remarks]
The header does not have to be included when using an intrinsic function whose name starts with __.

unsigned long revl(unsigned long data)
unsigned long __revl(unsigned long data) [V2.05.00 or later]

#include <machine.h>
extern unsigned long ret,indata=0x12345678;
void main(void)
{
 ret = revl(indata);// ret = 0x78563412
}

unsigned long revw(unsigned long data)
unsigned long __revw(unsigned long data) [V2.05.00 or later]

#include <machine.h>
extern unsigned long ret;indata=0x12345678;
void main(void)
{
 ret = revw(indata);// ret = 0x34127856
}

R20UT3248EJ0110 Rev.1.10 Page 394 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

[Description]
Exchanges the contents of the areas indicated by parameters (this function is expanded into an XCHG instruction).

[Header]
<machine.h>

[Parameters]
*data1 Input value 1
*data2 Input value 2

[Example]

[Remarks]
The XCHG instruction to be generated has a memory operand with a location indicated by data2.
The header does not have to be included when using an intrinsic function whose name starts with __.

[Description]
Performs a multiply-and-accumulate operation with the initial value specified by init, the number of multiply-and-accu-
mulate operations specified by count, and the start addresses of values to be multiplied specified by addr1 and addr2
(this function is expanded into a RMPA.B instruction).

[Header]
<machine.h>

[Parameters]
init Initial value
count Count of multiply-and-accumulate operations
*addr1 Start address of values 1 to be multiplied
*addr2 Start address of values 2 to be multiplied

[Return value]
Lower 64 bits of the init + (data1[n] * data2[n]) result (n = 0, 1, ..., const - 1)

[Example]

[Remark]
The RMPA instruction obtains a result in a maximum of 80 bits, but this intrinsic function handles only 64 bits.
The header does not have to be included when using an intrinsic function whose name starts with __.

void xchg(signed long *data1, signed long *data2)
void __xchg(signed long *data1, signed long *data2) [V2.05.00 or later]

#include <machine.h>
extern signed long *in1,*in2;
void main(void)
{
 xchg (in1,in2);// Exchanges data at address in1 and address in2.
}

long long rmpab(long long init, unsigned long count, signed char *addr1, signed char *addr2)
long long __rmpab(long long init, unsigned long count, signed char *addr1, signed char *addr2) [V2.05.00 or later]

#include <machine.h>
extern signed char data1[8],data2[8];
long long sum;
void main(void)
{
 sum=rmpab(0, 8, data1, data2);
 // Specifies 0 as the initial value, adds the result
 // of multiplication of arrays data1 and data2,
 // and stores the result in sum.
}

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 395 of 1053
Nov 01, 2020

[Description]
Performs a multiply-and-accumulate operation with the initial value specified by init, the number of multiply-and-accu-
mulate operations specified by count, and the start addresses of values to be multiplied specified by addr1 and addr2
(this function is expanded into a RMPA.W instruction).

[Header]
<machine.h>

[Parameters]
init Initial value
count Count of multiply-and-accumulate operations
*addr1 Start address of values 1 to be multiplied
*addr2 Start address of values 2 to be multiplied

[Return value]
Lower 64 bits of the init + (data1[n] * data2[n]) result (n = 0, 1, ..., const - 1)

[Example]

[Remark]
The RMPA instruction obtains a result in a maximum of 80 bits, but this intrinsic function handles only 64 bits.
The header does not have to be included when using an intrinsic function whose name starts with __.

long long rmpaw(long long init, unsigned long count, short *addr1, short *addr2)
long long __rmpaw(long long init, unsigned long count, short *addr1, short *addr2) [V2.05.00 or later]

#include <machine.h>
extern signed short data1[8],data2[8];
long long sum;
void main(void)
{
 sum=rmpaw(0, 8, data1, data2);
 // Specifies 0 as the initial value, adds the result
 // of multiplication of arrays data1 and data2,
 // and stores the result in sum.
}

R20UT3248EJ0110 Rev.1.10 Page 396 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

[Description]
Performs a multiply-and-accumulate operation with the initial value specified by init, the number of multiply-and-accu-
mulate operations specified by count, and the start addresses of values to be multiplied specified by addr1 and addr2
(this function is expanded into a RMPA.L instruction).

[Header]
<machine.h>

[Parameters]
init Initial value
count Count of multiply-and-accumulate operations
*addr1 Start address of values 1 to be multiplied
*addr2 Start address of values 2 to be multiplied

[Return value]
Lower 64 bits of the init + (data1[n] * data2[n]) result (n = 0, 1, ..., const - 1)

[Example]

[Remarks]
The RMPA instruction obtains a result in a maximum of 80 bits, but this intrinsic function handles only 64 bits.
The header does not have to be included when using an intrinsic function whose name starts with __.

long long rmpal(long long init, unsigned long count, long *addr1, long *addr2)
long long __rmpal(long long init, unsigned long count, long *addr1, long *addr2) [V2.05.00 or later]

#include <machine.h>
extern signed long data1[8],data2[8];
long long sum;
void main(void)
{
 sum=rmpal(0, 8, data1, data2);
 // Specifies 0 as the initial value, adds the result
 // of multiplication of arrays data1 and data2,
 // and stores the result in sum.
}

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 397 of 1053
Nov 01, 2020

[Description]
Rotates data including the C flag to left by one bit (this function is expanded into a ROLC instruction).
The bit pushed out of the operand is set to the C flag.

[Header]
<machine.h>

[Parameters]
data Data to be rotated to left

[Return value]
Result of 1-bit left rotation of data including the C flag

[Example]

[Remarks]
The header does not have to be included when using an intrinsic function whose name starts with __.

[Description]
Rotates data including the C flag to right by one bit (this function is expanded into a RORC instruction).
The bit pushed out of the operand is set to the C flag.

[Header]
<machine.h>

[Parameters]
data Data to be rotated to right

[Return value]
Result of 1-bit right rotation of data including the C flag

[Example]

[Remarks]
The header does not have to be included when using an intrinsic function whose name starts with __.

unsigned long rolc(unsigned long data)
unsigned long __rolc(unsigned long data) [V2.05.00 or later]

#include <machine.h>
extern unsigned long ret, indata;
void main(void)
{
 ret = rolc(indata);// Rotates indata including the C flag
 // to left by one bit and stores the result
 // in ret.
}

unsigned long rorc(unsigned long data)
unsigned long __rorc(unsigned long data) [V2.05.00 or later]

#include <machine.h>
extern unsigned long ret, indata;
void main(void)
{
 ret = rorc(indata);// Rotates indata including the C flag
 // to right by one bit and stores the result
 // in ret.
}

R20UT3248EJ0110 Rev.1.10 Page 398 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

[Description]
Rotates data to left by the specified number of bits (this function is expanded into a ROTL instruction).
The bit pushed out of the operand is set to the C flag.

[Header]
<machine.h>

[Parameters]
data Data to be rotated to left
num Number of bits to be rotated

[Return value]
Result of num-bit left rotation of data

[Example]

[Remarks]
The header does not have to be included when using an intrinsic function whose name starts with __.

[Description]
Rotates data to right by the specified number of bits (this function is expanded into a ROTR instruction).
The bit pushed out of the operand is set to the C flag.

[Header]
<machine.h>

[Parameters]
data Data to be rotated to right
num Number of bits to be rotated

[Return value]
Result of num-bit right rotation of data

[Example]

[Remarks]
The header does not have to be included when using an intrinsic function whose name starts with __.

unsigned long rotl(unsigned long data, unsigned long num)
unsigned long __rotl(unsigned long data, unsigned long num) [V2.05.00 or later]

#include <machine.h>
extern unsigned long ret, indata;
void main(void)
{
 ret = rotl(indata, 31); // Rotates indata to left by 31 bits
 // and stores the result in ret.
}

unsigned long rotr(unsigned long data, unsigned long num)
unsigned long __rotr(unsigned long data, unsigned long num) [V2.05.00 or later]

#include <machine.h>
extern unsigned long ret, indata;
void main(void)
{
 ret = rotr(indata, 31); // Rotates indata to right by 31 bits
 // and stores the result in ret.
}

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 399 of 1053
Nov 01, 2020

[Description]
This function is expanded into a BRK instruction.

[Header]
<machine.h>

[Parameters]
-

[Return value]
-

[Example]

[Remarks]
The header does not have to be included when using an intrinsic function whose name starts with __.

[Description]
This function is expanded into an INT num instruction.

[Header]
<machine.h>

[Parameters]
num INT instruction number

[Return value]
-

[Example]

[Remarks]
Only an integer from 0 to 255 can be specified as num.
The header does not have to be included when using an intrinsic function whose name starts with __.

void brk(void)
void __brk(void) [V2.05.00 or later]

#include <machine.h>
void main(void)
{
 brk();// BRK instruction
}

void int_exception(signed long num)
void __int_exception(signed long num) [V2.05.00 or later]

#include <machine.h>
void main(void)
{
 int_exception(10);// INT #10 instruction
}

R20UT3248EJ0110 Rev.1.10 Page 400 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

[Description]
This function is expanded into a WAIT instruction.

[Header]
<machine.h>

[Parameters]
-

[Return value]
-

[Example]

[Remarks]
This function must not be executed when the RX processor mode is user mode. If executed, a privileged instruction
exception of the RX occurs due to the specifications of the WAIT instruction.
The header does not have to be included when using an intrinsic function whose name starts with __.

[Description]
This function is expanded into a NOP instruction.

[Header]
<machine.h>

[Parameters]
-

[Return value]
-

[Example]

[Remarks]
The header does not have to be included when using an intrinsic function whose name starts with __.

void wait(void)
void __wait(void) [V2.05.00 or later]

#include <machine.h>
void main(void)
{
 wait();// WAIT instruction
}

void nop(void)
void __nop(void) [V2.05.00 or later]

#include <machine.h>
void main(void)
{
 nop();// NOP instruction
}

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 401 of 1053
Nov 01, 2020

[Description]
Changes the interrupt mask level.

[Header]
<machine.h>

[Parameters]
-

[Return value]
level Interrupt mask level to be set

[Example]

[Remarks]
A value from 0 to 15 can be specified for level by default, and a value from 0 to 7 can be specified when -patch=rx610
is specified.
If a value outside the above range is specified when level is a constant, an error will be output.
This function must not be executed when the RX processor mode is user mode. If executed, a privileged instruction
exception of the RX occurs due to the specifications of the MVTIPL instruction.
The header does not have to be included when using an intrinsic function whose name starts with __.

[Description]
Refers to the interrupt mask level.

[Header]
<machine.h>

[Parameters]
-

[Return value]
Interrupt mask level

[Example]

[Remarks]
If a value smaller than 0 or greater than 7 is specified as level, an error will be output.
The header does not have to be included when using an intrinsic function whose name starts with __.

void set_ipl(signed long level)
void __set_ipl(signed long level) [V2.05.00 or later]

#include <machine.h>
void main(void)
{
 set_ipl(7);// Sets PSW.IPL to 7.
}

unsigned char get_ipl(void)
unsigned char __get_ipl(void) [V2.05.00 or later]

#include <machine.h>
extern unsigned char level;
void main(void)
{
 level=get_ipl();// Obtains the PSW.IPL value and
 // stores it in level.
}

R20UT3248EJ0110 Rev.1.10 Page 402 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

[Description]
Sets a value to PSW.

[Header]
<machine.h>

[Parameters]
data Value to be set

[Return value]
-

[Example]

[Remarks]
Due to the specifications of the RX instruction set, a write to the PM bit of PSW is ignored. In addition, a write to PSW
is ignored when the RX processor mode is user mode.
The header does not have to be included when using an intrinsic function whose name starts with __.

[Description]
Refers to the PSW value.

[Header]
<machine.h>

[Parameters]
-

[Return value]
PSW value

[Example]

[Remarks]
In some cases, the timing at which the PSW value is obtained differs from the timing at which get_psw was called,
due to the effect of optimization. Therefore when a code using the C, Z, S, or O flag included in the return value of this
function is written after some sort of operation, correct operation will not be guaranteed.
The header does not have to be included when using an intrinsic function whose name starts with __.

void set_psw(unsigned long data)
void __set_psw(unsigned long data) [V2.05.00 or later]

#include <machine.h>
extern unsigned long data;
void main(void)
{
 set_psw(data);// Sets PSW to the value specified by data.
}

unsigned long get_psw(void)
unsigned long __get_psw(void) [V2.05.00 or later]

#include <machine.h>
extern unsigned long ret;
void main(void)
{
 ret=get_psw();// Obtains the PSW value and stores it in ret.
}

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 403 of 1053
Nov 01, 2020

[Description]
Sets a value to FPSW.

[Header]
<machine.h>

[Parameters]
data Value to be set

[Return value]
-

[Example]

[Remarks]
The header does not have to be included when using an intrinsic function whose name starts with __.

[Description]
Refers to the FPSW value.

[Header]
<machine.h>

[Parameters]
-

[Return value]
FPSW value

[Example]

[Remarks]
In some cases, the timing at which the FPSW value is obtained differs from the timing at which get_fpsw was called,
due to the effect of optimization. Therefore when a code using the CV, CO, CZ, CU, CX, CE, FV, FO, FZ, FU, FX, or
FS flag included in the return value of this function is written after some sort of operation, correct operation will not be
guaranteed.
The header does not have to be included when using an intrinsic function whose name starts with __.

void set_fpsw(unsigned long data)
void __set_fpsw(unsigned long data) [V2.05.00 or later]

#include <machine.h>
extern unsigned long data;
void main(void)
{
 set_fpsw(data);// Sets FPSW to the value specified by data.
}

unsigned long get_fpsw(void)
unsigned long __get_fpsw(void) [V2.05.00 or later]

#include <machine.h>
extern unsigned long ret;
void main(void)
{
 ret=get_fpsw();// Obtains the FPSW value and stores it
 // in ret.
}

R20UT3248EJ0110 Rev.1.10 Page 404 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

[Description]
Sets a value to USP.

[Header]
<machine.h>

[Parameters]
data Value to be set

[Return value]
-

[Example]

[Remarks]
A 4-byte boundary address should be specified as data.
Program operation is not guaranteed when a 1-byte boundary address or 2-byte boundary address is specified.
The header does not have to be included when using an intrinsic function whose name starts with __.

[Description]
Refers to the USP value.

[Header]
<machine.h>

[Parameters]
-

[Return value]
USP value

[Example]

[Remarks]
The header does not have to be included when using an intrinsic function whose name starts with __.

void set_usp(void *data)
void __set_usp(void *data) [V2.05.00 or later]

#include <machine.h>
extern void * data;
void main(void)
{
 set_usp(data);// Sets USP to the value specified by data.
}

void *get_usp(void)
void *__get_usp(void) [V2.05.00 or later]

#include <machine.h>
extern void * ret;
void main(void)
{
 ret=get_usp();// Obtains the USP value and stores it in ret.
}

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 405 of 1053
Nov 01, 2020

[Description]
Sets a value to ISP.

[Header]
<machine.h>

[Parameters]
data Value to be set

[Return value]
-

[Example]

[Remarks]
Due to the specifications of the MVTC instruction used in this function, a write to ISP is ignored when the RX proces-
sor mode is user mode.
A 4-byte boundary address should be specified as data.
Program operation is not guaranteed when a 1-byte boundary address or 2-byte boundary address is specified.
The header does not have to be included when using an intrinsic function whose name starts with __.

[Description]
Refers to the ISP value.

[Header]
<machine.h>

[Parameters]
-

[Return value]
ISP value

[Example]

[Remarks]
The header does not have to be included when using an intrinsic function whose name starts with __.

void set_isp(void *data)
void __set_isp(void *data) [V2.05.00 or later]

#include <machine.h>
extern void * data;
void main(void)
{
 set_isp(data);// Sets ISP to the value specified by data.
}

void *get_isp(void)
void *__get_isp(void) [V2.05.00 or later]

#include <machine.h>
extern void * ret;
void main(void)
{
 ret=get_isp();// Obtains the ISP value and stores it in ret.
}

R20UT3248EJ0110 Rev.1.10 Page 406 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

[Description]
Sets a value to INTB.

[Header]
<machine.h>

[Parameters]
data Value to be set

[Return value]
-

[Example]

[Remarks]
Due to the specifications of the MVTC instruction used in this function, a write to INTB is ignored when the RX proces-
sor mode is user mode.
The header does not have to be included when using an intrinsic function whose name starts with __.

[Description]
Refers to the INTB value.

[Header]
<machine.h>

[Parameters]
-

[Return value]
INTB value

[Example]

[Remarks]
The header does not have to be included when using an intrinsic function whose name starts with __.

void set_intb (void *data)
void __set_intb(void *data) [V2.05.00 or later]

#include <machine.h>
extern void * data;
void main(void)
{
 set_intb (data);// Sets INTB to the value specified by data.
}

void *get_intb(void)
void *__get_intb(void) [V2.05.00 or later]

#include <machine.h>
extern void * ret;
void main(void)
{
 ret=get_intb();// Obtains the INTB value and stores it in ret.
}

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 407 of 1053
Nov 01, 2020

[Description]
Sets a value to BPSW.

[Header]
<machine.h>

[Parameters]
data Value to be set

[Return value]
-

[Example]

[Remarks]
Due to the specifications of the MVTC instruction used in this function, a write to BPSW is ignored when the RX pro-
cessor mode is user mode.
The header does not have to be included when using an intrinsic function whose name starts with __.

[Description]
Refers to the BPSW value.

[Header]
<machine.h>

[Parameters]
-

[Return value]
BPSW value

[Example]

[Remarks]
The header does not have to be included when using an intrinsic function whose name starts with __.

void set_bpsw(unsigned long data)
void __set_bpsw(unsigned long data) [V2.05.00 or later]

#include <machine.h>
extern unsigned long data;
void main(void)
{
 set_bpsw (data);// Sets BPSW to the value specified by data.
}

unsigned long get_bpsw(void)
unsigned long __get_bpsw(void) [V2.05.00 or later]

#include <machine.h>
extern unsigned long ret;
void main(void)
{
 ret=get_bpsw ();// Obtains the BPSW value and stores it
 // in ret.
}

R20UT3248EJ0110 Rev.1.10 Page 408 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

[Description]
Sets a value to BPC.

[Header]
<machine.h>

[Parameters]
data Value to be set
[Return value]

-
[Example]

[Remarks]
Due to the specifications of the MVTC instruction used in this function, a write to BPC is ignored when the RX proces-
sor mode is user mode.
The header does not have to be included when using an intrinsic function whose name starts with __.

[Description]
Refers to the BPC value.

[Header]
<machine.h>

[Parameters]
-

[Return value]
BPC value

[Example]

[Remarks]
The header does not have to be included when using an intrinsic function whose name starts with __.

void set_bpc(void *data)
void __set_bpc(void *data) [V2.05.00 or later]

#include <machine.h>
extern void * data;
void main(void)
{
 set_bpc(data);// Sets BPC to the value specified by data.
}

void *get_bpc(void)
void *__get_bpc(void) [V2.05.00 or later]

#include <machine.h>
extern void * ret;
void main(void)
{
 ret=get_bpc();// Obtains the BPC value and stores it in ret.
}

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 409 of 1053
Nov 01, 2020

[Description]
Sets a value to FINTV.

[Header]
<machine.h>

[Parameters]
data Value to be set

[Return value]

[Example]

[Remarks]
Due to the specifications of the MVTC instruction used in this function, a write to FINTV is ignored when the RX pro-
cessor mode is user mode.
The header does not have to be included when using an intrinsic function whose name starts with __.

[Description]
Refers to the FINTV value.

[Header]
<machine.h>

[Parameters]
-

[Return value]
FINTV value

[Example]

[Remarks]
The header does not have to be included when using an intrinsic function whose name starts with __.

void set_fintv(void *data)
void __set_fintv(void *data) [V2.05.00 or later]

#include <machine.h>
extern void * data;
void main(void)
{
 set_fintv(data);// Sets FINTV to the value specified by data.
}

void *get_fintv(void)
void *__get_fintv(void) [V2.05.00 or later]

#include <machine.h>
extern void * ret;
void main(void)
{
 ret=get_fintv();// Obtains the FINTV value and stores it
 // in ret.
}

R20UT3248EJ0110 Rev.1.10 Page 410 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

[Description]
Performs signed multiplication of significant 64 bits.

[Header]
<machine.h>

[Parameters]
data 1 Input value 1
data 2 Input value 2

[Return value]
Result of signed multiplication (signed 64-bit value)

[Example]

[Remarks]
The header does not have to be included when using an intrinsic function whose name starts with __.

[Description]
Performs unsigned multiplication of significant 64 bits.

[Header]
<machine.h>

[Parameters]
data 1 Input value 1
data 2 Input value 2

[Return value]
Result of unsigned multiplication (unsigned 64-bit value)

[Example]

[Remarks]
The header does not have to be included when using an intrinsic function whose name starts with __.

signed long long emul(signed long data1, signed long data2)
signed long long __emul(signed long data1, signed long data2) [V2.05.00 or later]

#include <machine.h>
extern signed long long ret;
extern signed long data1, data2;
void main(void)
{
 ret=emul(data1, data2);// Calculates the value of
 // "data1 * data2" and stores it in ret.
}

unsigned long long emulu(unsigned long data1, unsigned long data2)
unsigned long long __emulu(unsigned long data1, unsigned long data2) [V2.05.00 or later]

#include <machine.h>
extern unsigned long long ret;
extern unsigned long data1, data2;
void main(void)
{
 ret=emulu(data1, data2);// Calculates the value of
 // "data1 * data2" and stores it in ret.
}

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 411 of 1053
Nov 01, 2020

[Description]
Switches the RX processor mode to user mode.

[Header]
<machine.h>

[Parameters]
-

[Return value]
-

[Example]

[Remarks]
This function is provided for a reset processing function or interrupt function. Usage in any other function is not recom-
mended.
The processor mode is not switched when the RX processor mode is user mode.
Since the stack is switched from the interrupt stack to the user stack when this function is executed, the following con-
ditions must be met in a function that is calling this function. If the conditions are not met, code does not operate cor-
rectly because the stack is not the same before and after this function has been executed.

- Execution cannot be returned to the calling function.

- The auto variable cannot be declared.

- Parameters cannot be declared.
The header does not have to be included when using an intrinsic function whose name starts with __.

[Description]
Sets a value to ACC.

[Header]
<machine.h>

[Parameters]
data Value to be set to ACC

[Return value]
-

[Example]

[Remarks]
The header does not have to be included when using an intrinsic function whose name starts with __.

void chg_pmusr(void)
void __chg_pmusr(void) [V2.05.00 or later]

#include <machine.h>
void main(void);
void Do_Main_on_UserMode(void)
{
 chg_pmusr();// Switches the RX processor mode to user mode.
 main();// Executes the main function.
}

void set_acc(signed long long data)
void __set_acc(signed long long data) [V2.05.00 or later]

#include <machine.h>
void main(void)
{
 signed long long data = 0x123456789ab0000LL;
 set_acc(data);// Sets ACC to the value specified by data.
}

R20UT3248EJ0110 Rev.1.10 Page 412 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

[Description]
Refers to the ACC value.

[Header]
<machine.h>

[Parameters]
-

 [Return value]
ACC value

[Example]

[Remarks]
Due to the specifications of the RX instruction set, contents in the lower 16 bits of ACC cannot be obtained. This func-
tion returns the value of 0 for these bits.
The header does not have to be included when using an intrinsic function whose name starts with __.

[Description]
Sets the interrupt enable bit (I bit) in PSW to 1.

[Header]
<machine.h>

[Parameters]
-

[Return value]
-

[Example]

[Remarks]
Due to the specifications of the SETPSW instruction used by this function, writing to the interrupt enable bit is ignored
when the RX processor mode is set to user mode.
The header does not have to be included when using an intrinsic function whose name starts with __.

signed long long get_acc(void)
signed long long __get_acc(void) [V2.05.00 or later]

/* Example of program using the function to save and restore ACC by*/
/* get_acc and set_acc*/
#include <machine.h>
signed long a, b, c;
void func(void)
{
 signed long long bak_acc = get_acc();
 // Obtains the ACC value and saves it
 // in bak_acc.
 c = a * b;// Multiplication (ACC is damaged).
 set_acc(bak_acc);// Restores ACC with a value saved by
 // bak_acc.
}

void setpsw_i(void)
void __setpsw_i(void) [V2.05.00 or later]

#include <machine.h>
void main(void)
{
 setpsw_i();// Sets the interrupt enable bit to 1.
}

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 413 of 1053
Nov 01, 2020

[Description]
Clears the interrupt enable bit (I bit) in PSW to 0.

[Header]
<machine.h>

[Parameters]
-

[Return value]
-

[Example]

[Remarks]
Due to the specifications of the CLRPSW instruction used by this function, writing to the interrupt enable bit is ignored
when the RX processor mode is set to user mode.
The header does not have to be included when using an intrinsic function whose name starts with __.

void clrpsw_i(void)
void __clrpsw_i(void) [V2.05.00 or later]

#include <machine.h>
void main(void)
{
 clrpsw_i();// Clears the interrupt enable bit to 0.
}

R20UT3248EJ0110 Rev.1.10 Page 414 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

[Description]
Performs a multiply-and-accumulate operation between data of two bytes each and returns the result as four bytes.
The multiply-and-accumulate operation is executed with DSP functional instructions (MULLO, MACLO, and MACHI).
Data in the middle of the multiply-and-accumulate operation is retained in ACC as 48-bit data.
After all multiply-and-accumulate operations have finished, the contents of ACC are fetched by the MVFACMI instruc-
tion and used as the return value of the intrinsic function.
Usage of this intrinsic function enables fast multiply-and-accumulate operations to be expected compared to as when
writing multiply-and-accumulate operations without using this intrinsic function.
This intrinsic function can be used for multiply-and-accumulate operations of 2-byte integer data. Saturation and
rounding are not performed to the results of multiply-and-accumulate operations.

[Header]
<machine.h>

[Parameters]
data1 Start address of values 1 to be multiplied
data2 Start address of values 2 to be multiplied
count Count of multiply-and-accumulate operations

[Return value]
(data1[n] * data2[n]) result

[Example]

[Remarks]
Refer to the programming manual to confirm the detailed contents of the various DSP functional instructions used in
multiply-and-accumulate operations.
When the multiplication count is 0, the return value of the intrinsic function is 0.
When using this intrinsic function, save and restore ACC in an interrupt processing in which the ACC value is rewrit-
ten.
For the function to save and restore ACC, refer to the compiler option save_acc or the extended language specifica-
tions #pragma interrupt.
The header does not have to be included when using an intrinsic function whose name starts with __.

long macl(short *data1, short *data2, unsigned long count)
long __macl(short *data1, short *data2, unsigned long count) [V2.05.00 or later]

#include <machine.h>
short data1[3] = {a1, b1, c1};
short data2[3] = {a2, b2, c2};
void mac_calc()
{
 result = macl(data1, data2, 3);
 /* Obtains the result of "a1*a2+b1*b2+c1*c2". */
}

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 415 of 1053
Nov 01, 2020

[Description]
Performs a multiply-and-accumulate operation between data of two bytes each and returns the result as two bytes.
The multiply-and-accumulate operation is executed with DSP functional instructions (MULLO, MACLO, and MACHI).
Data in the middle of the multiply-and-accumulate operation is retained in ACC as 48-bit data.
After all multiply-and-accumulate operations have finished, rounding is applied to the multiply-and-accumulate opera-
tion result of ACC.
The macw1 function performs rounding with the "RACW #1" instruction while the macw2 function performs rounding
with the "RACW #2" instruction.
Rounding is performed with the following procedure.

- The contents of ACC are left-shifted by one bit with the macw1 function and by two bits with the macw2 function.

- The MSB of the lower 32 bits of ACC is rounded off (binary).

- The upper 32 bits of ACC are saturated with the upper limit as 0x00007FFF and the lower limit as 0xFFFF8000.

Finally, the contents of ACC are fetched by the MVFACHI instruction and used as the return value of these intrinsic
functions.
Normally, the decimal point position of the multiplication result needs to be adjusted when fixed-point data is multi-
plied with each other. For example, in a case of multiplication of two Q15-format fixed-point data items, the multiplica-
tion result has to be left-shifted by one bit to make the multiplication result have the Q15 format. This left-shifting to
adjust the decimal point position is achieved by the left-shift operation of the RACW instruction. Accordingly, in a case
of multiply-and-accumulate operation of 2-byte fixed-point data, using these intrinsic functions facilitate multi-
ply-and-accumulate processing. Note however that since the rounding mode of the operation result differs in macw1
and macw2, the intrinsic function to be used should be selected according to the desired accuracy for the operation
result.

[Header]
<machine.h>

[Parameters]
data1 Start address of values 1 to be multiplied
data2 Start address of values 2 to be multiplied
count Count of multiply-and-accumulate operations

[Return value]
Value obtained by rounding the multiply-and-accumulate operation result with the RACW instruction

[Example]

[Remarks]
Refer to the programming manual to confirm the detailed contents of the various DSP functional instructions used in
multiply-and-accumulate operations.
When the multiplication count is 0, the return value of the intrinsic function is 0.
When using this intrinsic function, save and restore ACC in an interrupt processing in which the ACC value is rewrit-
ten.
For the function to save and restore ACC, refer to the compiler option save_acc or the extended language specifica-
tions #pragma interrupt.
The header does not have to be included when using an intrinsic function whose name starts with __.

short macw1(short *data1, short *data2, unsigned long count)
short macw2(short *data1, short *data2, unsigned long count)
short __macw1(short *data1, short *data2, unsigned long count) [V2.05.00 or later]
short __macw2(short *data1, short *data2, unsigned long count) [V2.05.00 or later]

#include <machine.h>
short data1[3] = {a1, b1, c1};
short data2[3] = {a2, b2, c2};
void mac_calc()
{
 result = macw1(data1, data2, 3);
 /* Obtains the value of rounding the result of "a1*a2+b1*b2+c1*c2"*/
 /* with the "RACW #1" instruction. */
}

R20UT3248EJ0110 Rev.1.10 Page 416 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

[Description]
Sets a value for EXTB.

[Header]
<machine.h>

[Parameters]
data Value to be set

[Return value]
-

[Example]

[Remarks]
This function is only usable when a value other than RXv1 is specified for the isa option or the environment variable
ISA_RX. In other cases, this option will lead to an error at compilation.
Due to the specifications of the MVTC instruction used in this function, a write to EXTB is ignored when the RX pro-
cessor mode is user mode.
The header does not have to be included when using an intrinsic function whose name starts with __.

[Description]
Refers to the EXTB value.

[Header]
<machine.h>

[Parameters]
-

[Return value]
EXTB value

[Example]

[Remarks]
This function is only usable when a value other than RXv1 is specified for the isa option or the environment variable
ISA_RX. In other cases, this option will lead to an error at compilation.
The header does not have to be included when using an intrinsic function whose name starts with __.

void set_extb(void *data)
void __set_extb(void *data) [V2.05.00 or later]

#include <machine.h>
extern void * data;
void main(void)
{
 set_extb (data);// Sets EXTB to the value specified by data.
}

void *get_extb(void)
void *__get_extb(void) [V2.05.00 or later]

#include <machine.h>
extern void * ret;
void main(void)
{
 ret=get_extb();// Obtains the EXTB value and stores it in ret.
}

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 417 of 1053
Nov 01, 2020

[Description]
Sets the specified one bit in the specified 1-byte area to 0 (this function is expanded into a BCLR instruction).

[Header]
-

[Parameters]
data Address of the target 1-byte area
bit Position of the bit to be manipulated

[Return value]
-

[Example]

[Remarks]
Only an integer constant from 0 to 7 can be specified as parameter bit.
This function is expanded into a BCLR instruction which directly modifies the bit specified by the parameter to 0 in
memory.

[Description]
Sets the specified one bit in the specified 1-byte area to 1 (this function is expanded into a BSET instruction).

[Header]
-

[Parameters]
data Address of the target 1-byte area
bit Position of the bit to be manipulated

[Return value]
-

[Example]

[Remarks]
Only an integer constant from 0 to 7 can be specified as parameter bit.
This function is expanded into a BSET instruction which directly modifies the bit specified by the parameter to 1 in
memory.

void __bclr(unsigned char *data, unsigned long bit) [V2.05.00 or later]

unsigned char *data;
void main(void)
{
 __bclr(data, 0); // Sets the least significant bit in the 1-byte area indicated
 // by address data to 0.
}

void __bset(unsigned char *data, unsigned long bit) [V2.05.00 or later]

unsigned char *data;
void main(void)
{
 __bset(data, 0); // Sets the least significant bit in the 1-byte area indicated
 // by address data to 1.
}

R20UT3248EJ0110 Rev.1.10 Page 418 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

[Description]
Reverses the value of the specified one bit in the specified 1-byte area (this function is expanded into a BNOT instruc-
tion).

[Header]
-

[Parameters]
data Address of the target 1-byte area
bit Position of the bit to be manipulated

[Return value]
-

[Example]

[Remarks]
Only an integer constant from 0 to 7 can be specified as parameter bit.
This function is expanded into a BNOT instruction which directly reverses the bit specified by the parameter in mem-
ory.

[Description]
Sets a value in DPSW.

[Header]
-

[Parameters]
data Value to be set

[Return value]
-

[Example]

[Remarks]
This function is only usable when the dpfpu option is specified. If this call is attempted with the option not specified,
an error will occur at the time of compilation.

void __bnot(unsigned char *data, unsigned long bit) [V2.05.00 or later]

unsigned char *data;
void main(void)
{
 __bnot(data, 0); // Sets the least significant bit in the 1-byte area indicated
 // by address data to 0 if the value is 1 or to 1 if the value
 // is 0.
}

void __set_dpsw(unsigned long data) [V3.01.00 or later]

unsigned long data;
void main(void)
{
 __set_dpsw(data);// Sets DPSW to the value specified by data.
}

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 419 of 1053
Nov 01, 2020

[Description]
Refers to the DPSW value.

[Header]
-

[Parameters]
-

[Return value]
DPSW value

[Example]

[Remarks]
This function is only usable when the dpfpu option is specified. If this call is attempted with the option not specified,
an error will occur at the time of compilation.

[Description]
Sets a value in DECNT.

[Header]
-

[Parameters]
data Value to be set

[Return value]
-

[Example]

[Remarks]
This function is only usable when the dpfpu option is specified. If this call is attempted with the option not specified,
an error will occur at the time of compilation.

unsigned long __get_dpsw(void) [V3.01.00 or later]

unsigned long ret;
void main(void)
{
 ret=__get_dpsw();// Obtains the DPSW value and stores it in ret.
}

void __set_decnt(unsigned long data) [V3.01.00 or later]

unsigned long data;
void main(void)
{
 __set_decnt(data);// Sets DECNT to the value specified by data.
}

R20UT3248EJ0110 Rev.1.10 Page 420 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

[Description]
Refers to the DECNT value.

[Header]
-

[Parameters]
-

[Return value]
DECNT value

[Example]

[Remarks]
This function is only usable when the dpfpu option is specified. If this call is attempted with the option not specified,
an error will occur at the time of compilation.

[Description]
Refers to the DEPC value.

[Header]
-

[Parameters]
-

[Return value]
DEPC value

[Example]

[Remarks]
This function is only usable when the dpfpu option is specified. If this call is attempted with the option not specified,
an error will occur at the time of compilation.

unsigned long __get_decnt(void) [V3.01.00 or later]

unsigned long ret;
void main(void)
{
 ret=__get_decnt();// Obtains the DECNT value and stores it in ret.
}

void *__get_depc(void) [V3.01.00 or later]

void *ret;
void main(void)
{
 ret=__get_depc();// Obtains the DEPC value and stores it in ret.
}

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 421 of 1053
Nov 01, 2020

[Description]
Initializes the trigonometric function unit.

[Header]
-

[Parameters]
-

[Return value]
-

[Example]

[Remarks]
Before using the trigonometric function unit, initialize the unit from the startup program by calling this function. If you
do not do so, correct operation is not guaranteed.
This function is only available when the tfu option is specified. If this call is attempted with the option not specified, an
error will occur at the time of compilation.

[Description]
Uses the trigonometric function unit to calculate the sine and cosine of an angle at the same time (single precision).

[Header]
-

[Parameters]
f Value in radians from which to calculate the sine and cosine
sin Address for storing the result of the sine operation
cos Address for storing the result of the cosine operation

[Return value]
-

[Example]

[Remarks]
Before calling this function, be sure to initialize the trigonometric function unit by calling the __init_tfu() intrinsic func-
tion.
This function is not reentrant.
This function is only available when the tfu option is specified. If this call is attempted with the option not specified, an
error will occur at the time of compilation.

void __init_tfu(void) [V3.01.00 or later]

void main(void)
{
 __init_tfu();
}

void __sincosf(float f, float *sin, float *cos) [V3.01.00 or later]

float f, *sin, *cos;
void main(void)
{
 __init_tfu(); // The trigonometric function unit must be initialized in advance.

 __sincosf(f, sin, cos);
}

R20UT3248EJ0110 Rev.1.10 Page 422 of 1053
Nov 01, 2020

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

[Description]
Uses the trigonometric function unit to calculate the arc tangent of x and y and the square root of the sum of squares

of these values () at the same time (single precision).
[Header]

-
[Parameters]

y Coordinate y (the numerator of the tangent)
x Coordinate x (the denominator of the tangent)
atan2 Address for storing the result of the arc tangent operation for y/x
hypot Address for storing the result of the square root of the sum of squares of x and y ()

[Return value]
-

[Example]

[Remarks]
Before calling this function, be sure to initialize the trigonometric function unit by calling the __init_tfu() intrinsic func-
tion.
This function is not reentrant.
The result of the arc tangent operation is returned as a value in radians in the range from (- to)
This function is only available when the tfu option is specified. If this call is attempted with the option not specified, an
error will occur at the time of compilation.

void __atan2hypotf(float y, float x, float *atan2, float *hypot) [V3.01.00 or later]

float y, x, *atan2, *hypot;
void main(void)
{
 __init_tfu(); // The trigonometric function unit must be initialized in advance.

 __atan2hypotf(y, x, atan2, hypot);
}

x2 y2+

x2 y2+

CC-RX 4.　COMPILER LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 423 of 1053
Nov 01, 2020

4.2.7 Section Address Operators

Table 3.26 lists the section address operators.

Table 4.11 Section Address Operators

[Return value type]
The return value type of __sectop is void *.
The return value type of __secend is void *.
The return value type of __secsize is unsigned long.

[Example]
(1) __sectop, __secend

(2) __secsize

[Remarks]
In an application that enables the PIC/PID function, __sectop and __secend is processed as the addresses deter-

mined at linkage.
For details of the PIC/PID function, refer to the descriptions of the pic and pid options in Usage of PIC/PID Function.

No. Section Address Operator Description

1 __sectop("<section name>") Refers to the start address of <section name>.

2 __secend("<section name>") Refers to the sum of the size of <section name> and the
address where <section name> starts.

3 __secsize("<section name>") Refers to the size of <section name>.

#include <machine.h>
#pragma section $DSEC
static const struct {
 void *rom_s; /* Start address of the initialized data section in ROM */
 void *rom_e; /* End address of the initialized data section in ROM */
 void *ram_s; /* Start address of the initialized data section in RAM */
} DTBL[]={__sectop("D"), __secend("D"), __sectop("R")};

#pragma section $BSEC
static const struct {
 void *b_s; /* Start address of the uninitialized data section */
 void *b_e; /* End address of the uninitialized data section */
} BTBL[]={__sectop("B"), __secend("B")};

#pragma section
#pragma stacksize si=0x100
#pragma entry INIT
void main(void);
void INIT(void)
{
 _INITSCT();
 main();
 sleep();
}

/* size of section B */
unsigned int size_of_B = __secsize("B");

R20UT3248EJ0110 Rev.1.10 Page 424 of 1053
Nov 01, 2020

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

5. ASSEMBLY LANGUAGE SPECIFICATIONS

This chapter describes the assembly language specifications supported by the RX assembler. For information on regis-
ters, instructions, and data types that are usable in the assembly source code, refer to the RX Family Software Manual.

5.1 Description of Source

This section explains description of source, expressions, and operators.

5.1.1 Description

The following shows the mnemonic line format.
[label][operation[operand(s)]][comment]
Coding example:

(1) Label
Define a name for the address of the mnemonic line.

(2) Operation
Write a mnemonic or a directive.

(3) Operand(s)
Write the object(s) of the operation. The number of operands and their types depend on the operation. Some oper-
ations do not require any operands.

(4) Comment
Write notes or explanations that make the program easier to understand.

5.1.2 Names

Desired names can be defined and used in assembly-language files.
Names are classified into the following types.

Table 5.1 Types of Name

Rules for Names:

- There is no limitation on the number of characters in a name.

- Names are case-sensitive; "LAB" and "Lab" are handled as different names.

- An underscore (_) and a dollar sign ($) can be used in names.

- The first character in a name must not be a digit.

- Any reserved word must not be used as a name.

Note Flag names (U, I, O, S, Z, and C), which are reserved words, can be used only for section names.

LABEL1: MOV.L [R1], R2 ; Example of a mnemonic.
Label Operation Operands Comment

Type Description

Label name A name having an address as its value.

Symbol name A name having a constant as its value (the name of a label is also included).

Section name The name of a section that is defined through the .SECTION directive.

Location symbol name The start address of the operation in a line including a location symbol ($).

Macro name Macro definition name

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 425 of 1053
Nov 01, 2020

5.1.3 Coding of Labels

Be sure to append a colon (:) to the end of a label.

Example

Defining a symbol name which is the same as that of an existing section is not possible. If a section and symbol with the
same name are defined, the section name will be effective, but the symbol name will lead to an A2118 error.

5.1.4 Coding of Operation

- Format

- Description
An instruction consists of the following two elements.
(1) Mnemonic: Specifies the operation of the instruction.
(2) Size specifier: Specifies the size of the data which undergoes the operation.

(1) Mnemonic
A mnemonic specifies the operation of the instruction.
Example:
MOV: Transfer instruction
ADD: Arithmetic instruction (addition instruction)

(2) Size Specifier
A size specifier specifies the size of the operand(s) in the instruction code.

- Format

- Description
A size specifier specifies the operation size of the operand(s). More exactly, it specifies the size of data to be
read to execute the instruction. The following can be specified as size.

Table 5.2 Size Specifiers

A size specifier can be written in either uppercase or lowercase.
Example: MOV.B #0, R3 ... Specifies the byte size.
Size specifiers can be and must be used for the instructions whose mnemonics are suffixed with ".size" in the
Instruction Format description of the RX Family Software Manual.

(3) Branch Distance Specifier
Branch distance specifiers are used in branch and relative subroutine branch instructions.

- Format

- Description
The following can be specified as length.

LABEL1:

mnemonic [size specifier (branch distance specifier)]

.size

size Description

B Byte (8 bits)

W Word (16 bits)

L Longword (32 bits)

.length

R20UT3248EJ0110 Rev.1.10 Page 426 of 1053
Nov 01, 2020

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

Table 5.3 Branch Distance Specifiers

A distance specifier can be written either in uppercase or lowercase.
Examples:
BRA.W label ... Specifies 16-bit relative.
BRA.L R1 ... Specifies register relative.

This specifier can be omitted. When the specifier is omitted, the assembler automatically selects the distance from
among S, B, W, and A to generate the smallest opcode when the following conditions are all satisfied.
(1) The operand is not a register.
(2) The operand specifies the destination for which the branch distance is determined at assembly.

Examples: Label + value determined at assembly
 Label - value determined at assembly
 Value determined at assembly + label

(3) The label of the operand is defined within the same section.
Note that when a register is specified as the operand, branch distance specifier L is selected.

For a conditional branch instruction, if the branch distance is beyond the allowed range, a code is generated by
inverting the branch condition.
The following shows the branch distance specifiers that can be used in each instruction.

Table 5.4 Branch Distance Specifiers for Each Branch Instruction

5.1.5 Coding of Operands

(1) Numeric Value
Five types of numeric values described below can be written in programs.
The written values are handled as 32-bit signed values (except floating-point values).

(a) Binary Number
Use digits 0 and 1, and append B or b as a suffix.

- Examples

(b) Octal Number
Use digits 0 to 7, and append O or o as a suffix.

- Examples

length Description

S 3-bit PC forward relative (+3 to +10)

B 8-bit PC relative (–128 to +127)

W 16-bit PC relative (–32768 to +32767)

A 24-bit PC relative (–8388608 to +8388607)

L Register relative (–2147483648 to +2147183647)

Instruction .S .B .W .A .L

BCnd (Cnd = EQ/Z) Allowed Allowed Allowed - -

(Cnd = NE/NZ) Allowed Allowed Allowed - -

(Cnd = others) - Allowed - - -

BRA Allowed Allowed Allowed Allowed Allowed

BSR - - Allowed Allowed Allowed

1011000B
1011000b

60702O
60702o

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 427 of 1053
Nov 01, 2020

(c) Decimal Number
Use digits 0 to 9.

- Example

(d) Hexadecimal Number
Use digits 0 to 9 and letters A to F and a to f, and append H or h as a suffix.
When starting with a letter, append 0 as a prefix.

- Examples

(e) Floating-Point Number
A floating-point number can be written only as the operand of the .FLOAT or .DOUBLE directive.
No floating-point number can be used in expressions.
The following range of values can be written as floating-point numbers.
FLOAT (32 bits):1.17549435 * 10-38 to 3.40282347 * 1038

DOUBLE (64 bits):2.2250738585072014 * 10-308 to 1.7976931348623157 * 10308

- Format

- Examples

(2) Addressing Mode
The following three types of addressing mode can be specified in operands.

(a) General Instruction Addressing

- Register direct
The specified register is the object of operation. R0 to R15 and SP can be specified. DR0 to DR15, DRL0 to
DRL15, and DRH0 to DRH15 can also be used when -dpfpu is specified. SP is assumed as R0 (R0 = SP).

- Example:

- Immediate
#imm indicates an immediate integer.
#uimm indicates an immediate unsigned integer.
#simm indicates an immediate signed integer.
#imm:n, #uimm:n, and #simm:n indicate an n-bit immediate value.

Note The value of #uimm:8 in the RTSD instruction must be determined.

- Example:

9243

0A5FH
5FH
0a5fh
5fh

(mantissa)E(exponent)
(mantissa)e(exponent)

3.4E35 ;3.4*10**35
3.4e-35 ;3.4*10**-35
-.5E20 ;-0.5*10**20
5e-20 ;5.0*10**-20

Rn (Rn=R0 to R15, SP)

ADD R1, R2

#imm:8, #uimm:8, #simm:8, #imm:16, #simm:16, #simm:24, #imm:32

MOV.L #-100, R2; #simm:8

R20UT3248EJ0110 Rev.1.10 Page 428 of 1053
Nov 01, 2020

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

- Register indirect
The value in the register indicates the effective address of the object of operation. The effective address
range is 00000000h to FFFFFFFFh.

- Example:

- Register relative
The effective address of the object of operation is the sum of the displacement (dsp) after zero-extension to
32 bits and the register value. The effective address range is 00000000h to FFFFFFFFh. dsp:n represents an
n-bit displacement.
Specify a dsp value scaled with the following rules. The assembler restores it to the value before scaling and
embeds it into the instruction bit pattern.

Table 5.5 Scaling Rules of dsp Value

dsp:8[Rn], dsp:16[Rn] (Rn=R0 to R15, SP)

- Example:

When the size specifier is W or L but the address is not a multiple of 2 or 4:
if the value is determined at assembly: Error at assembly
if the value is not determined at assembly: Error at linkage

(b) Extended Instruction Addressing

- Short immediate
The immediate value specified by #imm is the object of operation. When the immediate value is not deter-
mined at assembly, an error will be output.
#imm:1
This addressing mode is used only for src in the DSP function instruction (RACW). 1 or 2 can be specified as
an immediate value.
Example:

#imm:2
The 2-bit immediate value specified by #imm is the object of operation. This addressing mode is only used to
specify the coprocessor number in coprocessor instructions (MVFCP, MVTCP, and OPECP).
Example:

#imm:3
The 3-bit immediate value specified by #imm is the object of operation. This addressing mode is used to
specify the bit number in bit manipulation instructions (BCLR, BMCnd, BNOT, BSET, and BTST).
Example:

[Rn] (Rn=R0 to R15, SP)

ADD [R1], R2

Instruction Rule

Transfer instruction using a size specifier Multiply by 1, 2, or 4 according to the size specifier (.B, .W, or .L)

Arithmetic/logic instruction using
a size extension specifier

Multiply by 1, 1, 2, 2, or 4 according to the size extension speci-
fier (.B, .UB, .W, .UW, or .L)

Bit manipulation instruction Multiply by 1

Others Multiply by 4

ADD 400[R1], R2; dsp:8[Rn] (400/4 = 100)

RACW #1; RACW #imm:1

MVTCP #3, R1, #4:16; MVTCP #imm:2, Rn, #imm:16

BSET #7, R10; BSET #imm:3, Rn

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 429 of 1053
Nov 01, 2020

#imm:4
When using this addressing mode in the source statements of the ADD, AND, CMP, MOV, MUL, OR, and
SUB instructions, the object of operation is obtained by zero-extension of the 4-bit immediate value specified
by #imm to 32 bits.
When using this addressing mode to specify the interrupt priority level in the MVTIPL instruction, the object of
operation is the 4-bit immediate value specified by #imm.
Example:

#imm:5
The 5-bit immediate value specified by #imm is the object of operation. This addressing mode is used to
specify the bit number in bit manipulation instructions (BCLR, BMCnd, BNOT, BSET, and BTST), the number
of bits shifted in shift instructions (SHAR, SHLL, and SHLR), and the number of bits rotated in rotate instruc-
tions (ROTL and ROTR).
Example:

- Short register relative
The effective address of the object of operation is the sum of the 5-bit displacement (dsp) after zero-exten-
sion to 32 bits and the register value. The effective address range is 00000000h to FFFFFFFFh.
Specify a dsp value respectively multiplied by 1, 2, or 4 according to the size specifier (.B, .W, or .L). The
assembler restores it to the value before scaling and embeds it into the instruction bit pattern. When the dsp
value is not determined at assembly, an error will be output. This addressing mode is used only in the MOV
and MOVU instructions.

Example:

Note The other operand (src or dest) should also be R0 to R7.

- Post-increment register indirect
1, 2, or 4 is respectively added to the register value according to the size specifier (.B, .W, or .L). The register
value before increment is the effective address of the object of operation. The effective address range is
00000000h to FFFFFFFFh. This addressing mode is used only in the MOV and MOVU instructions.

Example:

- Pre-decrement register indirect
1, 2, or 4 is respectively subtracted from the register value according to the size specifier (.B, .W, or .L). The
register value after decrement is the effective address of the object of operation. The effective address range
is 00000000h to FFFFFFFFh. This addressing mode is used only in the MOV and MOVU instructions.

Example:

- Indexed register indirect
The effective address of the object of operation is the least significant 32 bits of the sum of the value in the
index register (Ri) after multiplication by 1, 2, or 4 according to the size specifier (.B, .W, or .L) and the value
in the base register (Rb). The effective address range is 00000000h to FFFFFFFFh. This addressing mode is
used only in the MOV and MOVU instructions.

ADD #15, R8; ADD #imm:4, Rn

BSET #31, R10; BSET #imm:5, Rn

dsp:5[Rn] (Rn=R0 to R7, SP)

MOV.L R3,124[R1]; dsp:5[Rn] (124/4 = 31)

[Rn+] (Rn=R0 to R15, SP)

MOV.L [R3+],R1

[-Rn] (Rn=R0 to R15, SP)

MOV.L [-R3],R1

[Ri,Rb] (Ri=R0 to R15, SP) (Rb=R0 to R15, SP)

R20UT3248EJ0110 Rev.1.10 Page 430 of 1053
Nov 01, 2020

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

Examples:

(c) Specific Instruction Addressing

- Control register direct
The specified control register is the object of operation.
This addressing mode is used only in the MVTC, POPC, PUSHC, and MVFC instructions.

This addressing mode is also used for the DPUSHM, DPOPM, MVTDC, and MVFDC instructions when
-dpfpu is specified.

Example:

- PSW direct
The specified flag or bit is the object of operation. This addressing mode is used only in the CLRPSW and
SETPSW instructions.

Example:

- Program counter relative
This addressing mode is used to specify the branch destination in the branch instruction.

The effective address is the signed sum of the program counter value and the Rn value. The range of the Rn
value is –2147483648 to 2147483647. The effective address range is 00000000h to FFFFFFFFh. This
addressing mode is used in the BRA(.L) and BSR(.L) instructions.

This specifies the destination address of a branch instruction. The specified symbol or value indicates the
effective address.
The assembler subtracts the program counter value from the specified branch destination address and
embeds it into the instruction bit pattern as a displacement (pcdsp).
When the branch distance specifier is .S, the effective address is the least significant 32 bits of the unsigned
sum of the program counter value and the displacement value.
The range of pcdsp is 3 pcdsp:3 10.
The effective address range is 00000000h to FFFFFFFFh. This addressing mode is used only in the BRA and
BCnd (only for Cnd == EQ, NE, Z, or NZ) instructions.

This specifies the destination address of a branch instruction. The specified symbol or value indicates the
effective address.
The assembler subtracts the program counter value from the specified branch destination address and
embeds it into the instruction bit pattern as a displacement (pcdsp).
When the branch distance specifier is .B, .W, or .A, the effective address is the least significant 32 bits of the
signed sum of the program counter value and the displacement value. The range of pcdsp is as follows.
For .B: –128 pcdsp:8 +127

MOV.L [R3,R1],R2
MOV.L R3, [R1,R2]

PSW, FPSW, USP, ISP, INTB, EXTB, BPSW, BPC, FINTV, PC

DPSW, DCMR, DECNT, DEPC

STC PSW,R2

U, I, O, S, Z, C

CLRPSW U

Rn (Rn=R0 to R15, SP)

label(PC + pcdsp:3)

label(PC + pcdsp:8/pcdsp:16/pcdsp:24)

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 431 of 1053
Nov 01, 2020

For .W: –32768 pcdsp:16 +32767
For .A: –8388608 pcdsp:24 +8388607
The effective address range is 00000000h to FFFFFFFFh.

(3) Bit Length Specifier
A bit length specifier specifies the size of the immediate value or displacement in the operand.

- Format

- Description
This specifier should be appended immediately after the immediate value or displacement specified in the oper-
and.
The assembler selects an addressing mode according to the specified size.
When this specifier is omitted, the assembler selects the optimum bit length for code efficiency.
When specified, the assembler does not select the optimum size but uses the specified size.
This specifier must not be used for operands of assembler directives.
One or more space characters can be inserted between an immediate value or a displacement and this speci-
fier.
When a size specified for an instruction is not allowed for that instruction, an error will be output.
The following can be specified as width.
2: Indicates an effective length of one bit.
#imm:2
3: Indicates an effective length of three bits.
#imm:3
4: Indicates an effective length of four bits.
#imm:4
5: Indicates an effective length of five bits.
#imm:5, dsp:5
8: Indicates an effective length of eight bits.
#uimm:8, #simm:8, dsp:8
16: Indicates an effective length of 16 bits.
#uimm:16, #simm:16, dsp:16
24: Indicates an effective length of 24 bits.
#simm:24
32: Indicates an effective length of 32 bits.
#imm:32

(4) Size Extension Specifier
A size extension specifier specifies the size of a memory operand and the type of extension when memory is
specified as the source operand of an arithmetic/logic instruction.

- Format

- Description
This specifier should be appended immediately after a memory operand and no space character should be
inserted between them.
Size extension specifiers are valid only for combinations of specific instructions and memory operands; if a size
extension specifier is used for an invalid combination of instruction and operand, an error will be output.
Valid combinations are indicated by ".memex" appended after the source operands in the Instruction Format
description of the RX Family Software Manual.
When this specifier is omitted, the assembler assumes B for bit manipulation instructions or assumes L for other
instructions.
The following shows available size extension specifiers and their function.

Table 5.6 Size Extension Specifiers

:width

.memex

Size Extension Specifier Function

B Sign extension of 8-bit data into 32 bits

UB Zero extension of 8-bit data into 32 bits

R20UT3248EJ0110 Rev.1.10 Page 432 of 1053
Nov 01, 2020

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

Examples:

5.1.6 Expression

A combination of numeric values, symbols, and operators can be written as an expression.

- A space character or a tab can be inserted between an operator and a numeric value.

- Multiple operators can be used in combination.

- When using an expression as a symbol value, make sure that the value of the expression is determined at assembly.

- A character constant must not be used as a term of an expression.

- The expression value as a result of operation must be within the range from –2147483648 to 2147483647. The
assembler does not check if the result is outside this range.

(a) Operator
The following is a list of the operators that can be written in programs.

- Unary operators

Table 5.7 Unary Operators

Be sure to insert a space character or a tab between the operand and SIZEOF or TOPOF.
Example: SIZEOF program

- Binary operators

Table 5.8 Binary Operators

W Sign extension of 16-bit data into 32 bits

UW Zero extension of 16-bit data into 32 bits

L 32-bit data loading

ADD [R1].B, R2
AND 125[R1].UB, R2

Operator Function

+ Handles the value that follows the operator as a positive value.

- Handles the value that follows the operator as a negative value.

~ Logically negates the value that follows the operator.

SIZEOF Handles the size (bytes) of the section specified in the operand as a value.

TOPOF Handles the start address of the section specified in the operand as a value.

Operator Function

+ Adds the lvalue and rvalue.

- Subtracts the rvalue from the lvalue.

* Multiplies the lvalue and rvalue.

/ Divides the lvalue by the rvalue.

% Obtains the remainder by dividing the lvalue by the rvalue.

>> Shifts the lvalue to the right by the number of bits specified by the rvalue.

<< Shifts the lvalue to the left by the number of bits specified by the rvalue.

Size Extension Specifier Function

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 433 of 1053
Nov 01, 2020

- Conditional operators
A conditional operator can be used only in the operand of the .IF or .ELIF directive.

Table 5.9 Conditional Operators

- Precedence designation operator

Table 5.10 Precedence Designation Operator

(b) Order of Expression Evaluation
The expression in an operand is evaluated in accordance with the following precedence and the resultant value
is handled as the operand value.

- The operators are evaluated in the order of their precedence. The operator precedence is shown in the follow-
ing table.

- Operators having the same precedence are evaluated from left to right.

- An operation enclosed within parentheses takes the highest precedence.

Table 5.11 Order of Expression Evaluation

& Logically ANDs the lvalue and rvalue in bitwise.

| Logically (inclusively) ORs the lvalue and rvalue in bitwise.

^ Exclusively ORs the lvalue and rvalue in bitwise.

Operator Function

> Evaluates if the lvalue is greater than the rvalue.

< Evaluates if the lvalue is smaller than the rvalue.

>= Evaluates if the lvalue is equal to or greater than the rvalue.

<= Evaluates if the lvalue is equal to or smaller than the rvalue.

== Evaluates if the lvalue is equal to the rvalue.

!= Evaluates if the lvalue is not equal to the rvalue.

Operator Function

() An operation enclosed within () takes precedence. If multiple pairs of parentheses are
used in an expression, the left pair is given precedence over the right pair. Parentheses
can be nested.

Precedence Operator Type Operator

1 Precedence designation operator ()

2 Unary operator +, -, ~, SIZEOF, TOPOF

3 Binary operator 1 *, /, %

4 Binary operator 2 +, -

5 Binary operator 3 >>, <<

6 Binary operator 4 &

7 Binary operator 5 |, ^

8 Conditional operator >, <, >=, <=, ==, !=

Operator Function

R20UT3248EJ0110 Rev.1.10 Page 434 of 1053
Nov 01, 2020

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

5.1.7 Coding of Comments

A comment is written after a semicolon (;). The assembler regards all characters from the semicolon to the end of the
line as a comment.

Example:

5.1.8 Selection of Optimum Instruction Format

Some of the RX Family microcontroller instructions provide multiple instruction formats for an identical single process-
ing.

The assembler selects the optimum instruction format that generates the shortest code according to the instruction and
addressing mode specifications.

(1) Immediate Value
For an instruction having an immediate value as an operand, the assembler selects the optimum one of the avail-
able addressing modes according to the range of the immediate value specified as the operand. The following
shows the immediate value ranges in the order of priority.

Table 5.12 Ranges of Immediate Values

Notes 1. Hexadecimal values can also be written in 32 bits.
Example: Decimal "–127" = hexadecimal "–7FH" can be written as "0FFFFFF81H".

Notes 2. The #imm range for src in the INT instruction is 0 to 255.

Notes 3. The #imm range for src in the RTSD instruction is four times the #uimm:8 range.

(2) ADC and SBB Instructions
The following shows the ADC and SBB instruction formats and operands for which the assembler selects the opti-
mum code, in the order of selection priority.

Note The following table does not show the instruction formats and operands for which code selection is
not optimized. When the processing size is not shown in the table, L is assumed.

ADD R1, R2 ; Adds R1 to R2.

#imm Decimal Notation Hexadecimal Notation

#imm:1 1 to 2 1H to 2H

#imm:2 0 to 3 0H to 3H

#imm:3 0 to 7 0H to 7H

#imm:4 0 to 15 0H to 0FH

#imm:5 0 to 31 0H to 1FH

#imm:8 –128 to 255 –80H to 0FFH

#uimm:8 0 to 255 0H to 0FFH

#simm:8 –128 to 127 –80H to 7FH

#imm:16 –32768 to 65535 –8000H to 0FFFFH

#simm:16 –32768 to 32767 –8000H to 7FFFH

#simm:24 –8388608 to 8388607 –800000H to 7FFFFFH

#imm:32 –2147483648 to 4294967295 –80000000H to 0FFFFFFFFH

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 435 of 1053
Nov 01, 2020

Table 5.13 Instruction Formats of ADC and SBB Instructions

In the SBB instruction, an immediate value is not allowed for src.

(3) ADD Instruction
The following shows the ADD instruction formats and operands for which the assembler selects the optimum
code, in the order of selection priority.

Table 5.14 Instruction Formats of ADD Instruction

(4) AND, OR, SUB, and MUL Instructions
The following shows the AND, OR, SUB, and MUL instruction formats and operands for which the assembler
selects the optimum code, in the order of selection priority.

Instruction Format Target of Optimum Selection Code Size
[Bytes]

src src2 dest

ADC src,dest #simm:8 - Rd 4

#simm:16 - Rd 5

#simm:24 - Rd 6

#imm:32 - Rd 7

ADC/SBB src,dest dsp:8[Rs].L - Rd 4

dsp:16[Rs].L - Rd 5

Instruction Format Target of Optimum Selection Code Size
[Bytes]

src src2 dest

(1) ADD src,dest #uimm:4 - Rd 2

#simm:8 - Rd 3

#simm:16 - Rd 4

#simm:24 - Rd 5

#imm:32 - Rd 6

dsp:8[Rs].memex - Rd 3 (memex = UB), 4 (memex UB)

dsp:16[Rs].memex - Rd 4 (memex = UB), 5 (memex UB)

(2) ADD src,src2,dest #simm:8 Rs Rd 3

#simm:16 Rs Rd 4

#simm:24 Rs Rd 5

#imm:32 Rs Rd 6

R20UT3248EJ0110 Rev.1.10 Page 436 of 1053
Nov 01, 2020

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

Table 5.15 Instruction Formats of AND, OR, SUB, and MUL Instructions

In the SUB instruction, #simm:8/16/24 and #imm:32 are not allowed for src.

(5) BMCnd Instruction
The following shows the BMCnd instruction formats and operands for which the assembler selects the optimum
code, in the order of selection priority.

Table 5.16 Instruction Formats of BMCnd Instruction

(6) CMP Instruction
The following shows the CMP instruction formats and operands for which the assembler selects the optimum
code, in the order of selection priority.

Table 5.17 Instruction Formats of CMP Instruction

(7) DIV, DIVU, EMUL, EMULU, ITOF, MAX, MIN, TST, and XOR Instructions
The following shows the DIV, DIVU, EMUL, EMULU, ITOF, MAX, MIN, MUL, TST, and XOR instruction formats
and operands for which the assembler selects the optimum code, in the order of selection priority.

Instruction Format Target of Optimum Selection Code Size
[Bytes]

src src2 dest

AND/OR/SUB/MUL
src,dest

#uimm:4 - Rd 2

#simm:8 - Rd 3

#simm:16 - Rd 4

#simm:24 - Rd 5

#imm:32 - Rd 6

dsp:8[Rs].memex - Rd 3 (memex = UB), 4 (memex UB)

dsp:16[Rs].memex - Rd 4 (memex = UB), 5 (memex UB)

Instruction Format Processing
Size

Target of Optimum Selection Code Size
[Bytes]

src src2 dest

BMCnd src,dest B #imm:3 - dsp:8[Rs].B 4

B #imm:3 - dsp:16[Rs].B 5

Instruction Format Processing
Size

Target of Optimum Selection Code Size
[Bytes]

src src2 dest

CMP src,src2 L #uimm:4 Rd - 2

L #uimm:8 Rd - 3

L #simm:8 Rd - 3

L #simm:16 Rd - 4

L #simm:24 Rd - 5

L #imm:32 Rd - 6

L dsp:8[Rs].memex Rd - 3 (memex = UB),
4 (memex UB)

L dsp:16[Rs].memex Rd - 4 (memex = UB),
5 (memex UB)

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 437 of 1053
Nov 01, 2020

Table 5.18 Instruction Formats of DIV, DIVU, EMUL, EMULU, ITOF, MAX, MIN, TST, and XOR Instructions

In the ITOF instruction, #simm:8/16/24 and #imm:32 are not allowed for src.

(8) FADD, FCMP, FDIV, FMUL, and FTOI Instructions
The following shows the FADD, FCMP, FDIV, FMUL, and FTOI instruction formats and operands for which the
assembler selects the optimum code, in the order of selection priority.

Table 5.19 Instruction Formats of FADD, FCMP, FDIV, FMUL, and FTOI Instructions

In the FTOI instruction, #imm:32 is not allowed for src.

(9) MVTC, STNZ, and STZ Instructions
The following shows the MVTC, STNZ, and STZ instruction formats and operands for which the assembler selects
the optimum code, in the order of selection priority.

Table 5.20 Instruction Formats of MVTC, STNZ, and STZ Instructions

(10) MOV Instruction
The following shows the MOV instruction formats and operands for which the assembler selects the optimum
code, in the order of selection priority.

Instruction Format Target of Optimum Selection Code Size
[Bytes]

src src2 dest

DIV/DIVU/
EMUL/EMULU/ITOF/
MAX/MIN/TST/XOR

#simm:8 - Rd 4

#simm:16 - Rd 5

#simm:24 - Rd 6

#imm:32 - Rd 7

src,dest dsp:8[Rs].memex - Rd 4 (memex = UB), 5 (memex UB)

dsp:16[Rs].memex - Rd 5 (memex = UB), 6 (memex UB)

Instruction Format Target of Optimum Selection Code Size
[Bytes]

src src2 dest

FADD/FCMP/FDIV/
FMUL/FTOI
 src,dest

#imm:32 - Rd 7

dsp:8[Rs].L - Rd 4

dsp:16[Rs].L - Rd 5

Instruction Format Target of Optimum Selection Code Size
[Bytes]

src src2 dest

MVTC/STNZ/STZ
src,dest

#simm:8 - Rd 4

#simm:16 - Rd 5

#simm:24 - Rd 6

#imm:32 - Rd 7

R20UT3248EJ0110 Rev.1.10 Page 438 of 1053
Nov 01, 2020

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

Table 5.21 Instruction Formats of MOV Instruction

Instruction
Format

size Processing
Size

Target of Optimum Selection Code
Size

[Bytes]src src2 dest

MOV(.size)
src,dest

B/W/L size Rs (Rs=R0-R7) - dsp:5[Rd] (Rd=R0-R7) 2

B/W/L L dsp:5[Rs] (Rs=R0-R7) - Rd (Rd=R0-R7) 2

B/W/L L #uimm:8 - dsp:5[Rd] (Rd=R0-R7) 3

L L #uimm:4 - Rd 2

L L #uimm:8 - Rd 3

L L #simm:8 - Rd 3

L L #simm:16 - Rd 4

L L #simm:24 - Rd 5

L L #imm:32 - Rd 6

B B #imm:8 - [Rd] 3

W/L W/L #simm:8 - [Rd] 3

W W #imm:16 - [Rd] 4

L L #simm:16 - [Rd] 4

L L #simm:24 - [Rd] 5

L L #imm:32 - [Rd] 6

B B #imm:8 - dsp:8[Rd] 4

W/L W/L #simm:8 - dsp:8[Rd] 4

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 439 of 1053
Nov 01, 2020

(11) MOVU Instruction
The following shows the MOVU instruction formats and operands for which the assembler selects the optimum
code, in the order of selection priority.

Table 5.22 Instruction Formats of MOVU Instruction

(12) PUSH Instruction
The following shows the PUSH instruction formats and operands for which the assembler selects the optimum
code, in the order of selection priority.

MOV(.size)
src,dest

W W #imm:16 - dsp:8[Rd] 5

L L #simm:16 - dsp:8[Rd] 5

L L #simm:24 - dsp:8[Rd] 6

L L #imm:32 - dsp:8[Rd] 7

B B #imm:8 - dsp:16[Rd] 5

W/L W/L #simm:8 - dsp:16[Rd] 5

W W #imm:16 - dsp:16[Rd] 6

L L #simm:16 - dsp:16[Rd] 6

L L #simm:24 - dsp:16[Rd] 7

L L #imm:32 - dsp:16[Rd] 8

B/W/L L dsp:8[Rs] - Rd 3

B/W/L L dsp:16[Rs] - Rd 4

B/W/L size Rs - dsp:8[Rd] 3

B/W/L size Rs - dsp:16[Rd] 4

B/W/L size [Rs] - dsp:8[Rd] 3

B/W/L size [Rs] - dsp:16[Rd] 4

B/W/L size dsp:8[Rs] - [Rd] 3

B/W/L size dsp:16[Rs] - [Rd] 4

B/W/L size dsp:8[Rs] - dsp:8[Rd] 4

B/W/L size dsp:8[Rs] - dsp:16[Rd] 5

B/W/L size dsp:16[Rs] - dsp:8[Rd] 5

B/W/L size dsp:16[Rs] - dsp:16[Rd] 6

Instruction
Format

size Processing
Size

Target of Optimum Selection Code
Size

[Bytes]src src2 dest

MOVU(.size)
src,dest

B/W L dsp:5[Rs] (Rs=R0-R7) - Rd (Rd=R0-R7) 2

B/W L dsp:8[Rs] - Rd 3

B/W L dsp:16[Rs] - Rd 4

Instruction
Format

size Processing
Size

Target of Optimum Selection Code
Size

[Bytes]src src2 dest

R20UT3248EJ0110 Rev.1.10 Page 440 of 1053
Nov 01, 2020

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

Table 5.23 Instruction Formats of PUSH Instruction

(13) ROUND Instruction
The following shows the ROUND instruction formats and operands for which the assembler selects the optimum
code, in the order of selection priority.

Table 5.24 Instruction Formats of ROUND Instruction

(14) SCCnd Instruction
The following shows the SCCnd instruction formats and operands for which the assembler selects the optimum
code, in the order of selection priority.

Table 5.25 Instruction Formats of SCCnd Instruction

(15) XCHG Instruction
The following shows the XCHG instruction formats and operands for which the assembler selects the optimum
code, in the order of selection priority.

Table 5.26 Instruction Formats of XCHG Instruction

(16) BCLR, BNOT, BSET, and BTST Instructions
The following shows the BCLR, BNOT, BSET, and BTST instruction formats and operands for which the assem-
bler selects the optimum code, in the order of selection priority.

Instruction Format Target of Optimum Selection Code Size
[Bytes]

src src2 dest

PUSH src dsp:8[Rs] - - 3

dsp:16[Rs] - - 4

Instruction Format Target of Optimum Selection Code Size
[Bytes]

src src2 dest

ROUND src,dest dsp:8[Rs] - Rd 4

dsp:16[Rs] - Rd 5

Instruction Format size Target of Optimum Selection Code Size
[Bytes]

src src2 dest

SCCnd(.size) src,dest B/W/L - - dsp:8[Rd] 4

B/W/L - - dsp:16[Rd] 5

Instruction Format Processing
Size

Target of Optimum Selection Code Size
[Bytes]

src src2 dest

XCHG src,dest L dsp:8[Rs].memex - Rd 4(memex = UB),
5(memex UB)

L dsp:16[Rs].memex - Rd 5(memex = UB),
6(memex UB)

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 441 of 1053
Nov 01, 2020

Table 5.27 Instruction Formats of BCLR, BNOT, BSET, and BTST Instructions

5.1.9 Selection of Optimum Branch Instruction

(1) Unconditional Relative Branch (BRA) Instruction

(a) Specifiable Branch Distance Specifiers
.S 3-bit PC relative (PC + pcdsp:3, 3 pcdsp:3 10)
.B 8-bit PC relative (PC + pcdsp:8, –128 pcdsp:8 127)
.W 16-bit PC relative (PC + pcdsp:16, –32768 pcdsp:16 32767)
.A 24-bit PC relative (PC + pcdsp:24, –8388608 pcdsp:24 8388607)
.L Register relative (PC + Rs, –2147483648 Rs 2147483647)

Note The register relative distance is selected only when a register is specified as an operand; it is not
used automatically through optimum selection.

(b) Optimum Selection

- The assembler selects the shortest branch distance when the operand of an unconditional relative branch
instruction satisfies the conditions for optimum branch selection. For the conditions, refer to section 5.1.4 (3)
Branch Distance Specifier.

- When the operand does not satisfy the conditions, the assembler selects the 24-bit PC relative distance (.A).

(2) Relative Subroutine Branch (BSR) Instruction

(a) Specifiable Branch Distance Specifier
.W 16-bit PC relative (PC + pcdsp:16, –32768 pcdsp:16 32767)
.A 24-bit PC relative (PC + pcdsp:24, –8388608 pcdsp:24 8388607)
.L Register relative (PC + Rs, –2147483648 Rs 2147483647)

Note The register relative distance is selected only when a register is specified as an operand; it is not
used automatically through optimum selection.

(b) Optimum Selection

- The assembler selects the shortest branch distance when the operand of a relative subroutine branch instruc-
tion satisfies the conditions for optimum branch selection. For the conditions, refer to section 5.1.4 (3) Branch
Distance Specifier.

- When the operand does not satisfy the conditions, the assembler selects the 24-bit PC relative distance (.A).

(3) Conditional Branch (BCnd) Instruction

(a) Specifiable Branch Distance Specifiers
BEQ.S 3-bit PC relative (PC + pcdsp:3, 3 pcdsp:3 10)
BNE.S 3-bit PC relative (PC + pcdsp:3, 3 pcdsp:3 10)
BCnd.B 8-bit PC relative (PC + pcdsp:8, –128 pcdsp:8 127)
BEQ.W 16-bit PC relative (PC + pcdsp:16, –32768 pcdsp:16 32767)
BNE.W 16-bit PC relative (PC + pcdsp:16, –32768 pcdsp:16 32767)

(b) Optimum Selection

- When the operand of a conditional branch instruction satisfies the conditions for optimum branch selection,
the assembler generates the optimum code for the conditional branch instruction by replacing it with a combi-
nation of a conditional branch instruction with an inverted logic (condition) and an unconditional relative
branch instruction with an optimum branch distance.

- When the operand does not satisfy the conditions, the assembler selects the 8-bit PC relative distance (.B) or
16-bit PC relative distance (.W).

Instruction Format Processing
Size

Target of Optimum Selection Code Size
[Bytes]

src src2 dest

BCLR/BNOT/BSET/BTST
src,dest

B #imm:3 - dsp:8[Rd].B 3

B #imm:3 - dsp:16[Rd].B 4

B Rs - dsp:8[Rd].B 4

B Rs - dsp:16[Rd].B 5

R20UT3248EJ0110 Rev.1.10 Page 442 of 1053
Nov 01, 2020

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

(c) Conditional Branch Instructions to Be Replaced and Corresponding Instruction Replacements

Table 5.28 Replacement Rules of Conditional Branch Instructions

Note In this table, the branch distance in unconditional relative branch instructions is a 24–bit PC rela-
tive value.
The "..xx" label and the unconditional relative branch instruction are processed within the assem-
bler; only the resultant code is output to the source list file.

5.1.10 Substitute Register Names (for the PID Function)

The substitute register names listed below can be used instead of the names of general-purpose registers.

Table 5.29 Substitute Register Names

Conditional Branch
Instruction

Instruction Replacement Conditional Branch
Instruction

Instruction Replacement

BNC/BLTU dest BC ..xx
 BRA.A dest
..xx:

BC/BGEU dest BNC ..xx
 BRA.A dest
..xx:

BLEU dest BGTU ..xx
 BRA.A dest
..xx:

BGTU dest BLEU ..xx
 BRA.A dest
..xx:

BNZ/BNE dest BZ ..xx
BRA.A dest
..xx:

BZ/BEQ dest BNZ ..xx
 BRA.A dest
..xx:

BPZ dest BN ..xx
BRA.A dest
..xx:

BO dest BNO ..xx
 BRA.A dest
..xx:

BGT dest BLE ..xx
 BRA.A dest
..xx:

BLE dest BGT ..xx
 BRA.A dest
..xx:

BGE dest BLT ..xx
 BRA.A dest
..xx:

BLT dest BGE ..xx
 BRA.A dest
..xx:

Substitute Register Name Corresponding General-Purpose Register Name

__PID_R0 R0

__PID_R1 R1

__PID_R2 R2

__PID_R3 R3

__PID_R4 R4

__PID_R5 R5

__PID_R6 R6

__PID_R7 R7

__PID_R8 R8

__PID_R9 R9

__PID_R10 R10

__PID_R11 R11

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 443 of 1053
Nov 01, 2020

Note *1) This indicates the name of the register selected as the PID register when the -pid or
-nouse_pid_register option is specified. For details on the rules for selecting the PID register, refer to the
descriptions of the -pid and -nouse_pid_register assembler options.

In assembly-language code that constitutes a master program in which the PID function is enabled, the names of all
registers that may be selected as the PID register must be represented by the corresponding substitute register names
(rather than the actual names of general-purpose registers such as R13).

When a substitute register name is selected as the PID register, assembling the program with nouse_pid_register
enabled will not lead to an error.

[Remark]
Substitute register names are usable even when neither -nouse_pid_register nor the -pid option has been selected.

5.2 Directives

This chapter explains the directives.
Directives are instructions that direct all types of instructions necessary for the assembler.

5.2.1 Outline

Instructions are translated into object codes (machine language) as a result of assembling, but directives are not con-
verted into object codes in principle.

Directives contain the following functions mainly:

- To facilitate description of source programs

- To initialize memory and reserve memory areas

- To provide the information required for assemblers and linkers to perform their intended processing
The following table shows the types of directives.

The following sections explain the details of each directive.

__PID_R12 R12

__PID_R13 R13

__PID_R14 R14

__PID_R15 R15

__PID_REG Register selected as the PID register *1

Type Directives

Link directives .SECTION, .GLB, .RVECTOR

Assembler directives .EQU, .END, .INCLUDE

Address directives .ORG, .OFFSET, .ENDIAN, .BLKB, .BLKW, .BLKL, .BLKD, .BYTE, .WORD,
.LWORD, .FLOAT, .DOUBLE, .ALIGN

Macro directives .MACRO, .EXITM, .LOCAL, .ENDM, .MREPEAT, .ENDR, ..MACPARA, ..MAC-
REP, .LEN, .INSTR, .SUBSTR

Specific compiler directives ._LINE_TOP, ._LINE_END, .SWSECTION, .SWMOV, .SWITCH, .INSTALIGN

Substitute Register Name Corresponding General-Purpose Register Name

R20UT3248EJ0110 Rev.1.10 Page 444 of 1053
Nov 01, 2020

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

5.2.2 Link Directives

These directives are used for relocatable assembly that enables a program to be written in multiple separate files.

This directive declares or restarts a section.
[Format]

[Description]
This directive declares or restarts a section.
(1) Declaration
This directive defines the beginning of a section with a section name and a section attribute specified.
(2) Restart
This directive specifies restart of a section that has already been declared in the source program. Specify an existing

section name to restart it. The section attribute and alignment value declared before are used without change.
The alignment value in the section can be changed through the ALIGN specification.
The .ALIGN directive can be used in relative-addressing sections defined by the .SECTION directive including the

ALIGN specification or in absolute-addressing sections.
When ALIGN is not specified, the boundary alignment value in the section is 1.
[Examples]

[Remarks]
Be sure to specify a section name.
To use assembler directives that allocate memory areas or store data in memory areas, be sure to define a section

through this directive.
To write mnemonics, be sure to define a section through this directive.
A section attribute and ALIGN should be specified after a section name.
A section attribute and ALIGN should be specified with them separated by a comma.
A section attribute and ALIGN can be specified in any order.
Select CODE, ROMDATA, or DATA for the section attribute.
The section attribute can be omitted. In this case, the assembler assumes CODE as the section attribute.
When -endian=big is specified, only a multiple of 4 can be specified for the start address of an absolute-addressing

CODE section.
If an absolute-addressing CODE section is declared when -endian=big is specified, a warning message will be output.

In this case, the assembler appends NOP (0x03) at the end of the section to adjust the section size to a multiple of 4.
Defining a symbol name which is the same as that of an existing section is not possible. If a section and symbol with the

same name are defined, the section name will be effective, but the symbol name will lead to an A2118 error.
The section name $iop is reserved and cannot be defined. If this is attempted, an A2049 error will be reported.

This directive declares that the specified labels and symbols are global.
[Format]

.SECTION

SECTION<section name>
.SECTION<section name>,<section attribute>
.SECTION<section name>,<section attribute>,ALIGN=[2|4|8]
.SECTION<section name>,ALIGN=[2|4|8]
<section attribute>: [CODE|ROMDATA|DATA]

.SECTIONprogram,CODE
NOP
.SECTIONram,DATA
.BLKB10
.SECTIONtbl1,ROMDATA
.BYTE"abcd"
.SECTIONtbl2,ROMDATA,ALIGN=8
.LWORD11111111H,22222222H
.END

.GLB

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 445 of 1053
Nov 01, 2020

[Description]
This directive declares that the specified labels and symbols are global.
When any label or symbol specified through this directive is not defined within the current file, the assembler processes

it assuming that it is defined in an external file.
When a label or symbol specified through this directive is defined within the current file, the assembler processes it so

that it can be externally referenced.
[Examples]

[Remarks]
Be sure to insert a space character or a tab between this directive and the operand.
Specify a label name to be a global label as the operand.
Specify a symbol name to be a global symbol as the operand.
To specify multiple symbol names as operands, separate them by commas (,).

This directive registers the specified label or name as a variable vector.
[Format]

[Description]
This directive registers the specified label or name as a variable vector.
A constant from 0 to 255 can be entered in <number> of this directive as the vector number.
A label or symbol defined within the current file can be specified as <name> of this directive.
The registered variable vectors are gathered into a single C$VECT section by the optimizing linkage editor.
[V3.00.00 or later] When the -split_vect option is specified in the optimizing linkage editor, the C$VECT section is split

by vector table number and each section has the name of "C$VECT<vector table number>".
[Examples]

[Remark]
Be sure to insert a space character or a tab between this directive and the operand.

5.2.3 Assembler Directives

These directives do not generate data corresponding to themselves but controls generation of machine code for instruc-
tions. They do not modify addresses.

This directive defines a symbol for a 32-bit signed integer value (–2147483648 to 2147483647).
[Format]

[Description]
This directive defines a symbol for a 32-bit signed integer value (–2147483648 to 2147483647).

GLB<name>
.GLB<name>[,<name> ?]

.GLB name1,name2,name3

.GLB name4

.SECTION program
MOV.L #name1,R1

.RVECTOR

.RVECTOR<number>,<name>

.RVECTOR 50,_rvfunc
_rvfunc:
MOV.L #0,R1
RTE

.EQU

<name>.EQU<numeric value>

R20UT3248EJ0110 Rev.1.10 Page 446 of 1053
Nov 01, 2020

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

The symbolic debugging function can be used after symbol definition through this directive.
[Examples]

[Remarks]
The value assigned for a symbol should be determined at assembly.
Be sure to insert a space character or a tab between this directive and the operand.
A symbol can be specified as the operand of symbol definition. Note that forward-reference symbol names must not be

specified.
An expression can be specified in the operand.
Symbols can be declared as global.
When this directive and the .DEFINE directive declare the same symbol name, the directive to make the declaration first

is given priority.

This directive declares the end of an assembly-language file.
[Format]

[Description]
This directive declares the end of an assembly-language file.
The source file contents after the line where this directive is written are only output to the source list file; the code corre-

sponding to them is not generated.
[Examples]

[Remarks]
One .END directive should be written in each assembly-language file.

This directive inserts the contents of the specified include file to the line where this directive is written in the assem-
bly-language file.

[Format]

[Description]
This directive inserts the contents of the specified include file to the line where this directive is written in the assem-

bly-language file.
The include file contents are processed together with the contents of the assembly-language file as a single assem-

bly-language file.
File inclusion can be nested up to 30 levels.
When an absolute path is specified as an include file name, the include file is searched for in the specified directory.
If a file is not found, an error will be output.
When the specified include file name is not an absolute path, the file is searched for in the following order.
(1) When no directory information is included in the assembly-language file name specified in the command line at

assembler startup, the include file is searched for with the name specified in the .INCLUDE directive. When directory infor-
mation is included in the assembly-language file name, the include file is searched for with the specified directory name
added to the file name specified in the .INCLUDE directive.

(2) The directory specified through the -include assembler option is searched.
(3) The directory specified in the INC_RXA environment variable is searched.
[Examples]

symbol .EQU 1
symbol1 .EQU symbol+symbol
symbol2 .EQU 2

.END

.END

.END

.INCLUDE

.INCLUDE<include file name>

.INCLUDE initial.src

.INCLUDE ..FILE@.inc

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 447 of 1053
Nov 01, 2020

[Remarks]
Be sure to insert a space character or a tab between this directive and the operand.
Be sure to add a file extension to the include file name in the operand.
The ..FILE directive and a string including @ can be specified as the operand.
A space character can be included in a file name, except for at the beginning of a file name.
Do not enclose a file name within double-quotes (").
The assembly-language file containing this directive cannot be specified as the include file.

5.2.4 Address Directives

These directives control address specifications in the assembler.
The assembler handles relocatable address values except for the addresses in absolute-addressing sections.

This directive applies the absolute addressing mode to the section containing this directive.
[Format]

[Description]
This directive applies the absolute addressing mode to the section containing this directive.
All addresses in the section containing this directive are handled as absolute values.
This directive determines the address for storing the mnemonic code written in the line immediately after this directive.
It also determines the address of the memory area to be allocated by the area allocation directive written in the line

immediately after this directive.
[Examples]

The following example will generate an error because .ORG is not written immediately after .SECTION.

[Remarks]
When using this directive, be sure to place it immediately after a .SECTION directive.
When .ORG is not written immediately after .SECTION, the section is handled as a relative-addressing section.
Be sure to insert a space character or a tab between this directive and the operand.
The operand should be a value from 0 to 0FFFFFFFFH.
An expression or a symbol can be specified as the operand. Note that the value of the expression or symbol should be

determined at assembly.
This directive must not be used in a relative-addressing section.
This directive can be used multiple times in an absolute-addressing section. Note that if the value specified as the oper-

and is smaller than the address of the line where this directive is written, an error will be output.
This directive embeds 0 or more bytes that indicate disabling (03H) for the number of addresses preceding the location

specified by the offset.

This directive specifies an offset from the beginning of the section.
[Format]

.ORG

.ORG<numeric value>

.SECTIONvalue,ROMDATA

.ORG0FF00H

.BYTE"abcdefghijklmnopqrstuvwxyz"

.ORG0FF80H

.BYTE"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

.END

.SECTIONvalue,ROMDATA

.BYTE"abcdefghijklmnopqrstuvwxyz"

.ORG0FF80H

.BYTE"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

.END

.OFFSET

R20UT3248EJ0110 Rev.1.10 Page 448 of 1053
Nov 01, 2020

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

[Description]
This directive specifies an offset from the beginning of the section.
This directive determines the offset from the beginning of the section to the area that stores the mnemonic code written

in the line immediately after this directive.
It also determines the offset from the beginning of the section to the memory area to be allocated by the area allocation

directive written in the line immediately after this directive.
[Examples]

The following example will generate an error because the value specified in the second .OFFSET line is smaller than
the offset to that line.

[Remarks]
Be sure to insert a space character or a tab between this directive and the operand.
The operand should be a value from 0 to 0FFFFFFFFH.
An expression or a symbol can be specified as the operand. Note that the value of the expression or symbol should be

determined at assembly.
This directive must not be used in an absolute-addressing section.
This directive can be used multiple times in a relative-addressing section. Note that if the value specified as the operand

is smaller than the offset to the line where this directive is written, an error will be output.
This directive embeds 0 or more bytes that indicate disabling (03H) for the number of addresses preceding the location

specified by the offset.

This directive specifies the endian for the section containing this directive.
[Format]

[Description]
This directive specifies the endian for the section containing this directive.
When .ENDIAN BIG is written in a section, the byte order in the section is set to big endian.
When .ENDIAN LITTLE is written in a section, the byte order in the section is set to little endian.
When the directive is not written in a section, the byte order in the section depends on the -endian option setting.
[Examples]

The following example will generate an error because .ENDIAN is not written immediately after .SECTION or .ORG.

OFFSET<numeric value>

.SECTIONvalue,ROMDATA

.BYTE"abcdefghijklmnopqrstuvwxyz"

.OFFSET80H

.BYTE"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

.END

.SECTIONvalue,ROMDATA

.OFFSET80H

.BYTE"abcdefghijklmnopqrstuvwxyz"

.OFFSET70H

.BYTE"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

.END

.ENDIAN

.ENDIANBIG

.ENDIANLITTLE

.SECTIONvalue,ROMDATA

.ORG0FF00H

.ENDIANBIG

.BYTE"abcdefghijklmnopqrstuvwxyz"

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 449 of 1053
Nov 01, 2020

[Remarks]
Be sure to write this directive immediately after a .SECTION or .ORG directive.
Be sure to insert a space character or a tab between this directive and the operand.
This directive must not be used in CODE sections.

This directive allocates a RAM area with the size specified in 1-byte units
[Format]

[Description]
This directive allocates a RAM area with the size specified in 1-byte units.
A label name can be defined for the address of the allocated RAM area.
[Examples]

[Remarks]
Be sure to write this directive in DATA sections. In section definition, write ",DATA" after a section name to specify a

DATA section.
Be sure to insert a space character or a tab between this directive and the operand.
A numeric value, a symbol, or an expression can be specified as the operand.
The operand value should be determined at assembly.
Write a label name before this directive to define the label name for the allocated area.
Be sure to append a colon (:) to the label name.
The maximum value that can be specified for the operand is 7FFFFFFFH.

This directive allocates 2-byte RAM areas for the specified number.
[Format]

[Description]
This directive allocates 2-byte RAM areas for the specified number.
A label name can be defined for the address of the allocated RAM area.
[Examples]

[Remarks]

.SECTIONvalue,ROMDATA

.ORG0FF00H

.BYTE"abcdefghijklmnopqrstuvwxyz"

.ENDIANBIG

.BYTE"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

.BLKB

.BLKB<operand>
<label name:>.BLKB<operand>

symbol.EQU 1
.SECTION area,DATA
work1:.BLKB 1
work2:.BLKB symbol
.BLKB symbol+1

.BLKW

.BLKW<operand>
<label name:>.BLKW<operand>

symbol.EQU 1
.SECTION area,DATA
work1:.BLKW 1
work2:.BLKW symbol
.BLKW symbol+1

R20UT3248EJ0110 Rev.1.10 Page 450 of 1053
Nov 01, 2020

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

Be sure to write this directive in DATA sections. In section definition, write ",DATA" after a section name to specify a
DATA section.

Be sure to insert a space character or a tab between this directive and the operand.
A numeric value, a symbol, or an expression can be specified as the operand.
The operand value should be determined at assembly.
Write a label name before this directive to define the label name for the allocated area.
Be sure to append a colon (:) to the label name.
The maximum value that can be specified for the operand is 3FFFFFFFH.

This directive allocates 4-byte RAM areas for the specified number.
[Format]

[Description]
This directive allocates 4-byte RAM areas for the specified number.
A label name can be defined for the address of the allocated RAM area.
[Examples]

[Remarks]
Be sure to write this directive in DATA sections. In section definition, write ",DATA" after a section name to specify a

DATA section.
Be sure to insert a space character or a tab between this directive and the operand.
A numeric value, a symbol, or an expression can be specified as the operand.
The operand value should be determined at assembly.
Write a label name before this directive to define the label name for the allocated area.
Be sure to append a colon (:) to the label name.
The maximum value that can be specified for the operand is 1FFFFFFFH.

This directive allocates 8-byte RAM areas for the specified number.
[Format]

[Description]
This directive allocates 8-byte RAM areas for the specified number.
A label name can be defined for the address of the allocated RAM area.
[Examples]

[Remarks]
Be sure to write this directive in DATA sections. In section definition, write ",DATA" after a section name to specify a

DATA section.
Be sure to insert a space character or a tab between this directive and the operand.
A numeric value, a symbol, or an expression can be specified as the operand.

.BLKL

.BLKL<operand>
<label name:>.BLKL<operand>

symbol.EQU 1
.SECTION area,DATA
work1:.BLKL 1
work2:.BLKL symbol
.BLKL symbol+1

.BLKD

.BLKD<operand>
<label name:>.BLKD<operand>

symbol.EQU 1
.SECTION area,DATA
work1:.BLKD 1
work2:.BLKD symbol
.BLKD symbol+1

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 451 of 1053
Nov 01, 2020

The operand value should be determined at assembly.
Write a label name before this directive to define the label name for the allocated area.
Be sure to append a colon (:) to the label name.
The maximum value that can be specified for the operand is 0FFFFFFFH.

This directive stores 1-byte fixed data in ROM.
[Format]

[Description]
This directive stores 1-byte fixed data in ROM.
A label name can be defined for the address of the area for storing the data.
[Examples]
<When endian=little is specified>

<When endian=big is specified>

[Remarks]
Be sure to use this directive in a ROMDATA section. To specify attribute ROMDATA for a section, add ,ROMDATA after

the section name when defining the section.
Be sure to insert a space character or a tab between this directive and the operand.
A numeric value, a symbol, or an expression can be specified as the operand.
To specify a character or a string for the operand, enclose it within single-quotes (') or double-quotes ("). In this case, the

ASCII code for the specified characters is stored.
Write a label name before this directive to define the label name for the area storing the data.
Be sure to append a colon (:) to the label name.
When the endian=big option is specified, this directive can be used only in the sections that satisfy the following condi-

tions. An error will be output if this directive is used in a section that does not satisfy the conditions.

(1) ROMDATA section

(2) Relative-addressing CODE section for which the address alignment value is set to 4 or 8 in section definition

(3) Absolute-addressing CODE section

To use a .BYTE directive in a CODE section while the endian=big option is specified, be sure to write an address cor-
rection directive (.ALIGN 4) in the line immediately before the .BYTE directive so that the data is aligned to a 4-byte

.BYTE

.BYTE<operand>
<label name:>.BYTE<operand>

.SECTION value,ROMDATA

.BYTE 1

.BYTE "data"

.BYTE symbol

.BYTE symbol+1

.BYTE 1,2,3,4,5

.END

.SECTION program,CODE,ALIGN=4
MOV.L R1,R2
.ALIGN 4
.BYTE 080H,00H,00H,00H
.END

.SECTION data,ROMDATA

.SECTION program,CODE,ALIGN=4

.SECTION program,CODE

.ORG 0fff00000H

R20UT3248EJ0110 Rev.1.10 Page 452 of 1053
Nov 01, 2020

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

boundary. If this address correction directive is not written, the assembler outputs a warning message and automatically
aligns the data to a 4-byte boundary.

When the endian=big option is specified, the data area size in a CODE section must be specified to become a multiple
of 4. If the data area size in a CODE section is not a multiple of 4, the assembler outputs a warning message and writes
NOP (0x03) to make the data area size become a multiple of 4.

This directive stores 2-byte fixed data in ROM.
[Format]

[Description]
This directive stores 2-byte fixed data in ROM.
A label name can be defined for the address of the area for storing the data.
[Examples]

[Remarks]
Be sure to use this directive in a ROMDATA section. To specify attribute ROMDATA for a section, add ,ROMDATA after

the section name when defining the section.
Be sure to insert a space character or a tab between this directive and the operand.
A numeric value, a symbol, or an expression can be specified as the operand.
Neither a character nor a string can be specified for an operand.
Write a label name before this directive to define the label name for the area storing the data.
Be sure to append a colon (:) to the label name.

This directive stores 4-byte fixed data in ROM.
[Format]

[Description]
This directive stores 4-byte fixed data in ROM.
A label name can be defined for the address of the area for storing the data.

[Remarks]
Be sure to use this directive in a ROMDATA section. To specify attribute ROMDATA for a section, add ,ROMDATA after

the section name when defining the section.
Be sure to insert a space character or a tab between this directive and the operand.
A numeric value, a symbol, or an expression can be specified as the operand.
Neither a character nor a string can be specified for an operand.
Write a label name before this directive to define the label name for the area storing the data.
Be sure to append a colon (:) to the label name.

.WORD

.WORD<operand>
<label name:>.WORD<operand>

.SECTION value,ROMDATA

.WORD1

.WORDsymbol

.WORDsymbol+1

.WORD1,2,3,4,5

.END

.LWORD

.LWORD<operand>
<label name:>.LWORD<operand>

.SECTION value,ROMDATA

.LWORD1

.LWORDsymbol

.LWORDsymbol+1

.LWORD1,2,3,4,5

.END

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 453 of 1053
Nov 01, 2020

This directive stores 4-byte fixed data in ROM.
[Format]

[Description]
This directive stores 4-byte fixed data in ROM.
A label name can be defined for the address of the area for storing the data.
[Examples]

[Remarks]
Be sure to use this directive in a ROMDATA section. To specify attribute ROMDATA for a section, add ,ROMDATA after

the section name when defining the section.
Specify a floating-point number as the operand.
Be sure to insert a space character or a tab between this directive and the operand.
Write a label name before this directive to define the label name for the area storing the data.
Be sure to append a colon (:) to the label name.

This directive stores 8-byte fixed data in ROM.
[Format]

[Description]
This directive stores 8-byte fixed data in ROM.
A label name can be defined for the address of the area for storing the data.
[Examples]

[Remarks]
Be sure to use this directive in a ROMDATA section. To specify attribute ROMDATA for a section, add ,ROMDATA after

the section name when defining the section.
Specify a floating-point number as the operand.
Be sure to insert a space character or a tab between this directive and the operand.
Write a label name before this directive to define the label name for the area storing the data.
Be sure to append a colon (:) to the label name.

This directive corrects the address for storing the code written in the line immediately after this directive to a multiple of
two, four, or eight bytes.

[Format]

[Description]
This directive corrects the address for storing the code written in the line immediately after this directive to a multiple of

two, four, or eight bytes.

.FLOAT

.FLOAT<numeric value>
<label name:>.FLOAT<numeric value>

 .FLOAT 5E2
constant: .FLOAT 5e2

.DOUBLE

.DOUBLE<numeric value>
<label name:>.DOUBLE<numeric value>

 .DOUBLE 5E2
constant: .DOUBLE 5e2

.ALIGN

.ALIGN<alignment value>
<alignment value>: [2|4|8]

R20UT3248EJ0110 Rev.1.10 Page 454 of 1053
Nov 01, 2020

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

In a CODE or ROMDATA section, NOP code (03H) is written to the empty space generated as a result of address cor-
rection.

In a DATA section, only address correction is performed.
[Examples]

[Remarks]
This directive can be used in the sections that satisfy the following conditions.

(1) Relative-addressing section for which address correction is specified in section definition

(2) Absolute-addressing section

A warning message will be output if this directive is used for a relative-addressing section in which ALIGN is not speci-
fied in the .SECTION directive line.

A warning message will be output if the specified value is larger than the boundary alignment value specified for the
section.

5.2.5 Macro Directives

These directives do not generate data corresponding to themselves but controls generation of machine code for instruc-
tions. They do not modify addresses.

These directives define macro functions and repeat macro functions.

Table 5.30 Macro Directives

This directive defines a macro name.
[Format]

.SECTION program,CODE,ALIGN=4
MOV.L R1, R2
.ALIGN 4; Corrects the address to a multiple of 4
RTS
.END

.SECTION program,CODE,ALIGN=4

.SECTION program,CODE

.ORG 0fff00000H

Directive Function

.MACRO Defines a macro name and the beginning of a macro body.

.EXITM Terminates macro body expansion.

.LOCAL Declares a local label in a macro.

.ENDM Specifies the end of a macro body.

.MREPEAT Specifies the beginning of a repeat macro body.

.ENDR Specifies the end of a repeat macro body.

..MACPARA Indicates the number of arguments in a macro call.

..MACREP Indicates the count of repeat macro body expansions.

.LEN Indicates the number of characters in a specified string.

.INSTR Indicates the start position of a specified string in another specified string.

.SUBSTR Extracts a specified number of characters from a specified position in a specified string.

.MACRO

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 455 of 1053
Nov 01, 2020

[Description]
This directive defines a macro name.
It also specifies the beginning of a macro definition.
[Examples: Example 1]
[Macro definition example]

[Macro call example 1]

[Macro call example 2]

[Example 2]

[Remarks]
Be sure to specify a macro name.
For the macro name and parameter name format, refer to the Rules for Names in section 4.1.2, Names.
Use a unique name for defining each parameter, including the nested macro definitions.
To define multiple parameters, separate them by commas (,).
Make sure that all parameters specified as operands of a .MACRO directive are used in the macro body.
Be sure to insert a space character or a tab between a macro name and an argument.

[macro definition]
<macro name>.MACRO[<parameter>[,...]]
body
.ENDM
[macro call]
<macro name>[<argument>[,...]]

name.MACRO string
.BYTE 'string'
.ENDM

name"name,address"

.BYTE'name,address'

name(name,address)

.BYTE'(name,address)'

mac .MACROp1,p2,p3
.IF ..MACPARA == 3
.IF 'p1' == 'byte'
MOV.B #p2,[p3]
.ELSE
MOV.W #p2,[p3]
.ENDIF
.ELIF..MACPARA == 2
.IF 'p1' == 'byte'
MOV.B #p2,[R3]
.ELSE
MOV.W #p2,[R3]
.ENDIF
.ELSE
MOV.W R3,R1
.ENDIF
.ENDM

macword,10,R3; Macro call

.IF 3 == 3; Macro-expanded code

.ELSE
MOV.W #10,[R3]
.ENDIF

R20UT3248EJ0110 Rev.1.10 Page 456 of 1053
Nov 01, 2020

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

Write a macro call so that the arguments correspond to the parameters on a one-to-one basis.
To use a special character in an argument, enclose it within double-quotes.
A label, a global label, and a symbol can be used in an argument.
An expression can be used in an argument.
Parameters are replaced with arguments from left to right in the order they appear.
If no argument is specified in a macro call while the corresponding parameter is defined, the assembler does not gener-

ate code for this parameter.
If there are more parameters than the arguments, the assembler does not generate code for the parameters that do not

have the corresponding arguments.
When a parameter in the body is enclosed within single-quotes ('), the assembler encloses the corresponding argument

within single-quotes when outputting it.
When an argument contains a comma (,) and the argument is enclosed within parentheses (()), the assembler converts

the argument including the parentheses.
If there are more arguments than the parameters, the assembler does not process the arguments that do not have the

corresponding parameters.
The string enclosed within double-quotes is processed as a string itself. Do not enclose parameters within dou-

ble-quotes.
Up to 80 parameters can be specified within the maximum allowable number of characters for one line.
If the number of arguments differs from that of the parameters, the assembler outputs a warning message.

This directive terminates expansion of a macro body and passes control to the nearest .ENDM.
[Format]

[Description]
This directive terminates expansion of a macro body and passes control to the nearest .ENDM.
[Examples]

[Remarks]
Write this directive in the body of a macro definition.

This directive declares that the label specified as an operand is a macro local label.
[Format]

[Description]
This directive declares that the label specified as an operand is a macro local label.

.EXITM

<macro name>.MACRO
body
.EXITM
body
.ENDM

data1 .MACROvalue
.IF value == 0

.EXITM
.ELSE
.BLKBvalue
.ENDIF
.ENDM

data1 0 ; Macro call

.IF 0 == 0; Macro-expanded code

.EXITM

.ENDIF

.LOCAL

.LOCAL<label name>[,...]

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 457 of 1053
Nov 01, 2020

Macro local labels can be specified multiple times with the same name as long as they are specified in different macro
definitions or outside macro definitions.

[Examples]

[Remarks]
Write this directive in a macro body.
Be sure to insert a space character or a tab between this directive and the operand.
Make sure that a macro local label is declared through this directive before the label name is defined.
For the macro local name format, refer to the Rules for Names in section 10.1.2, Names.
Multiple labels can be specified as operands of this directive by separating them by commas. Up to 100 labels can be

specified in this manner.
When macro definitions are nested, a macro local label in a macro that is defined within another macro definition (outer

macro) cannot use the same name as that used in the outer macro.
Up to 65,535 macro local labels can be written in one assembly source file including those used in the include files.

This directive specifies the end of a macro definition.
[Format]

[Description]
This directive specifies the end of a macro definition.
[Examples]

This directive specifies the beginning of a repeat macro.
[Format]

[Description]
This directive specifies the beginning of a repeat macro.
The assembler repeatedly expands the body the specified number of times.
The repetition count can be specified within the range of 1 to 65,535.
Repeat macros can be nested up to 65,535 levels.
The macro body is expanded at the line where this directive is written.
[Examples]

name.MACRO
.LOCALm1; 'm1' is macro local label
m1:
 nop
 bram1
 .ENDM

.ENDM

<macro name>.MACRO
body
.ENDM

lda .MACRO
MOV.L #value,R3
.ENDM
lda 0 ; Expanded to MOV.L #0,R3.

.MREPEAT

[<label>:].MREPEAT<numeric value>
body
.ENDR

R20UT3248EJ0110 Rev.1.10 Page 458 of 1053
Nov 01, 2020

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

[Remarks]
Be sure to specify an operand.
Be sure to insert a space character or a tab between this directive and the operand.
A label can be specified at the beginning of this directive line.
A symbol can be specified as the operand.
Forward reference symbols must not be used.
An expression can be used in the operand.
Macro definitions and macro calls can be used in the body.
The .EXITM directive can be used in the body.

This directive specifies the end of a repeat macro.
[Format]

[Description]
This directive specifies the end of a repeat macro.
[Remarks]
Make sure this directive corresponds to an .MREPEAT directive.

This directive indicates the number of arguments in a macro call.
[Format]

[Description]
This directive indicates the number of arguments in a macro call.
This directive can be used in the body in a macro definition through .MACRO.
[Examples]
This example executes conditional assembly according to the number of macro arguments.

rep .MACRO num
.MREPEAT num
.IF num > 49
.EXITM
.ENDIF
nop
.ENDR
 .ENDM

rep 3 ; Macro call

nop ; Macro-expanded code
nop
nop

.ENDR

[<label>:].MREPEAT<numeric value>
body
.ENDR

..MACPARA

..MACPARA

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 459 of 1053
Nov 01, 2020

[Remarks]
This directive can be used as a term of an expression.
If this directive is written outside a macro body defined through .MACRO, its value becomes 0.

This directive indicates the count of repeat macro expansions.
[Format]

[Description]
This directive indicates the count of repeat macro expansions.
This directive can be used in the body in a macro definition through .MREPEAT.
This directive can be specified in an operand of conditional assembly.
[Examples]

[Remarks]
This directive can be used as a term of an expression.
If this directive is written outside a macro body defined through .MACRO, its value becomes 0.

This directive indicates the length of the string specified as the operand.
[Format]

[Description]
This directive indicates the length of the string specified as the operand.

.GLBmem
name.MACRO f1,f2

.IF..MACPARA == 2
ADD f1,f2
.ELSE
ADD R3,f1
.ENDIF
.ENDM

name mem ; Macro call

.ELSE ; Macro-expanded code
ADD R3,mem
.ENDIF

..MACREP

..MACREP

mac.MACRO value,reg
.MREPEAT value
MOV.B#0,..MACREP[reg]
.ENDR
.ENDM

mac3,R3; Macro call

.MREPEAT3; Macro-expanded code
MOV.B#0,1[R3]
MOV.B#0,2[R3]
MOV.B#0,3[R3]
.ENDR
.ENDM

.LEN

.LEN{"<string>"}

.LEN{'<string>'}

R20UT3248EJ0110 Rev.1.10 Page 460 of 1053
Nov 01, 2020

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

[Examples]

[Remarks]
Be sure to enclose the operand within {}.
A space character or a tab can be inserted between this directive and the operand.
Characters including spaces and tabs can be specified in a string.
Be sure to enclose a string within single-quotes or double-quotes.
This directive can be used as a term of an expression.
To count the length of the macro argument, enclose the parameter name within single-quotes. When the name is

enclosed within double-quotes, the length of the string specified as the parameter is counted.

This directive indicates the start position of a search string within a specified string.
[Format]

[Description]
This directive indicates the start position of a search string within a specified string.
The position from which search is started can be specified.
[Examples]
This example detects the position (7) of string "se", counted from the beginning (top) of a specified string (japanese):

[Remarks]
Be sure to enclose the operand within {}.
Be sure to specify all of a string, a search string, and a search start position.
Separate the string, search string, and search start position by commas.
Neither space character nor tab can be inserted before or after a comma.
A symbol can be specified as a search start position.
When 1 is specified as the search start position, it indicates the beginning of a string.
This directive can be used as a term of an expression.
This directive is replaced with 0 when the search string is longer than the string, the search string is not found in the

string, or the search start position value is larger than the length of the string.
To expand a macro by using a macro argument as the condition for detection, enclose the parameter name within sin-

gle-quotes. When the name is enclosed within double-quotes, the macro is expanded by using the enclosed string as the
condition for detection.

This directive extracts a specified number of characters from a specified position in a specified string.
[Format]

bufset.MACRO f1
buffer:.BLKB .LEN{'f1'}
.ENDM

bufset Sample ; Macro call

buffer:.BLKB 6 ; Macro-expanded code

.INSTR

.INSTR{"<string>","<search string>",<search start position> }

.INSTR{'<string>','<search string>',<search start position> }

top .EQU 1
point_set.MACRO source,dest,top
point.EQU .INSTR{'source','dest',top}
.ENDM
point_set japanese,se,1 ; Macro call

point .EQU 7 ; Macro-expanded code

.SUBSTR

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 461 of 1053
Nov 01, 2020

[Description]
This directive extracts a specified number of characters from a specified position in a specified string.
[Examples]
The following example passes the length of the string given as an argument of a macro to the operand of .MREPEAT.
The ..MACREP value is incremented as 1 -> 2 -> 3 -> 4 every time the .BYTE line is expanded. Consequently, the char-

acters in the string given as an argument of the macro is passed to the operand of .BYTE one by one starting from the
beginning of the string.

[Remarks]
Be sure to enclose the operand within {}.
Be sure to specify all of a string, an extraction start position, and an extraction character length.
Separate the string, extraction start position, and extraction character length by commas.
Symbols can be specified as an extraction start position and an extraction character length. When 1 is specified as the

extraction start position, it indicates the beginning of a string.
Characters including spaces and tabs can be specified in a string.
Be sure to enclose a string within single-quotes or double-quotes.
This directive is replaced with 0 when the extraction start position value is larger than the string, the extraction character

length is larger than the length of the string, or the extraction character length is set to 0.
To expand a macro by using the macro argument as the condition for extraction, enclose the parameter name within sin-

gle-quotes. When the name is enclosed within double-quotes, the macro is expanded by using the enclosed string as the
condition for extraction.

5.2.6 Specific Compiler Directives

The following directives are output in some cases so that the assembler can appropriately process C language functions
when the compiler generates assembly-language files.

When using the assembly-language files generated by the compiler, these directives should be used without changing
the settings. These directives should not be used when creating user-created assembly-language files.

Table 5.31 Specific Compiler Directives

.SUBSTR{"<string>",<extraction start position>,<extraction character length> }

.SUBSTR{ '<string>',<extraction start position>,<extraction character length> }

name.MACRO data
.MREPEAT.LEN{'data'}
.BYTE.SUBSTR{'data',..MACREP,1}
.ENDR
.ENDM

name ABCD ; Macro call

.BYTE "A" ; Macro-expanded code

.BYTE "B"

.BYTE "C"

.BYTE "D"

Directive Function

._LINE_TOP These directives are output when the functions specified by #pragma inline_asm have
been expanded.

._LINE_END

.SWSECTION These directives are output when the branch table is used in the switch statement.

.SWMOV

.SWITCH

.INSTALIGN This directive is output when the instalign4 option, the instalign8 option, #pragma
instalign4, or #pragma instalign8 is used.

R20UT3248EJ0110 Rev.1.10 Page 462 of 1053
Nov 01, 2020

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

5.3 Control Instructions

This chapter describes control instructions.
Control Instructions provide detailed instructions for assembler operation.

5.3.1 Outline

Control instructions provide detailed instructions for assembler operation and so are written in the source.
Control instructions do not become the target of object code generation.
The following table shows the types of control instructions.

The following sections explain the details of each control instruction.

5.3.2 Assembler List Directive

This directive controls the output information and format of the assembler list file. It does not affect code generation.

This directive can stop (OFF) outputting lines to the assembler list file.
[Format]

[Description]
This directive can stop (OFF) outputting lines to the assembler list file.
Even in the range where line output is stopped, error lines are output to the assembler list file.
This directive can start (ON) outputting lines to the assembler list file.
When this directive is not specified, all lines are output to the assembler list file.
[Examples]

[Remarks]
Be sure to insert a space character or a tab between this directive and the operand.
Specify OFF as the operand to stop outputting lines.
Specify ON as the operand to start outputting lines.

5.3.3 Conditional Assembly Directives

These directives specify whether to assemble a specified range of lines.

Table 5.32 Conditional Assembly Directives

Type Control Instructions

Assembler list directive .LIST

Conditional assembly directives .IF, .ELIF, .ELSE, .ENDIF

Extended function directives .ASSERT, ?, @, ..FILE, .STACK, .LINE, .DEFINE

.LIST

.LIST[ON|OFF]

.LIST ON

.LIST OFF

Directive Function

.IF Specifies the beginning of a conditional assembly block and evaluates the condition.

.ELIF Evaluates the second or later conditions when multiple conditional blocks are written.

.ELSE Specifies the beginning of a block to be assembled when all conditions are false.

.ENDIF Specifies the end of a conditional assembly block.

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 463 of 1053
Nov 01, 2020

[Format]

[Description]
The assembler controls assembly of the blocks according to the conditions specified through .IF and .ELIF.
The assembler evaluates the condition specified in the operand of .IF or .ELIF, and assembles the body in the subse-

quent lines when the condition is true. In this case, the lines before the .ELIF, .ELSE, or .ENDIF directive are assembled.
Any directives that can be used in an assembly-language file can be written in a conditional assembly block.
Conditional assembly is done according to the result of conditional expression evaluation.
[Examples] <Example of conditional expressions>

<Example of conditional assembly specification>

[Remarks]
Be sure to write a conditional expression in an .IF or .ELIF directive.
Be sure to insert a space character or a tab between the .IF or .ELIF directive and the operand.
Only one conditional expression can be specified for the operand of the .IF or .ELIF directive.
Be sure to use a conditional operator in a conditional expression.
The following operators can be used.

Table 5.33 Conditional Operators of .IF and .ELIF Directives

A conditional expression is evaluated in signed 32 bits.
Symbols can be used in the left and right sides of a conditional operator.
Expressions can be used in the left and right sides of a conditional operator. For the expression format, refer to the rules

described in (2) Expression in section 4.1.5, Coding of Operands.
Strings can be used in the left and right sides of a conditional operator. Be sure to enclose a string within single-quotes

(') or double-quotes ("). Strings are compared in character code values.

.IF, .ELIF, .ELSE, .ENDIF

.IFconditional expression
body
.ELIFconditional expression
body
.ELSE
body
.ENDIF

sym < 1
sym+2 < data1
sym+2 < data1+2
'smp1' == name

.IF TYPE==0

.byte "Proto Type Mode"

.ELIF TYPE>0

.byte "Mass Production Mode"

.ELSE

.byte "Debug Mode"

.ENDIF

Conditional Operator Description

> The condition is true when the lvalue is greater than the rvalue

< The condition is true when the lvalue is smaller than the rvalue

>= The condition is true when the lvalue is equal to or greater than the rvalue

<= The condition is true when the lvalue is equal to or smaller than the rvalue

== The condition is true when the lvalue is equal to the rvalue

!= The condition is true when the lvalue is not equal to the rvalue

R20UT3248EJ0110 Rev.1.10 Page 464 of 1053
Nov 01, 2020

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

Examples:
"ABC"<"CBA" -> 414243 < 434241; this condition is true.
"C" < "A" -> 43 < 41; this condition is false.
Space characters and tabs can be written before and after conditional operators.
Conditional expressions can be specified in the operands of the .IF and .ELIF directives.
The assembler does not check if the evaluation result is outside the allowed range.
Forward reference symbols (reference to a symbol that is defined after this directive line) must not be specified.
If a forward reference symbol or an undefined symbol is specified, the assembler assumes the symbol value as 0 when

evaluating the expression.

5.3.4 Extended Function Directives

These directives do not affect code generation.

Table 5.34 Extended Function Directives

This directive outputs a string specified in the operand to the standard error output at assembly.
[Format]

[Description]
This directive outputs a string specified in the operand to the standard error output at assembly.
When a file name is specified, the assembler outputs the string written in the operand to the file.
When an absolute path is specified as a file name, the assembler creates a file in the specified directory.
When no absolute path is specified as a file name;
(1) if no directory information is included in the file name specified by the output option, the assembler creates the file

specified by this directive in the current directory.
(2) if directory information is included in the file name specified by the output option, the assembler creates the file

specified by this directive and adds the directory information for the file specified by the output option.
(3) if the output option is not specified, the assembler creates the file in the same directory containing the file specified

in the command line at assembler startup.
When the ..FILE directive is specified as a file name, the assembler creates a file in the same directory as the file spec-

ified in the command line at assembler startup.
[Examples]

[Remarks]

Directive Function

.ASSERT Outputs a string specified in an operand to the standard error output or a file.

? Defines and references a temporary label.

@ Concatenates strings specified before and after @ so that they are handled as one string.

..FILE Indicates the name of the assembly-language file being processed by the assembler.

.STACK Defines a stack value for a specified symbol.

.LINE Changes line number.

.DEFINE Defines a replacement symbol.

.ASSERT

.ASSERT"<string>"

.ASSERT"<string>"><file name>

.ASSERT"<string>">><file name>

To output a message to the sample.dat file:
.ASSERT "string" > sample.dat
To add a message to the sample.dat file:
.ASSERT "string" >> sample.dat
To output a message to a file with the same name as the current processing file but without a file extension:
.ASSERT "string" > ..FILE

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 465 of 1053
Nov 01, 2020

Be sure to insert a space character or a tab between the directive and the operand.
Be sure to enclose the string in the operand within double-quotes.
To output a string to a file, specify the file name after > or >>.
The symbol > directs the assembler to create a new file and output a message to the file. If a file with the same name

exists, the file is overwritten.
The symbol >> directs the assembler to add the message to the contents of the specified file. If the specified file is not

found, the assembler creates a new file.
Space characters or tabs can be specified before and after > and >>.
The ..FILE directive can be specified as a file name.

This directive defines a temporary label.
[Format]

[Description]
This directive defines a temporary label.
It also references the temporary label defined immediately before or after an instruction.
Definitions and references are allowed within the same file.
Up to 65,535 temporary labels can be defined in a file. In this case, if .INCLUDE is used in the file, the maximum num-

ber (65,535) of temporary files includes the labels in the include file.
The temporary labels converted by the assembler are output to the source list file.
[Examples]

[Remarks]
Write "?:" in the line that is to be defined as a temporary label.
To reference the temporary label defined immediately before an instruction, write "?-" as an operand of the instruction.
To reference the temporary label defined immediately after an instruction, write "?+" as an operand of the instruction.
Only the label defined immediately before or after an instruction can be referenced from the instruction.

This directive concatenates macro arguments, macro variables, reserved symbols, an expanded file name of directive
..FILE, and specified strings.

[Format]

[Description]
This directive concatenates macro arguments, macro variables, reserved symbols, an expanded file name of directive

..FILE, and specified strings.
[Examples]
Example of file name concatenation:
When the name of the currently processed file is sample1.src, a message is output to the sample.dat file in the follow-

ing example.

?

?:
<mnemonic >?+
<mnemonic >?-

@

<string>@<string>[@<string> ...]

.ASEERT "sample" > ..FILE@.dat

?:
 BRA ?+
 BRA ?-
?:
 BRA ?-

References temporary labels

indicated by arrows.

R20UT3248EJ0110 Rev.1.10 Page 466 of 1053
Nov 01, 2020

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

Example of string concatenation:

[Remarks]
Space characters and tabs inserted before and after this directive are concatenated as a string.
Strings can be written before and after this directive.
To use @ as character data (40H), enclose it within double-quotes ("). When a string including @ is enclosed within sin-

gle-quotes ('), the strings before and after @ are concatenated.
This directive can be used multiple times in one line.
To use the concatenated string as a name, do not insert space characters or tabs before or after this directive.

This directive is expanded to the name of the file that the assembler is currently processing (assembly-language file
name or include file name).

[Format]

[Description]
This directive is expanded to the name of the file that the assembler is currently processing (assembly-language file

name or include file name).
[Examples]
When the assembly-language file name is sample.src, a message is output to the sample file in the following example.

When the assembly-language file name is sample.src, the sample.inc file is included in the following example.

When the above line is written in the incl.inc file included in the sample.src file, a string is output to the incl.mes file in
most cases.

[Remarks]
This directive can be used in the operand of the .ASSERT and .INCLUDE directives.
Only the file name body with neither file extension nor path is used for replacement.

This directive defines the stack size to be used for a specified symbol referenced through the Call Walker.
[Format]

[Description]
This directive defines the stack size to be used for a specified symbol referenced through the Call Walker.
[Examples]

[Remarks]

mov_nibble .MACRO p1,src,dest
MOV.@p1 src,dest
.ENDM

mov_nibble W,R1,R2; Macro call

MOV.W R1,R2 ;Macro-expanded code

..FILE

..FILE

.ASSERT "sample" > ..FILE

.INCLUDE ..FILE@.inc

.ASSERT "sample" > ..FILE@.mes

.STACK

.STACK<name>=<numeric value>

.STACK SYMBOL=100H

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 467 of 1053
Nov 01, 2020

The stack value for a symbol can be defined only once; any later definitions for the same symbol are ignored. A multiple
of 4 in the range from 0H to 0FFFFFFFCH can be specified for a stack value, and a definition with any other value is
ignored.

<numeric value> must be a constant specified without using a forward reference symbol, an externally referenced sym-
bol, or a relative address symbol.

This directive changes the line number and file name referred to in assembler error messages or at debugging.
[Format]

[Description]
This directive changes the line number and file name referred to in assembler error messages or at debugging.
The line number and the file name specified with .LINE are valid until the next .LINE in a program.
The compiler generates .LINE corresponding to the line in the C source file when the assembly source program is out-

put with the debugging option specified.
When the file name is omitted, the file name is not changed, but only the line number is changed.
[Examples]

This directive defines a symbol for a string.
[Format]

[Description]
This directive defines a symbol for a string. Defined symbols can be redefined.
[Examples]

[Remarks]
To define a symbol for a string including a space character or a tab, be sure to enclose it within single-quotes (') or dou-

ble-quotes (").
The symbols defined through this directive cannot be declared as external references.
When this directive and the .EQU directive declare the same symbol name, the directive to make the declaration first is

given priority.

5.4 Macro Names

The following predefined macros are defined according to the option specification and version.

Table 5.35 Predefined Macros of Assembler

.LINE

.LINE<file name>,<line number>

.LINE<line number>

.LINE "C:\asm\test.c",5

.DEFINE

<symbol name>.DEFINE<string>
<symbol name>.DEFINE'<string>'
<symbol name>.DEFINE"<string>"

X_HI.DEFINE R1
MOV.L #0, X_HI

Option Predefined Macro

1 cpu=rx600
cpu=rx200

__RX600
__RX200

.DEFINE 1

.DEFINE 1

2 endian=big
endian=little

__BIG
__LITTLE

.DEFINE 1

.DEFINE 1

3 - __RENESAS_VERSION__ *1 .DEFINE XXYYZZ00H *2

R20UT3248EJ0110 Rev.1.10 Page 468 of 1053
Nov 01, 2020

CC-RX 5.　ASSEMBLY LANGUAGE SPECIFICATIONS

Notes 1. Always defined regardless of the option.

Notes 2. When the Assembler version is VXX.YY.ZZ, the value of __RENESAS_VERSION__ is XXYYZZ00H.
Example
For V3.01.00: __RENESAS_VERSION__ .DEFINE 03010000H.

5.5 Reserved Words

The assembler handles the same strings as assembler directives and mnemonics as reserved words. These reserved
words have special functions and they cannot be used as label names or symbol names in assembly-language files. They
are not case-sensitive; for example, "ABS" and "abs" are the same reserved word.

Reserved words are classified into the following types.

(1) Assembler directives
All assembler directives and all strings that begin with a period (.).

(2) Mnemonics
All mnemonics of the RX Family.

(3) Register and flag names
All register and flag names of the RX family.

(4) Operators
All operators described in this section.

(5) System labels
A system label is a name that begins with two periods and is generated by the assembler. All system labels are
handled as reserved words.

4 isa=rxv1 __RXV1 .DEFINE 1

5 isa=rxv2 __RXV2 .DEFINE 1

6 isa=rxv3 __RXV3 [V3.00.00 or later] .DEFINE 1

7 isa=rxv1
isa=rxv2
isa=rxv3

__RX_ISA_VERSION__ [V3.00.00 or later] .DEFINE 1
.DEFINE 2
.DEFINE 3

8 - __ASRX__ *1 .DEFINE 1

9 - __RENESAS__ *1 .DEFINE 1

10 -fpu __FPU .DEFINE 1

11 -dpfpu __DPFPU .DEFINE 1

Option Predefined Macro

CC-RX 6.　SECTION SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 469 of 1053
Nov 01, 2020

6. SECTION SPECIFICATIONS

6.1 List of Section Names

This section describes the sections for CCRX.
Each of the regions for execution instructions and data of the relocatable files output by the assembler comprises a sec-

tion. A section is the smallest unit for data placement in memory. Sections have the following properties.

- Section attributes
code Stores execution instructions
data Stores data that can be changed
romdata Stores fixed data

- Format type
Relative-address format:A section that can be relocated by the optimizing linkage editor.
Absolute-address format:A section of which the address has been determined; it cannot be relocated by the optimiz-
ing linkage editor.
Initial values
Specifies whether there are initial values at the start of program execution. Data which has initial values and data
which does not have initial values cannot be included in the same section. If there is even one initial value, the area
without initial values is initialized to zero.

- Write operations
Specifies whether write operations are or are not possible during program execution.

- Boundary alignment number
Values to correct the addresses of the sections. The optimizing linkage editor corrects addresses of the sections so
that they are multiples of each of the boundary alignment numbers.

6.1.1 C/C++ Program Sections

The correspondence between memory areas and sections for C/C++ programs and the standard library is described in
Table 6.1.

Table 6.1 Summary of Memory Area Types and Their Properties

No. Name Section Format
Type

Initial Value Align-
ment

Number

Description

Name Attribute Write Opera-
tion

1 Program area P *1*6 code Relative Yes
Not possible

1 byte *7 Stores machine code

2 Constant area C_8 *1 *2 *6

*8 *10
romdata Relative Yes

Not possible
8 bytes Stores const type data

C *1*2*6*8 romdata Relative Yes
Not possible

4 bytes

C_2
*1*2*6*8

romdata Relative Yes
Not possible

2 bytes

C_1

*1*2*6*8
romdata Relative Yes

Not possible
1 byte

R20UT3248EJ0110 Rev.1.10 Page 470 of 1053
Nov 01, 2020

CC-RX 6.　SECTION SPECIFICATIONS

3 Initialized data
area

D_8 *1 *2 *6

*8 *10
romdata Relative Yes

Possible
8 bytes Stores data with initial

values

D *1*2*6*8 romdata Relative Yes
Possible

4 bytes

D_2

*1*2*6*8
romdata Relative Yes

Possible
2 bytes

D_1
*1*2*6*8

romdata Relative Yes
Possible

1 byte

4 Uninitialized
data area

B_8 *1 *2 *6

*8 *10
data Relative No

Possible
8 bytes Stores data without ini-

tial values

B *1*2*6*8 data Relative No
Possible

4 bytes

B_2
*1*2*6*8

data Relative No
Possible

2 bytes

B_1
*1*2*6*8

data Relative No
Possible

1 byte

5 switch state-
ment branch
table area

W *1*2 romdata Relative Yes
Not Possible

4 bytes Stores branch tables for
switch statements

W_2 *1*2 romdata Relative Yes
Not Possible

2 bytes

W_1 *1*2 romdata Relative Yes
Not Possible

1 byte

6 C++ initial pro-
cessing/ post-
processing data
area

C$INIT romdata Relative Yes
Not possible

4 bytes Stores addresses of con-
structors and destruc-
tors called for global
class objects

7 C++ virtual func-
tion table area

C$VTBL romdata Relative Yes
Not possible

4 bytes Stores data for calling
the virtual function when
a virtual function exists in
the class declaration

8 User stack area SU data Relative No
Possible

4 bytes Area necessary for pro-
gram execution

9 Interrupt stack
area

SI data Relative No
Possible

4 bytes Area necessary for pro-
gram execution

10 Heap area - - Relative No
Possible

- Area used by library
functions malloc, real-
loc, calloc, and new *9

11 Absolute
address vari-
able area

$ADDR_
<section>_
<address>
 *3

data Absolute Yes/No
Possible/
Not possible
*4

- Stores variables speci-
fied by #pragma
address

No. Name Section Format
Type

Initial Value Align-
ment

Number

Description

Name Attribute Write Opera-
tion

CC-RX 6.　SECTION SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 471 of 1053
Nov 01, 2020

Notes 1. Section names can be switched using the section option.

Notes 2. Specifying a section with a boundary alignment of 4 when switching the section names also changes the
section name of sections with a boundary alignment of 1, 2, or 8.

Notes 3. <section> is a C, D, or B section name, and <address> is an absolute address (hexadecimal).

Notes 4. The initial value and write operation depend on the attribute of <section>.

Notes 5. The section name can be changed by using the section option. In this case, the C section can be
selected as the changed name.

Notes 6. The section name can be changed through #pragma section.

Notes 7. Specifying the instalign4 or instalign8 option, #pragma instalign4, or #pragma instalign8 changes the
boundary alignment to 4 or 8.

Notes 8. If an endian not matching the endian option has been specified in #pragma endian, a dedicated section
is created to store the relevant data. At the end of the section name, _B is added for #pragma endian
big, and _L is added for #pragma endian little.

Notes 9. Using these functions requires the allocation of at least 16 bytes of memory as a heap area.

Notes 10. This section is for storing double-precision floating-point data when the dpfpu option is specified.

Examples 1. A program example is used to demonstrate the correspondence between a C program and the compiler-
generated sections.

C program

12 Variable vector
area

C$VECT
C$VECT<
vector
table num-
ber>

romdata Relative No
Possible

4 bytes Variable vector table

13 Literal area L *5 romdata Relative Yes
Possible/
Not possible

4 bytes Stores string literals and
initializers used for
dynamic initialization of
aggregates

int a=1;
char b;
const short c=0;
void main(){
 ...
}

Areas generated by the compiler and stored data Section name

Program area (main(){...}) P

Constant area (c) C_2

Initialized data area (a) D

Uninitialized data area (b) B_1

No. Name Section Format
Type

Initial Value Align-
ment

Number

Description

Name Attribute Write Opera-
tion

R20UT3248EJ0110 Rev.1.10 Page 472 of 1053
Nov 01, 2020

CC-RX 6.　SECTION SPECIFICATIONS

Examples 2. A program example is used to demonstrate the correspondence between a C++ program and the com-
piler-generated sections.

C++ program

class A{
 int m;
 A(int p);
 ~A();
};
A a(1);
char b;
extern const char c='a';
short d=1;
void f(){...}

Areas generated by the compiler and stored data Section name

Program area (f(){...}) P

Constant area (c) C_1

Initialized data area (d) D_2

Uninitialized data area (a)
Uninitialized data area (b)

B
B_1

Initial processing/
postprocessing data areas (&A::A, &A::~A)

C $INT

CC-RX 6.　SECTION SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 473 of 1053
Nov 01, 2020

6.2 Assembly Program Sections

In assembly programs, the .SECTION control directive is used to begin sections and declare their attributes, and the
.ORG control directive is used to declare the format types of sections.

For details on the control directives, refer to section 5.2, Directives.

Example An example of an assembly program section declaration is shown below.

(1) Declares a code section with section name A, boundary alignment 4, and relative address format.
(2) Declares a romdata section with section name B, allocated address 2000H, and absolute address format.
(3) Declares a data section with section name C, boundary alignment 4, and relative address format.

 .SECTION A,CODE,ALIGN=4 ;(1)

START:
 MOV.L #CONST,R4
 MOV.L [R4],R5
 ADD #10,R5,R3
 MOV.L #100,R4
 MOV.L #ARRAY,R5
LOOP:
 MOV.L R3,[R5+]
 SUB #1,R4
 CMP #0,R4
 BNE LOOP
EXIT:
 RTS

;
 .SECTION B,ROMDATA ;(2)
 .ORG 02000H
 .glb CONST
CONST:
 .LWORD 05H
;
 .SECTION C,DATA,ALIGN=4 ;(3)
 .glb BASE
BASE:
 .blkl 100
 .END

R20UT3248EJ0110 Rev.1.10 Page 474 of 1053
Nov 01, 2020

CC-RX 6.　SECTION SPECIFICATIONS

6.3 Linking Sections

The optimizing linkage editor links the same sections within input relocatable files, and allocates addresses specified by
the start option.

(1) The same section names in different files are allocated continuously in the order of file input.

(2) Sections with the same name but different boundary alignments are linked after alignment. Section alignment
uses the larger of the section alignments.

Section A

"file1.obj"

input file1.obj file2.obj file3.obj
start A,B/1000, C,D/8000

Options specified at linkage

0x1000

0x8000

"file2.obj" "file3.obj"

Section B

Section C

Section D

Section A

Section C

Section B

file2.section A

file1.section B

file3.section B

file1.section C

file3.section C

file2.section D

file1.section A

(align=2,size=0x6D) (align=4,size=0x100)

"file1.obj" "file2.obj"

input file1.obj file2.obj

start A/1000

0x1000

0x1070

Section A

Options specified at linkage

file1.section A

Section A

file1.section A
Alignment = 4

Size = 0 x 170

CC-RX 6.　SECTION SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 475 of 1053
Nov 01, 2020

(3) When sections with the same name include both absolute-address and relative-address formats, relative-address
sections are linked following absolute-address sections.

(align=4,size=0x100) (size=0x6D .ORG 01000H)

"file1.obj" "file2.obj"

input file 1.obj file 2.obj

0x1000

0x1070

Section A

Options specified at linkage

file2.section A

Section A

file2.section A Absolute-address section

Size = 0 x 170

R20UT3248EJ0110 Rev.1.10 Page 476 of 1053
Nov 01, 2020

CC-RX 6.　SECTION SPECIFICATIONS

(4) Rules for the order of linking sections with the same name are based on their priorities as follows.

- Order specified by the input option or input files on the command line

- Order specified for the user library by the library option and order of input of modules within the library

- Order specified for the system library by the library option and order of input of modules within the library

- Order specified for libraries by environment variables (HLNK_LIBRARY1 to HLNK_LIBRARY3) and order of
input of modules within the library

"file1.obj"

input file1.obj file2.obj

library syslib1.lib usr1.lib

start A/1000

"file2.obj"

"usr1.lib"

"usr2.lib"

"syslib1.lib"

0x1000

HLNK_LIBRARY 1=syslib2.lib
HLNK_LIBRARY2=usr2.lib

"syslib2.lib"

Section A

Options specified at linkage

Section A

Module 1 (Section A)

Module 2 (Section A)

Module 5 (Section A)

Module 6 (Section A)

Module 3 (Section A)

Module 4 (Section A)

Module 7 (Section A)

Module 8 (Section A)

Environment variables

file1.section A

Module 1.section A

file2.section A

Module 2.section A

Module 5.section A

Module 6.section A

Module 7.section A

Module 8.section A

Module 3.section A

Module 4.section A

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 477 of 1053
Nov 01, 2020

7. LIBRARY FUNCTIONAL SPECIFICATION

This chapter provides library functions supplied with the CCRX.

7.1 Supplied Libraries

The CCRX provides the standard C, standard C99, and EC++ libraries.

7.1.1 Terms Used in Library Function Descriptions

(1) Stream input/output
In data input/output, it would lead to poor efficiency if each call of an input/output function, which handles a single
character, drove the input/output device and the OS functions. To solve this problem, a storage area called a buf-
fer is normally provided, and the data in the buffer is input or output at one time.
From the viewpoint of the program, on the other hand, it is more convenient to call input/output functions for each
character.
Using the library functions, character-by-character input/output can be performed efficiently without awareness of
the buffer status within the program by automatically performing buffer management.
Those library functions enable a programmer to write a program considering the input/output as a single data
stream, making the programmer be able to implement data input/output efficiently without being aware of the
detailed procedure. Such capability is called stream input/output.

(2) FILE structure and file pointer
The buffer and other information required for the stream input/output described above are stored in a single struc-
ture, defined by the name FILE in the <stdio.h> standard include file.
In stream input/output, all files are handled as having a FILE structure data structure. Files of this kind are called
stream files. A pointer to this FILE structure is called a file pointer, and is used to specify an input/output file.
The file pointer is defined as

FILE *fp;
When a file is opened by the fopen function, etc., the file pointer is returned. If the open processing fails, NULL is
returned. Note that if a NULL pointer is specified in another stream input/output function, that function will end
abnormally. After opening a file, be sure to check the file pointer value to see whether the open processing has
been successful.

(3) Functions and macros
There are two library function implementation methods: functions and macros.
A function has the same interface as an ordinary user-written function, and is incorporated during linkage. A macro
is defined using a #define statement in the standard include file relating to the function.
The following points must be noted concerning macros:

- Macros are expanded automatically by the preprocessor, and therefore a macro expansion cannot be invali-
dated even if the user declares a function with the same name.

- If an expression with a side effect (assignment expression, increment, decrement) is specified as a macro
parameter, its result is not guaranteed.

Example Macro definition of MACRO that calculates the absolute value of a parameter is as follows:
If the following definition is made:
#define MACRO(a) ((a) >= 0 ? (a) : -(a))
and if
X=MACRO(a++)
is in the program, the macro will be expanded as follows:
X = ((a++) >= 0 ? (a++) : -(a++))
a will be incremented twice, and the resultant value will be different from the absolute value of the initial value of a.

(4) EOF
In functions such as getc, getchar, and fgetc, which input data from a file, EOF is the value returned at
end-of-file. The name EOF is defined in the <stdio.h> standard include file.

(5) NULL
This is the value indicating that a pointer is not pointing at anything. The name NULL is defined in the <stddef.h>
standard include file.

R20UT3248EJ0110 Rev.1.10 Page 478 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

(6) Null character
The end of a string in C/C++ is indicated by the characters \0. String parameters in library functions must also
conform to this convention. The characters \0 indicating the end of a string are called null characters.

(7) Return code
With some library functions, a return value is used to determine the result (such as whether the specified process-
ing succeeded or failed). In this case, the return value is called the return code.

(8) Text files and binary files
Many systems have special file formats to store data. To support this facility, library functions have two file formats:
text files and binary files.

- Text files
A text file is used to store ordinary text, and consists of a collection of lines. In text file input, the new-line char-
acter (\n) is input as a line separator. In output, output of the current line is terminated by outputting the new-line
character (\n). Text files are used to input/output files that store standard text for each system. With text files,
characters input or output by a library function do not necessarily correspond to a physical stream of data in the
file.

- Binary files
A binary file is configured as a row of byte data. Data input or output by a library function corresponds to a phys-
ical list of data in the file.

(9) Standard input/output files
Files that can be used as standard by input/output library functions by default without preparations such as open-
ing file are called standard input/output files. Standard input/output files comprise the standard input file (stdin),
standard output file (stdout), and standard error output file (stderr).

- Standard input file (stdin)
Standard file to be input to a program.

- Standard output file (stdout)
Standard file to be output from a program.

- Standard error output file (stderr)
Standard file for storing output of error messages, etc., from a program.

(10) Floating-point numbers
Floating-point numbers are numbers represented by approximation of real numbers. In a C source program, float-
ing-point numbers are represented by decimal numbers, but inside the computer they are normally represented by
binary numbers.
In the case of binary numbers, the floating-point representation is as follows:
2n m (n: integer, m: binary fraction)
Here, n is called the exponent of the floating-point number, and m is called the mantissa. The numbers of bits to
represent n and m are normally fixed so that a floating-point number can be represented using a specific data
size.
Some terms relating to floating-point numbers are explained below.

- Radix
An integer value indicating the number of distinct digits in the number system used by a floating-point number
(10 for decimal, 2 for binary, etc.). The radix is normally 2.

- Rounding
Rounding is performed when an intermediate result of an operation of higher precision than a floating-point type
is stored as that floating-point type. There is rounding up, rounding down, and half-adjust rounding (i.e., in
binary representation, rounding down 0 and rounding up 1).

- Normalization
When a floating-point number is represented in the form 2n m, the same number can be represented in differ-
ent ways.
[Format] The following two expressions represent the same value.
25 1.0 (2)((2) indicates a binary number)
26 0.1 (2)
Usually, a representation in which the leading digit is not 0 is used, in order to secure the number of valid digits.
This is called a normalized floating-point number, and the operation that converts a floating-point number to this
kind of representation is called normalization.

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 479 of 1053
Nov 01, 2020

- Guard bit
When saving an intermediate result of a floating-point operation, data one bit longer than the actual float-
ing-point number is normally provided in order for rounding to be carried out. However, this alone does not per-
mit an accurate result to be achieved in the event of digit dropping, etc. For this reason, the intermediate result
is saved with an extra bit, called a guard bit.

(11) File access mode
This is a string that indicates the kind of processing to be carried out on a file when it is opened. There are 12 dif-
ferent modes, as shown in Table 7.1.

Table 7.1 File Access Modes

(12) implementation defined
Definitions differ for each compiler.

(13) Error indicator and end-of-file indicator
The following two data items are held for each stream file: (1) an error indicator that indicates whether or not an
error has occurred during file input/output, and (2) an end-of-file indicator that indicates whether or not the input
file has ended.
These data items can be referenced by the ferror function and the feof function, respectively.
With some functions that handle stream files, error occurrence and end-of-file information cannot be obtained from
the return value alone. The error indicator and end-of-file indicator are useful for checking the file status after exe-
cution of such functions.

(14) File position indicator
Stream files that can be read or written at any position within the file, such as disk files, have an associated data
item called a file position indicator that indicates the current read/write position within the file.
File position indicators are not used with stream files that do not permit the read/write position within the file to be
changed, such as terminals.

7.1.2 Notes on Use of Libraries

The contents of macros defined in a library differ for each compiler.
When a library is used, the behavior is not guaranteed if the contents of these macros are redefined.
With libraries, errors are not detected in all cases. The behavior is not guaranteed if library functions are called in a form

other than those shown in the descriptions in the following sections.

Access Mode Meaning

'r' Opens text file for reading

'w' Opens text file for writing

'a' Opens text file for addition

'rb' Opens binary file for reading

'wb' Opens binary file for writing

'ab' Opens binary file for appending

'r+' Opens text file for reading and updating

'w+' Opens text file for writing and updating

'a+' Opens text file for appending and updating

'r+b' Opens binary file for reading and updating

'w+b' Opens binary file for writing and updating

'a+b' Opens binary file for appending and updating

R20UT3248EJ0110 Rev.1.10 Page 480 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

7.2 Header Files

The list of header files required for using the libraries of the RX are listed below.
The macro definitions and function declarations are described in each file.

Table 7.2 Library Types and Corresponding Standard Include Files

In addition to the above standard include files, standard include files consisting solely of macro name definitions, shown
in Table 7.3, are provided to improve programming efficiency.

Table 7.3 Standard Include Files Comprising Macro Name Definitions

Library Type Description Standard Include File

Program diagnostics Outputs program diagnostic information. <assert.h>

Character handling Handles and checks characters. <ctype.h>

Mathematics Performs numerical calculations such as trigonomet-
ric functions.

<math.h>
<mathf.h>

Non-local jumps Supports transfer of control between functions. <setjmp.h>

Variable arguments Supports access to variable arguments for functions
with such arguments.

<stdarg.h>

Input/output Performs input/output handling. <stdio.h>

General utilities Performs C program standard processing such as
storage area management.

<stdlib.h>

String handling Performs string comparison, copying, etc. <string.h>

Complex arithmetic Performs complex number operations. <complex.h>

Floating-point environment Supports access to floating-point environment. <fenv.h>

Integer type format conver-
sion

Manipulates greatest-width integers and converts
integer format.

<inttypes.h>

Multibyte and wide charac-
ters

Manipulates multibyte characters. <wchar.h>
<wctype.h>

Standard Include File Description

<stddef.h> Defines macro names used in common by the standard include files.

<limits.h> Defines various limit values relating to compiler internal processing.

<errno.h> Defines the value to be set in errno when an error is generated in a library function.

<float.h> Defines various limit values relating to the limits of floating-point numbers.

<iso646.h> Defines alternative spellings of macro names.

<stdbool.h> Defines macros relating to logical types and values.

<stdint.h> Declares integer types with specified width and defines macros.

<tgmath.h> Defines type-generic macros.

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 481 of 1053
Nov 01, 2020

7.3 Reentrant Library

Functions of libraries created by using the standard library generator with the -reent option specified can be executed
as reentrant except for the rand and srand functions and the functions of the EC++ library.

Table 7.4 and Table 7.5 indicate which functions of libraries are reentrant even when the -reent option is not specified.
In the tables, functions for which "D" is indicated set the errno variable, so execution as reentrant is only possible as

long as the program does not refer to the errno variable.

Reentrant column O: Reentrant X: Non-reentrant D: Sets the errno variable.

Table 7.4 C(C89) Reentrant Library Function List

Standard Include
File

Function Name Reentrant Standard Include
File

Function Name Reentrant

stddef.h offsetof O math.h frexp D

assert.h assert X ldexp D

ctype.h isalnum O log D

isalpha O log10 D

iscntrl O modf D

isdigit O pow D

isgraph O sqrt D *1

islower O ceil D

isprint O fabs D *1

ispunct O floor D

isspace O fmod D

isupper O mathf.h acosf D

isxdigit O asinf D

tolower O atanf D

toupper O atan2f D *2

math.h acos D cosf D *2

asin D sinf D *2

atan D tanf D

atan2 D *2 coshf D

cos D *2 sinhf D

sin D *2 tanhf D

tan D expf D

cosh D frexpf D

sinh D ldexpf D

tanh D logf D

exp D log10f D

R20UT3248EJ0110 Rev.1.10 Page 482 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

mathf.h modff D stdio.h fputs X

powf D getc X

sqrtf D *1 getchar X

ceilf D gets X

fabsf O putc X

fabsl D *1 putchar X

floorf D puts X

fmodf D ungetc X

setjmp.h setjmp O fread X

longjmp O fwrite X

stdarg.h va_start O fseek X

va_arg O ftell X

va_end O rewind X

stdio.h fclose X clearerr X

fflush X feof X

fopen X ferror X

freopen X perror X

setbuf X stdlib.h atof D

setvbuf X atoi D

fprintf X atol D

fscanf X atoll D

printf X strtod D

scanf X strtol D

sprintf X strtoul D

sscanf D strtoll D

vfprintf X strtoull D

vprintf X rand X

vsprintf X srand X

fgetc X calloc X

fgets X free X

fputc X malloc X

Standard Include
File

Function Name Reentrant Standard Include
File

Function Name Reentrant

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 483 of 1053
Nov 01, 2020

Notes 1. If the function call is replaced by an instruction, the entry in the column for "Reentrant" in the table would
become O (i.e. reentrance is possible) since the instruction does not update the errno variable. Refer to
the item on -library in the section on compiler options for the conditions under which calls are replaced
by instructions.

Notes 2. If the function call is replaced by code that uses a trigonometric function unit, the entry in the column for
"Reentrant" in the table would become X (i.e. non-reentrant).
Refer to the item on -tfu in the section on compiler options for the conditions under which calls are
replaced by instructions for the trigonometric function unit.

Table 7.5 C99 Reentrant Library Functions List

stdlib.h realloc X string.h strcmp O

bsearch O strncmp O

qsort O memchr O

abs O strchr O

div O strcspn O

labs O strpbrk O

llabs O strrchr O

ldiv O strspn O

lldiv O strstr O

string.h memcpy O strtok X

strcpy O memset O

strncpy O strerror O

strcat O strlen O

strncat O memmove O

memcmp O

Standard Include
File

Function Name Reentrant Standard Include
File

Function Name Reentrant

stddef.h isblank O math.h frexpl D

math.h acosl D ldexpl D

atanl D logl D

atan2l D *2 log10l D

cosl D *2 modfl D

sinl D *2 powl D

tanl D sqrtl D *1

coshl D ceill D

sinhl D fabsl D *1

tanhl D floorl D

expl D fmodl D

Standard Include
File

Function Name Reentrant Standard Include
File

Function Name Reentrant

R20UT3248EJ0110 Rev.1.10 Page 484 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

math.h fpclassify O math.h log2 X

isfinite O log2f X

isinf O log2l X

isnan O logb X

isnormal O logbf X

signbit O logbl X

isgreater O scalbn X

isgreaterequal O scalbnf X

isless O scalbnl X

islessequal O scalbln X

islessgreater O scalblnf X

isunordered O scalblnl X

acosh X cbrt O

acoshf X cbrtf O

acoshl X cbrtl O

asinh X hypot X

asinhf X hypotf X

asinhl X hypotl X

atanh X erf X

atanhf X erff X

atanhl X erfl X

exp2 X erfc X

exp2f X erfcf X

exp2l X erfcl X

expm1 D lgamma X

expm1f D lgammaf X

expm1l D lgammal X

ilogb O tgamma X

ilogbf O tgammaf X

ilogbl O tgammal X

log1p X nearbyint O

log1pf X nearbyintf O

log1pl X nearbyintl O

Standard Include
File

Function Name Reentrant Standard Include
File

Function Name Reentrant

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 485 of 1053
Nov 01, 2020

math.h rint X math.h nextafter X

rintf X nextafterf X

rintl X nextafterl X

lrint X nexttoward X

lrintf X nexttowardf X

lrintl X nexttowardl X

llrint X fdim O

llrintf X fdimf O

llrintl X fdiml O

round O fmax O

roundf O fmaxf O

roundl O fmaxl O

lround X fmin O

lroundf X fminf O

lroundl X fminl O

llround X fma X

llroundf X fmaf X

llroundl X fmal X

trunc O stdarg.h va_copy O

truncf O stdio.h snprintf X

truncl O vsnprintf X

remainder X vfscanf X

remainderf X vscanf X

remainderl X vsscanf D

remquo X complex.h cacos X

remquof X cacosf X

remquol X cacosl X

copysign O casin X

copysignf O casinf X

copysignl O casinl X

nan O catan X

nanf O catanf X

nanl O catanl X

Standard Include
File

Function Name Reentrant Standard Include
File

Function Name Reentrant

R20UT3248EJ0110 Rev.1.10 Page 486 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

complex.h ccos X complex.h cabsf X

ccosf X cabsl X

ccosl X cpow X

csin X cpowf X

csinf X cpowl X

csinl X csqrt D

ctan D csqrtf D

ctanf D csqrtl D

ctanl D carg D

cacosh X cargf D

cacoshf X cargl D

cacoshl X cimag O

casinh X cimagf O

casinhf X cimagl O

casinhl X conj O

catanh X conjf O

catanhf X conjl O

catanhl X cproj O

ccosh X cprojf O

ccoshf X cprojl O

ccoshl X creal O

csinh X crealf O

csinhf X creall O

csinhl X fenv.h feclearexcept X

ctanh D fegetexceptflag O

ctanhf D feraiseexcept X

ctanhl D fesetexceptflag X

cexp X fetestexcept O

cexpf X fegetround O

cexpl X fesetround X

clog X fegetenv O

clogf X feholdexcept X

clogl X fesetenv X

cabs X feupdateenv X

Standard Include
File

Function Name Reentrant Standard Include
File

Function Name Reentrant

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 487 of 1053
Nov 01, 2020

Notes 1. If the function call is replaced by an instruction, the entry in the column for "Reentrant" in the table would
become O (i.e. reentrance is possible) since the instruction does not update the errno variable. Refer to
the item on -library in the section on compiler options for the conditions under which calls are replaced
by instructions.

Notes 2. If the function call is replaced by code that uses a trigonometric function unit, the entry in the column for
"Reentrant" in the table would become X (i.e. non-reentrant).
Refer to the item on -tfu in the section on compiler options for the conditions under which calls are
replaced by instructions for the trigonometric function unit.

inttypes.h imaxabs O wchar.h wcstod D

imaxdiv O wcstof D

strtoimax D wcstold D

strtoumax D wcstol D

wcstoimax D wcstoll D

wcstoumax D wcstoul D

wchar.h fwprintf X wcstoull D

vfwprintf X wcscpy O

swprintf X wcsncpy O

vswprintf X wmemcpy O

wprintf X wmemmove O

vwprintf X wcscat O

fwscanf X wcsncat O

vfwscanf X wcscmp O

swscanf D wcsncmp O

vswscanf D wmemcmp O

wscanf X wcschr O

vwscanf X wcscspn O

fgetwc X wcspbrk O

fgetws X wcsrchr O

fputwc X wcsspn O

fputws X wcsstr O

fwide X wcstok O

getwc X wmemchr O

getwchar X wcslen O

putwc X wmemset O

putwchar X mbsinit O

ungetwc X mbrlen X

Standard Include
File

Function Name Reentrant Standard Include
File

Function Name Reentrant

R20UT3248EJ0110 Rev.1.10 Page 488 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

7.4 Library Function

This section explains library functions.

Some of the C99-language-expanded keywords (functions, macros, variable names, etc..) must be used in when the
C99-language is selected. Such keywords are displayed by the mark of "<-lang=c99>" at the tables each the
header-files in these sections. When you use these keywords in your program, at the time of compilations and library gen-
erations, please turn on the -lang=c99 option.

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 489 of 1053
Nov 01, 2020

7.4.1 <stddef.h>

Defines macro names used in common in the standard include files.
The following macro names are all implementation-defined.

Implementation-Defined Specifications

Type Definition Name Description

Type
(typedef)

ptrdiff_t Indicates the type of the result of subtraction between two pointers.

size_t Indicates the type of the result of an operation using the sizeof operator.

Constant
(macro)

NULL Indicates the value when a pointer is not pointing at anything.
This value is such that the result of a comparison with 0 using the equality
operator (==) is true.

Variable
(macro)

errno If an error occurs during library function processing, the error code defined
in the respective library is set in errno.
By setting 0 in errno before calling a library function and checking the error
code set in errno after the library function processing has ended, it is possi-
ble to check whether an error occurred during the library function process-
ing.

Function
(macro)

offsetof Obtains the offset in bytes from the beginning of a structure to a structure
member.

Type
(typedef)

wchar_t Type that indicates an extended character.

Item Compiler Specifications

Value of macro NULL Value 0.

Type equivalent to macro ptrdiff_t long type

Type equivalent to wchar_t unsigned short type

R20UT3248EJ0110 Rev.1.10 Page 490 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

7.4.2 <assert.h>

Adds diagnostics into programs.

To invalidate the diagnostics defined by <assert.h>, define macro name NDEBUG with a #define statement (#define
NDEBUG) before including <assert.h>.

Note If an #undef statement is used for macro name assert, the result of subsequent assert calls is not guar-
anteed.

Type Definition Name Description

Function
(macro)

assert Adds diagnostics into programs.

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 491 of 1053
Nov 01, 2020

Adds diagnostics into programs.

[Format]

#include <assert.h>
void assert (long expression);

[Parameters]

expression Expression to be evaluated.

[Remarks]

When expression is true, the assert macro terminates processing without returning a value. If expression is false, it
outputs diagnostic information to the standard error file in the form defined by the compiler, and then calls the abort func-
tion.

The diagnostic information includes the parameter's program text, source file name, and source line numbers.
Implementation define:

The following message is output when expression is false in assert (expression):
The message depends on the lang option setting at compilation.

(1) When -lang=c99 is not specified (C (C89), C++, or EC++ language):
 ASSERTION FAILED:expressionFILE<file name>,LINE<line number>

(2) When -lang=c99 is specified (C (C99) language):
 ASSERTION FAILED:expressionFILE<file name>,LINE<line number>FUNCNAME<function name>

assert

R20UT3248EJ0110 Rev.1.10 Page 492 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

7.4.3 <ctype.h>

Checks and converts character types.

In the above functions, if the input parameter value is not within the range that can be represented by the unsigned
char type and is not EOF, the operation of the function is not guaranteed.

Character types are listed in Table 7.6.

Table 7.6 Character Types

Type Definition Name Description

Function isalnum Tests for a letter or a decimal digit.

isalpha Tests for a letter.

iscntrl Tests for a control character.

isdigit Tests for a decimal digit.

isgraph Tests for a printing character except space.

islower Tests for a lowercase letter.

isprint Tests for a printing character including space.

ispunct Tests for a special character.

isspace Tests for a white-space character.

isupper Tests for an uppercase letter.

isxdigit Tests for a hexadecimal digit.

tolower Converts an uppercase letter to lowercase.

toupper Converts a lowercase letter to uppercase.

isblank <-lang=c99> Tests for a space character or a tab character.

Character Type Description

Uppercase letter Any of the following 26 characters
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W',
'X', 'Y', 'Z'

Lowercase letter Any of the following 26 characters
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'

Letter Any uppercase or lowercase letter

Decimal digit Any of the following 10 characters
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9'

Printing character A character, including space (' ') that is displayed on the screen (corresponding to
ASCII codes 0x20 to 0x7E)

Control character Any character except a printing character

White-space character Any of the following 6 characters
Space (' '), form feed ('\f'), new-line (’\n’), carriage return (’\r’), horizontal tab (’\t’),
vertical tab (’\v’)

Hexadecimal digit Any of the following 22 characters
’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’,
’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’a’, ’b’, ’c’, ’d’, ’e’, ’f’

Special character Any printing character except space (’ ’), a letter, or a decimal digit

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 493 of 1053
Nov 01, 2020

Implementation-Defined Specifications

Table 7.7 True Character

Blank character Either of the following 2 characters
Space (’ ’), horizontal tab (’\t’)

Item Compiler Specifications

The character set inspected by the isalnum, isalpha,
iscntrl, islower, isprint, and isupper functions

Character set represented by the unsigned char type (0 to
255) and EOF (-1). Table 7.7 shows the character set that
results in a true return value.

Function Name True Characters

isalnum '0' to '9', 'A' to 'Z', 'a' to 'z'

isalpha 'A' to 'Z', 'a' to 'z'

iscntrl '\x00' to '\x1f', '\x7f'

islower 'a' to 'z'

isprint '\x20' to '\x7E'

isupper 'A' to 'Z'

Character Type Description

R20UT3248EJ0110 Rev.1.10 Page 494 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Tests for a letter or a decimal digit.

[Format]

#include <ctype.h>
long isalnum (long c);

[Parameters]

c Character to be tested

[Return values]

If character c is a letter or a decimal digit: Nonzero
If character c is not a letter or a decimal digit: 0

isalnum

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 495 of 1053
Nov 01, 2020

Tests for a letter.

[Format]

#include <ctype.h>
long isalpha(long c);

[Parameters]

c Character to be tested

[Return values]

If character c is a letter: Nonzero
If character c is not a letter: 0

isalpha

R20UT3248EJ0110 Rev.1.10 Page 496 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Tests for a control character.

[Format]

#include <ctype.h>
long iscntrl (long c);

[Parameters]

c Character to be tested

[Return values]

If character c is a control character: Nonzero
If character c is not a control character: 0

iscntrl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 497 of 1053
Nov 01, 2020

Tests for a decimal digit.

[Format]

#include <ctype.h>
long isdigit (long c);

[Parameters]

c Character to be tested

[Return values]

If character c is a decimal digit: Nonzero
If character c is not a decimal digit: 0

isdigit

R20UT3248EJ0110 Rev.1.10 Page 498 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Tests for any printing character except space (’ ’).

[Format]

#include <ctype.h>
long isgraph (long c);

[Parameters]

c Character to be tested

[Return values]

If character c is a printing character except space: Nonzero
If character c is not a printing character except space: 0

isgraph

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 499 of 1053
Nov 01, 2020

Tests for a lowercase letter.

[Format]

#include <ctype.h>
long islower (long c);

[Parameters]

c Character to be tested

[Return values]

If character c is a lowercase letter: Nonzero
If character c is not a lowercase letter: 0

islower

R20UT3248EJ0110 Rev.1.10 Page 500 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Tests for a printing character including space (’ ’).

[Format]

#include <ctype.h>
long isprint (long c);

[Parameters]

c Character to be tested

[Return values]

If character c is a printing character including space: Nonzero
If character c is not a printing character including space: 0

isprint

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 501 of 1053
Nov 01, 2020

Tests for a special character.

[Format]

#include <ctype.h>
long ispunct (long c);

[Parameters]

c Character to be tested

[Return values]

If character c is a special character: Nonzero
If character c is not a special character: 0

ispunct

R20UT3248EJ0110 Rev.1.10 Page 502 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Tests for a white-space character.

[Format]

#include <ctype.h>
long isspace (long c);

[Parameters]

c Character to be tested

[Return values]

If character c is a white-space character: Nonzero
If character c is not a white-space character: 0

isspace

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 503 of 1053
Nov 01, 2020

Tests for an uppercase letter.

[Format]

#include <ctype.h>
long isupper (long c);

[Parameters]

c Character to be tested

[Return values]

If character c is an uppercase letter: Nonzero
If character c is not an uppercase letter: 0

isupper

R20UT3248EJ0110 Rev.1.10 Page 504 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Tests for a hexadecimal digit.

[Format]

#include <ctype.h>
long isxdigit (long c);

[Parameters]

c Character to be tested

[Return values]

If character c is a hexadecimal digit: Nonzero
If character c is not a hexadecimal digit: 0

isxdigit

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 505 of 1053
Nov 01, 2020

Converts an uppercase letter to the corresponding lowercase letter.

[Format]

#include <ctype.h>
long tolower (long c);

[Parameters]

c Character to be converted

[Return values]

If character c is an uppercase letter:Lowercase letter corresponding to character c
If character c is not an uppercase letter: Character c

tolower

R20UT3248EJ0110 Rev.1.10 Page 506 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Converts a lowercase letter to the corresponding uppercase letter.

[Format]

#include <ctype.h>
long toupper (long c);

[Parameters]

c Character to be converted

[Return values]

If character c is a lowercase letter: Uppercase letter corresponding to character c
If character c is not a lowercase letter: Character c

toupper

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 507 of 1053
Nov 01, 2020

Tests for a space character or a tab character.

[Format]

#include <ctype.h>
long isblank (long c);

[Parameters]

c Character to be tested

[Return values]

If character c is a space character or a tab character: Nonzero
If character c is neither a space character nor a tab character: 0

isblank

R20UT3248EJ0110 Rev.1.10 Page 508 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

7.4.4 <float.h>

Defines various limits relating to the internal representation of floating-point numbers.
The following macro names are all implementation-defined.

Type Definition Name Definition Value Description

Constant
(macro)

FLT_RADIX 2 Indicates the radix in exponent representation.

FLT_ROUNDS 1 Indicates whether or not the results of addition
are rounded off.
1 means that rounding of the results of opera-
tion is enabled.

FLT_MAX 3.4028235677973364e+38F Indicates the maximum value that can be rep-
resented as a float type floating-point value.

DBL_MAX 1.7976931348623158e+308 Indicates the maximum value that can be rep-
resented as a double type floating-point value.

LDBL_MAX 1.7976931348623158e+308 Indicates the maximum value that can be rep-
resented as a long double type floating-point
value.

FLT_MAX_EXP 128 Using powers of the radix two to represent the
range of float type floating-point numbers,
FLT_MAX_EXP indicates the maximum value
of the exponent plus 1.

DBL_MAX_EXP 1024 Using powers of the radix two to represent the
range of double type floating-point numbers,
DBL_MAX_EXP indicates the maximum value
of the exponent plus 1.

LDBL_MAX_EXP 1024 Using powers of the radix two to represent the
range of long double type floating-point num-
bers, LDBL_MAX_EXP indicates the maximum
value of the exponent plus 1.

FLT_MAX_10_EXP 38 Using powers of 10 to represent the range of
float type floating point positive numbers,
FLT_MAX_10_EXP indicates the exponent of
the maximum integer.

DBL_MAX_10_EXP 308 Using powers of 10 to represent the range of
double type floating point positive numbers,
DBL_MAX_10_EXP indicates the exponent of
the maximum integer.

LDBL_MAX_10_EXP 308 Using powers of 10 to represent the range of
long double type floating point positive num-
bers, LDBL_MAX_10_EXP indicates the expo-
nent of the maximum integer.

FLT_MIN 1.175494351e38F Indicates the minimum positive value that can
be represented as a float type floating-point
value.

DBL_MIN 2.2250738585072014e308 Indicates the minimum positive value that can
be represented as a double type floating-point
value.

LDBL_MIN 2.2250738585072014e308 Indicates the minimum positive value that can
be represented as a long double type float-
ing-point value.

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 509 of 1053
Nov 01, 2020

Constant
(macro)

FLT_MIN_EXP 125 Using powers of the radix two to represent the
range of float type floating-point numbers,
FLT_MIN_EXP indicates the minimum value of
the exponent plus 1.

DBL_MIN_EXP 1021 Using powers of the radix two to represent the
range of double type floating-point numbers,
DBL_MIN_EXP indicates the minimum value of
the exponent plus 1.

LDBL_MIN_EXP 1021 Using powers of the radix two to represent the
range of long double type floating-point num-
bers, LDBL_MIN_EXP indicates the minimum
value of the exponent plus 1.

FLT_MIN_10_EXP 37 Using powers of 10 to represent the range of
float type floating point positive numbers,
FLT_MIN_10_EXP indicates the exponent of
the minimum integer.

DBL_MIN_10_EXP 307 Using powers of 10 to represent the range of
double type floating point positive numbers,
DBL_MIN_10_EXP indicates the exponent of
the minimum integer.

LDBL_MIN_10_EXP 307 Using powers of 10 to represent the range of
long double type floating point positive num-
bers, LDBL_MIN_10_EXP indicates the expo-
nent of the minimum integer.

FLT_DIG 6 Indicates the maximum number of digits in
float type floating-point value decimal-preci-
sion.

DBL_DIG 15 Indicates the maximum number of digits in
double type floating-point value decimal-preci-
sion.

LDBL_DIG 15 Indicates the maximum number of digits in
long double type floating-point value deci-
mal-precision.

FLT_MANT_DIG 24 Indicates the maximum number of mantissa
digits when a float type floating-point value is
represented in the radix.

DBL_MANT_DIG 53 Indicates the maximum number of mantissa
digits when a double type floating-point value
is represented in the radix.

LDBL_MANT_DIG 53 Indicates the maximum number of mantissa
digits when a long double type floating-point
value is represented in the radix.

DECIMAL_DIG 17 Indicates the maximum number of digits of a
floating-point value represented in decimal pre-
cision.

FLT_EPSILON 1.1920928955078125e-07 Indicates the difference between 1 and the min-
imum value greater than 1 that can be repre-
sented in float type.

Type Definition Name Definition Value Description

R20UT3248EJ0110 Rev.1.10 Page 510 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Constant
(macro)

DBL_EPSILON 2.2204460492503131e-16 Indicates the difference between 1 and the min-
imum value greater than 1 that can be repre-
sented in double type.

LDBL_EPSILON 2.2204460492503131e-16 Indicates the difference between 1 and the min-
imum value greater than 1 that can be repre-
sented in long double type.

Type Definition Name Definition Value Description

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 511 of 1053
Nov 01, 2020

7.4.5 <limits.h>

Defines various limits relating to the internal representation of integer type data.
The following macro names are all implementation-defined.

Notes 1. Indicates the value that can be represented by a variable when the signed_char option is specified.

Type Definition Name Definition Value Description

Constant
(macro)

CHAR_BIT 8 Indicates the number of bits in a char type
value.

CHAR_MAX 127 Indicates the maximum value that can be repre-
sented by a char type variable.

255*1

CHAR_MIN 128 Indicates the minimum value that can be repre-
sented by a char type variable.

0*1

SCHAR_MAX 127 Indicates the maximum value that can be repre-
sented by a signed char type variable.

SCHAR_MIN 128 Indicates the minimum value that can be repre-
sented by a signed char type variable.

UCHAR_MAX 255U Indicates the maximum value that can be repre-
sented by an unsigned char type variable.

SHRT_MAX 32767 Indicates the maximum value that can be repre-
sented by a short type variable.

SHRT_MIN 32768 Indicates the maximum value that can be repre-
sented by a short type variable.

USHRT_MAX 65535U Indicates the maximum value that can be repre-
sented by an unsigned short type variable.

INT_MAX 217483647 Indicates the maximum value that can be repre-
sented by an int type variable.

INT_MIN 21474836471 Indicates the minimum value that can be repre-
sented by an int type variable.

UINT_MAX 4294967295U Indicates the maximum value that can be repre-
sented by an unsigned int type variable.

LONG_MAX 217483647L Indicates the maximum value that can be repre-
sented by a long type variable.

LONG_MIN 2147483647L1L Indicates the minimum value that can be repre-
sented by a long type variable.

ULONG_MAX 4294967295U Indicates the maximum value that can be repre-
sented by an unsigned long type variable.

LLONG_MAX 9223372036854775807LL Indicates the maximum value that can be repre-
sented by a long long type variable.

LLONG_MIN 9223372036854775807L
L
1LL

Indicates the minimum value that can be repre-
sented by a long long type variable.

ULLONG_MAX 18446744073709551615U
LL

Indicates the maximum value that can be repre-
sented by an unsigned long long type variable.

R20UT3248EJ0110 Rev.1.10 Page 512 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

7.4.6 <errno.h>

Defines the value to be set in errno when an error is generated in a library function.
The following macro names are all implementation-defined.

Type Definition Name Description

Variable
(macro)

errno int type variable. An error number is set when an error is generated in a
library function.

Constant
(macro)

ERANGE Refer to section 10.5.6, Standard Library Error Messages.

EDOM

ESTRN

PTRERR

ECBASE

ETLN

EEXP

EEXPN

EFLOATO

EFLOATU

EDBLO

EDBLU

ELDBLO

ELDBLU

NOTOPN

EBADF

ECSPEC

EFIXEDO

EFIXEDU

EACCUMO

EACCUMU

EILSEQ

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 513 of 1053
Nov 01, 2020

7.4.7 <math.h>

Performs various mathematical operations.
The following constants (macros) are all implementation-defined.

Type Definition Name Description

Constant
(macro)

EDOM Indicates the value to be set in errno if the value of a parameter
input to a function is outside the range of values defined in the
function.

ERANGE Indicates the value to be set in errno if the result of a function can-
not be represented as a double type value, or if an overflow or an
underflow occurs.

HUGE_VAL
HUGE_VALF <-lang=c99>
HUGE_VALL <-lang=c99>

Indicates the value for the function return value if the result of a
function overflows.

INFINITY <-lang=c99> Expanded to a float-type constant expression that represents posi-
tive or unsigned infinity.

NAN <-lang=c99> Defined when float-type qNaN is supported.

FP_INFINITE <-lang=c99>
FP_NAN <-lang=c99>
FP_NORMAL <-lang=c99>
FP_SUBNORMAL <-lang=c99>
FP_ZERO <-lang=c99>

These indicate exclusive types of floating-point values.

FP_FAST_FMA <-lang=c99>
FP_FAST_FMA <-lang=c99>
FFP_FAST_FMAFL <-lang=c99>

Defined when the fma function is executed at the same or higher
speed than a multiplication and an addition with double-type oper-
ands.

FP_ILOGB0 <-lang=c99>
FP_ILOGBNAN <-lang=c99>

These are expanded to an integer constant expression of the value
returned by ilogb when they are 0 or not-a-number, respectively.

MATH_ERRNO <-lang=c99>
MATH_ERREXCEPT <-lang=c99>

These are expanded to integer constants 1 and 2, respectively.

math_errhandling <-lang=c99> Expanded to an int-type expression whose value is a bitwise logi-
cal OR of MATH_ERRNO and MATH_ERREXCEPT.

Type float_t <-lang=c99>
double_t <-lang=c99>

These are floating-point types having the same width as float and
double, respectively.

R20UT3248EJ0110 Rev.1.10 Page 514 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Function
(macro)

fpclassify <-lang=c99> Classifies argument values into not-a-number, infinity, normalized
number, denormalized number, and 0.

isfinite <-lang=c99> Determines whether the argument is a finite value.

isinf <-lang=c99> Determines whether the argument is infinity.

isnan <-lang=c99> Determines whether the argument is a not-a-number.

isnormal <-lang=c99> Determines whether the argument is a normalized number.

signbit <-lang=c99> Determines whether the sign of the argument is negative.

isgreater <-lang=c99> Determines whether the first argument is greater than the second
argument.

isgreaterequal <-lang=c99> Determines whether the first argument is equal to or greater than
the second argument.

isless <-lang=c99> Determines whether the first argument is smaller than the second
argument.

islessequal <-lang=c99> Determines whether the first argument is equal to or smaller than
the second argument.

islessgreater <-lang=c99> Determines whether the first argument is smaller or greater than
the second argument.

isunordered <-lang=c99> Determines whether the arguments are not ordered.

Function acos / acosf / acosl Calculates the arc cosine of a floating-point number.

asin / asinf / asinl Calculates the arc sine of a floating-point number.

atan / atanf / atanl Calculates the arc tangent of a floating-point number.

atan2 / atan2f / atan2l Calculates the arc tangent of the result of a division of two float-
ing-point numbers.

cos / cosf / cosl Calculates the cosine of a floating-point radian value.

sin / sinf / sinl Calculates the sine of a floating-point radian value.

tan / tanf / tanl Calculates the tangent of a floating-point radian value.

cosh / coshf / coshl Calculates the hyperbolic cosine of a floating-point number.

sinh / sinhf / sinhl Calculates the hyperbolic sine of a floating-point number.

tanh / tanhf / tanhl Calculates the hyperbolic tangent of a floating-point number.

exp / expf / expl Calculates the exponential function of a floating-point number.

frexp / frexpf / frexpl Breaks a floating-point number into a [0.5, 1.0) value and a power
of 2.

ldexp / ldexpf / ldexpl Multiplies a floating-point number by a power of 2.

log / logf / logl Calculates the natural logarithm of a floating-point number.

log10 / log10f / log10l Calculates the base-ten logarithm of a floating-point number.

modf / modff / modfl Breaks a floating-point number into integral and fractional parts.

pow / powf / powl Calculates a power of a floating-point number.

sqrt / sqrtf / sqrtl Calculates the positive square root of a floating-point number.

Type Definition Name Description

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 515 of 1053
Nov 01, 2020

Function ceil / ceilf / ceill Calculates the smallest integral value not less than or equal to the
given floating-point number.

fabs / fabsf / fabsl Calculates the absolute value of a floating-point number.

floor / floorf / floorl Calculates the largest integral value not greater than or equal to
the given floating-point number.

fmod / fmodf / fmodl Calculates the remainder of a division of two floating-point num-
bers.

acosh / acoshf / acoshl
<-lang=c99>

Calculates the hyperbolic arc cosine of a floating-point number.

asinh / asinhf / asinhl
<-lang=c99>

Calculates the hyperbolic arc sine of a floating-point number.

atanh / atanhf / atanhl
<-lang=c99>

Calculates the hyperbolic arc tangent of a floating-point number.

exp2 / exp2f / exp2l
<-lang=c99>

Calculates the value of 2 raised to the power x.

expm1 / expm1f / expm1l
<-lang=c99>

Calculates the natural logarithm raised to the power x and sub-
tracts 1 from the result.

ilogb / ilogbf / ilogbl
<-lang=c99>

Extracts the exponent of x as a signed int value.

log1p / log1pf / log1pl
<-lang=c99>

Calculates the natural logarithm of the argument + 1.

log2 / log2f / log2l
<-lang=c99>

Calculates the base-2 logarithm.

logb / logbf / logbl
<-lang=c99>

Extracts the exponent of x as a signed integer.

scalbn / scalbnf / scalbnl / scalbln /
scalblnf / scalblnl
<-lang=c99>

Calculates x FLT_RADIXn.

cbrt / cbrtf / cbrtl
<-lang=c99>

Calculates the cube root of a floating-point number.

hypot / hypotf / hypotl
<-lang=c99>

Calculates the square root of the sum of squares of two

parameters ().

erf / erff / erfl
<-lang=c99>

Calculates the error function.

erfc / erfcf / erfcl
<-lang=c99>

Calculates the complementary error function.

lgamma / lgammaf / lgammal
<-lang=c99>

Calculates the natural logarithm of the absolute value of the
gamma function.

tgamma / tgammaf / tgammal
<-lang=c99>

Calculates the gamma function.

nearbyint / nearbyintf / nearbyintl
<-lang=c99>

Rounds a floating-point number to an integer in the floating-point
representation according to the current rounding direction.

rint / rintf / rintl
<-lang=c99>

Equivalent to nearbyint except that this function group may gener-
ate floating-point exception.

Type Definition Name Description

x2 y2+

R20UT3248EJ0110 Rev.1.10 Page 516 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Operation in the event of an error is described below.

(1) Domain error
A domain error occurs if the value of a parameter input to a function is outside the domain over which the mathe-
matical function is defined. In this case, the value of EDOM is set in errno. The function return value in implemen-
tation-defined.

(2) Range error
A range error occurs if the result of a function cannot be represented as a value of the double type. In this case,
the value of ERANGE is set in errno. If the result overflows, the function returns the value of HUGE_VAL,
HUGE_VALF, or HUGE_VALL with the same sign as the correct value of the function. If the result underflows, 0 is
returned as the return value.

Notes 1. If there is a possibility of a domain error resulting from a <math.h> function call, it is dangerous to
use the resultant value directly. The value of errno should always be checked before using the
result in such cases.

Function lrint / lrintf / lrintl / llrint / llrintf / llrintl
<-lang=c99>

Rounds a floating-point number to the nearest integer according to
the rounding direction.

round / roundf / roundl
<-lang=c99>

Rounds a floating-point number to the nearest integer in the float-
ing-point representation.

lround / lroundf / lroundl / llround /
llroundf / llroundl
<-lang=c99>

Rounds a floating-point number to the nearest integer.

trunc / truncf / truncl
<-lang=c99>

Rounds a floating-point number to the nearest integer in the float-
ing-point representation.

remainder / remainderf / remain-
derl
<-lang=c99>

Calculates remainder x REM y specified in the IEEE60559 stan-
dard.

remquo / remquof / remquol
<-lang=c99>

Calculates the value having the same sign as x/y and the absolute
value congruent modulo-2n to the absolute value of the quotient.

copysign / copysignf / copysignl
<-lang=c99>

Generates a value consisting of the given absolute value and sign.

nan / nanf / nanl
<-lang=c99>

nan("n string") is equivalent to ("NAN(n string)", (char**)
NULL).

nextafter / nextafterf / nextafterl
<-lang=c99>

Converts a floating-point number to the type of the function and
calculates the representable value following the converted number
on the real axis.

nexttoward / nexttowardf / next-
towardl
<-lang=c99>

Equivalent to the nextafter function group except that the second
argument is of type long double and returns the second argument
after conversion to the type of the function.

fdim / fdimf / fdiml
<-lang=c99>

Calculates the positive difference.

fmax / fmaxf / fmaxl
<-lang=c99>

Obtains the greater of two values.

fmin / fminf / fminl
<-lang=c99>

Obtains the smaller of two values.

fma / fmaf / fmal
<-lang=c99>

Calculates (d1 * d2) + d3 as a single ternary operation.

Type Definition Name Description

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 517 of 1053
Nov 01, 2020

[Format]
 .
 .
 .
 1 x=asin(a);
 2 if (errno==EDOM)
 3 printf ("error\n");
 4 else
 5 printf ("result is : %lf\n",x);
 .
 .
 .

In line 1, the arc sine value is computed using the asin function. If the value of argument a is outside the asin
function domain [–1.0, 1.0], the EDOM value is set in errno. Line 2 determines whether a domain error has
occurred. If a domain error has occurred, error is output in line 3. If there is no domain error, the arc sine value
is output in line 5.

Notes 2. Whether or not a range error occurs depends on the internal representation format of floating-point
types determined by the compiler. For example, if an internal representation format that allows an
infinity to be represented as a value is used, <math.h> library functions can be implemented with-
out causing range errors.

Implementation-Defined Specifications

Item Compiler Specifications

Value returned by a mathematical function if an input
argument is out of the range

A not-a-number is returned. For details on the format of
not-a-numbers, refer to section "(5) Floating-Point Num-
ber Specifications" in "4.1.5 Internal Data Representa-
tion and Areas".

Whether errno is set to the value of macro ERANGE if
an underflow error occurs in a mathematical function

For the functions that set errno to the value of ERANGE,
see "10.5.6 Standard Library Error Messages". The
other functions do not set errno to ERANGE.

Whether a range error occurs if the second argument in
the fmod function is 0

A range error occurs.
For details of the return value from fmod, see "fmod /
fmodf / fmodl" in "7.4.7 <math.h>".

R20UT3248EJ0110 Rev.1.10 Page 518 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the arc cosine of a floating-point number.

[Format]

#include <math.h>
double acos (double d);
float acosf (float d);
long double acosl (long double d);

[Parameters]

d Floating-point number for which arc cosine is to be computed

[Return values]

Normal: Arc cosine of d
Abnormal: Domain error: Returns not-a-number.

[Remarks]

A domain error occurs for a value of d not in the range [–1.0, +1.0].
The acos function returns the arc cosine in the range [0,] by the radian.

acos / acosf / acosl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 519 of 1053
Nov 01, 2020

Calculates the arc sine of a floating-point number.

[Format]

#include <math.h>
double asin (double d);
float asinf (float d);
long double asinl (long double);

[Parameters]

d Floating-point number for which arc sine is to be computed

[Return values]

Normal: Arc sine of d
Abnormal: Domain error: Returns not-a-number.

[Remarks]

A domain error occurs for a value of d not in the range [–1.0, +1.0].
The asin function returns the arc sine in the range [–/2, +/2] by the radian.

asin / asinf / asinl

R20UT3248EJ0110 Rev.1.10 Page 520 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the arc tangent of a floating-point number.

[Format]

#include <math.h>
double atan (double d);
float atanf (float d);
long double atanl (long double d);

[Parameters]

d Floating-point number for which arc tangent is to be computed

[Return values]

Arc tangent of d

[Remarks]

The atan function returns the arc tangent in the range (–/2, +/2) by the radian.

atan / atanf / atanl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 521 of 1053
Nov 01, 2020

Calculates the arc tangent of the division of two floating-point numbers.

[Format]

#include <math.h>
double atan2 (double y, double x);
float atan2f (float y, float x);
long double atan2l (long double y, long double x);

[Parameters]

x Divisor
y Dividend

[Return values]

Normal: Arc tangent value when y is divided by x
Abnormal: Domain error: Returns not-a-number.

[Remarks]

A domain error occurs if the values of both x and y are 0.0.
The atan2 function returns the arc tangent in the range (–, +) by the radian. The meaning of the atan2 function is illus-

trated in Figure 7.1. As shown in the figure, the result of the atan2 function is the angle between the X-axis and a straight
line passing through the origin and point (x, y).

If y = 0.0 and x is negative, the result is . If x = 0.0, the result is ±/2, depending on whether y is positive or negative.

Figure 7.1 Meaning of atan2 Function

atan2 / atan2f / atan2l

Y

y

x
X

atan2(y,x)

(x,y)

R20UT3248EJ0110 Rev.1.10 Page 522 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the cosine of a floating-point radian value.

[Format]

#include <math.h>
double cos (double d);
float cosf (float d);
long double cosl (long double d);

[Parameters]

d Radian value for which cosine is to be computed

[Return values]

Cosine of d

cos / cosf / cosl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 523 of 1053
Nov 01, 2020

Calculates the sine of a floating-point radian value.

[Format]

#include <math.h>
double sin (double d);
float sinf (float d);
long double sinl (long double d);

[Parameters]

d Radian value for which sine is to be computed

[Return values]

Sine of d

sin / sinf / sinl

R20UT3248EJ0110 Rev.1.10 Page 524 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the tangent of a floating-point radian value.

[Format]

#include <math.h>
double tan (double d);
float tanf (float d);
long double tanl (long double d);

[Parameters]

d Radian value for which tangent is to be computed

[Return values]

Tangent of d

tan / tanf / tanl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 525 of 1053
Nov 01, 2020

Calculates the hyperbolic cosine of a floating-point number.

[Format]

#include <math.h>
double cosh (double d);
float coshf (float d);
long double coshl (long double d);

[Parameters]

d Floating-point number for which hyperbolic cosine is to be computed

[Return values]

Hyperbolic cosine of d

cosh / coshf / coshl

R20UT3248EJ0110 Rev.1.10 Page 526 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the hyperbolic sine of a floating-point number.

[Format]

#include <math.h>
double sinh (double d);
float sinhf (float d);
long double sinhl (long double d);

[Parameters]

d Floating-point number for which hyperbolic sine is to be computed

[Return values]

Hyperbolic sine of d

sinh / sinhf / sinhl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 527 of 1053
Nov 01, 2020

Calculates the hyperbolic tangent of a floating-point number.

[Format]

#include <math.h>
double tanh (double d);
float tanhf (float d);
long double tanhl (long double d);

[Parameters]

d Floating-point number for which hyperbolic tangent is to be computed

[Return values]

Hyperbolic tangent of d

tanh / tanhf / tanhl

R20UT3248EJ0110 Rev.1.10 Page 528 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the exponential function of a floating-point number.

[Format]

#include <math.h>
double exp (double d);
float expf (float d);
long double expl (long double d);

[Parameters]

d Floating-point number for which exponential function is to be computed

[Return values]

Exponential function value of d

exp / expf / expl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 529 of 1053
Nov 01, 2020

Breaks a floating-point number into a [0.5, 1.0) value and a power of 2.

[Format]

#include <math.h>
double frexp (double value, double long *exp);
float frexpf (float value, long * exp);
long double frexpl (long double value, long *exp);

[Parameters]

value Floating-point number to be broken into a [0.5, 1.0) value and a power of 2
exp Pointer to storage area that holds power-of-2 value

[Return values]

If value is 0.0: 0.0
If value is not 0.0: Value of ret defined by ret * 2value pointed to by exp = value

[Remarks]

The frexp function breaks value into a [0.5, 1.0) value and a power of 2. It stores the resultant power-of-2 value in the
area pointed to by exp.

The frexp function returns the return value ret in the range [0.5, 1.0) or as 0.0.
If value is 0.0, the contents of the int storage area pointed to by exp and the value of ret are both 0.0.

frexp / frexpf / frexpl

R20UT3248EJ0110 Rev.1.10 Page 530 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Multiplies a floating-point number by a power of 2.

[Format]

#include <math.h>
double ldexp (double e, long f);
float ldexpf (float e, long f);
long double ldexpl (long double e, long f);

[Parameters]

e Floating-point number to be multiplied by a power of 2
f Power-of-2 value

[Return values]

Result of e * 2f operation

ldexp / ldexpf / ldexpl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 531 of 1053
Nov 01, 2020

Calculates the natural logarithm of a floating-point number.

[Format]

#include <math.h>
double log (double d);
float logf (float d);
long double logl (long double d);

[Parameters]

d Floating-point number for which natural logarithm is to be computed

[Return values]

Normal: Natural logarithm of d
Abnormal: Domain error: Returns not-a-number.

[Remarks]

A domain error occurs if d is negative.
A range error occurs if d is 0.0.

log / logf / logl

R20UT3248EJ0110 Rev.1.10 Page 532 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the base-ten logarithm of a floating-point number.

[Format]

#include <math.h>
double log10 (double d);
float log10f(float d);
long double log10l(long double d);

[Parameters]

d Floating-point number for which base-ten logarithm is to be computed

[Return values]

Normal: Base-ten logarithm of d
Abnormal: Domain error: Returns not-a-number.

[Remarks]

A domain error occurs if d is negative.
A range error occurs if d is 0.0.

log10 / log10f / log10l

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 533 of 1053
Nov 01, 2020

Breaks a floating-point number into integral and fractional parts.

[Format]

#include <math.h>
double modf (double a, double*b);
float modff (float a, float *b);
long double modfl (long double a, long double *b);

[Parameters]

a Floating-point number to be broken into integral and fractional parts
b Pointer indicating storage area that stores integral part

[Return values]

Fractional part of a

modf / modff / modfl

R20UT3248EJ0110 Rev.1.10 Page 534 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates a power of floating-point number.

[Format]

#include <math.h>
double pow (double x, double y);
float powf (float x, float y);
long double powl (long double x, long double y);

[Parameters]

x Value to be raised to a power
y Power value

[Return values]

Normal: Value of x raised to the power y
Abnormal: Domain error: Returns not-a-number.

[Remarks]

A domain error occurs if x is 0.0 and y is 0.0 or less, or if x is negative and y is not an integer.

pow / powf / powl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 535 of 1053
Nov 01, 2020

Calculates the positive square root of a floating-point number.

[Format]

#include <math.h>
double sqrt (double d);
float sqrtf (float d);
long double sqrtl (long double d);

[Parameters]

d Floating-point number for which positive square root is to be computed

[Return values]

Normal: Positive square root of d
Abnormal: Domain error: Returns not-a-number.

[Remarks]

A domain error occurs if d is negative.

sqrt / sqrtf / sqrtl

R20UT3248EJ0110 Rev.1.10 Page 536 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Returns the smallest integral value not less than or equal to the given floating-point number.

[Format]

#include <math.h>
double ceil (double d);
float ceilf (float d);
long double ceill (long double d);

[Parameters]

d Floating-point number for which smallest integral value not less than that number is to be computed

[Return values]

Smallest integral value not less than or equal to d

[Remarks]

The ceil function returns the smallest integral value not less than or equal to d, expressed as a double type value.
Therefore, if d is negative, the value after truncation of the fractional part is returned.

ceil / ceilf / ceill

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 537 of 1053
Nov 01, 2020

Calculates the absolute value of a floating-point number.

[Format]

#include <math.h>
double fabs (double d);
float fabsf (float d);
long double fabsl (long double d);

[Parameters]

d Floating-point number for which absolute value is to be computed

[Return values]

Absolute value of d

fabs / fabsf / fabsl

R20UT3248EJ0110 Rev.1.10 Page 538 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Returns the largest integral value not greater than or equal to the given floating-point number.

[Format]

#include <math.h>
double floor (double d);
float floorf (float d);
long double floorl (long double d);

[Parameters]

d Floating-point number for which largest integral value not greater than that number is to be computed

[Return values]

Largest integral value not greater than or equal to d

[Remarks]

The floor function returns the largest integral value not greater than or equal to d, expressed as a double type value.
Therefore, if d is negative, the value after rounding-up of the fractional part is returned.

floor / floorf / floorl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 539 of 1053
Nov 01, 2020

Calculates the remainder of a division of two floating-point numbers.

[Format]

#include <math.h>
double fmod (double x, double y);
float fmodf (float x, float y);
long double fmodl (long double x, long double y);

[Parameters]

x Dividend
y Divisor

[Return values]

When y is 0.0: x
When y is not 0.0: Remainder of division of x by y
When y is : Returns x.
When x is or y is 0: Returns not-a-number and sets global variable errno to the value of macro EDOM.

[Remarks]

In the fmod function, the relationship between parameters x and y and return value ret is as follows:
x = y * i + ret (where i is an integer)
The sign of return value ret is the same as the sign of x.
If the quotient of x/y cannot be represented, the value of the result is not guaranteed.

fmod / fmodf / fmodl

R20UT3248EJ0110 Rev.1.10 Page 540 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the hyperbolic arc cosine of a floating-point number.

[Format]

#include <math.h>
double acosh(double d);
float acoshf(float d);
long double acoshl(long double d);

[Parameters]

d Floating-point number for which hyperbolic arc cosine is to be computed

[Return values]

Normal: Hyperbolic arc cosine of d
Abnormal: Domain error: Returns NaN.
Error conditions: A domain error occurs when d is smaller than 1.0.

[Remarks]

The acosh function returns the hyperbolic arc cosine in the range [0, +].

acosh / acoshf / acoshl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 541 of 1053
Nov 01, 2020

Calculates the hyperbolic arc sine of a floating-point number.

[Format]

#include <math.h>
double asinh(double d);
float asinhf(float d);
long double asinhl(long double d);

[Parameters]

d Floating-point number for which hyperbolic arc sine is to be computed

[Return values]

Hyperbolic arc sine of d

asinh / asinhf / asinhl

R20UT3248EJ0110 Rev.1.10 Page 542 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the hyperbolic arc tangent of a floating-point number.

[Format]

#include <math.h>
double atanh(double d);
float atanhf(float d);
long double atanhl(long double d);

[Parameters]

d Floating-point number for which hyperbolic arc tangent is to be computed

[Return values]

Normal: Hyperbolic arc tangent of d
Abnormal: Domain error: Returns HUGE_VAL, HUGE_VALF, or HUGE_VALL depending on the function.
Range error: Returns not-a-number.

[Remarks]

A domain error occurs for a value of d not in the range [–1, +1]. A range error may occur for a value of d equal to –1 or 1.

atanh / atanhf / atanhl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 543 of 1053
Nov 01, 2020

Calculates the value of 2 raised to the power d.

[Format]

#include <math.h>
double exp2(double d);
float exp2f(float d);
long double exp2l(long double d);

[Parameters]

d Floating-point number for which exponential function is to be computed

[Return values]

Normal: Exponential function value of 2
Abnormal: Range error: Returns 0, or returns +HUGE_VAL, +HUGE_VALF, or +HUGE_VALL depending on the function

[Remarks]

A range error occurs if the absolute value of d is too large.

exp2 / exp2f / exp2l

R20UT3248EJ0110 Rev.1.10 Page 544 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the value of natural logarithm base e raised to the power d and subtracts 1 from the result.

[Format]

#include <math.h>
double expm1(double d);
float expm1f(float d);
long double expm1l(long double d);

[Parameters]

d Power value to which natural logarithm base e is to be raised

[Return values]

Normal: Value obtained by subtracting 1 from natural logarithm base e raised to the power d
Abnormal: Range error: Returns -HUGE_VAL, –HUGE_VALF, or –HUGE_VALL depending on the function.

[Remarks]

expm1(d) provides more accurate calculation than exp(x) – 1 even when d is near to 0.

expm1 / expm1f / expm1l

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 545 of 1053
Nov 01, 2020

Extracts the exponent of d.

[Format]

#include <math.h>
long ilogb(double d);
long ilogbf(float d);
long ilogbl(long double d);

[Parameters]

d Value of which exponent is to be extracted

[Return values]

Normal: Exponential function value of d
d is : INT_MAX
d is not-a-number: FP_ILOGBNAN
d is 0: FP_ILOGBNAN

Abnormal: d is 0 and a range error has occurred: FP_ILOGB0

[Remarks]

A range error may occur if d is 0.

ilogb / ilogbf / ilogbl

R20UT3248EJ0110 Rev.1.10 Page 546 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the natural logarithm (base e) of d + 1.

[Format]

#include <math.h>
double log1p(double d);
float log1pf(float d);
long double log1pl(long double d);

[Parameters]

d Value for which the natural logarithm of this parameter + 1 is to be computed

[Return values]

Normal: Natural logarithm of d + 1
Abnormal: Domain error: Returns not-a-number.
Range error: Returns –HUGE_VAL, –HUGE_VALF, or –HUGE_VALL depending on the function.

[Remarks]

A domain error occurs if d is smaller than –1.
A range error occurs if d is –1.
log1p(d) provides more accurate calculation than log(1+d) even when d is near to 0.

log1p / log1pf / log1pl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 547 of 1053
Nov 01, 2020

Calculates the base-2 logarithm of d.

[Format]

#include <math.h>
double log2(double d);
float log2f(float d);
long double log2l(long double d);

[Parameters]

d Value of which logarithm is to be calculated

[Return values]

Normal: Base-2 logarithm of d
Abnormal: Domain error: Returns not-a-number.

[Remarks]

A domain error occurs if d is a negative value.

log2 / log2f / log2l

R20UT3248EJ0110 Rev.1.10 Page 548 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Extracts the exponent of d in internal floating-point representation, as a floating-point value.

[Format]

#include <math.h>
double logb(double d);
float logbf(float d);
long double logbl(long double d);

[Parameters]

d Value of which exponent is to be extracted

[Return values]

Normal: Signed exponent of d
Abnormal: Range error: Returns –HUGE_VAL, –HUGE_VALF, or –HUGE_VALL depending on the function.

[Remarks]

A range error may occur if d is 0.
d is always assumed to be normalized.

logb / logbf / logbl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 549 of 1053
Nov 01, 2020

Calculates a floating-point number multiplied by a power of radix, which is an integer.

[Format]

#include <math.h>
double scalbn(double d, long e);
float scalbnf(float d, long e);
long double scalbnl(long double d, long e);
double scalbln(double d, long e);
float scalblnf(float d, long int e);
long double scalblnl(long double d, long int e);

[Parameters]

d Value to be multiplied by FLT_RADIX raised to the power e
e Exponent used to compute a power of FLT_RADIX

[Return values]

Normal: Value equal to d multiplied by FLT_RADIX
Abnormal: Range error: Returns –HUGE_VAL, –HUGE_VALF, or –HUGE_VALL depending on the function.

[Remarks]

A range error may occur if d is 0.
FLT_RADIX raised to the power e is not actually calculated.

scalbn / scalbnf / scalbnl / scalbln / scalblnf / scalblnl

R20UT3248EJ0110 Rev.1.10 Page 550 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the cube root of a floating-point number.

[Format]

#include <math.h>
double cbrt(double d);
float cbrtf(float d);
long double cbrtl(long double d);

[Parameters]

d Value for which a cube root is to be computed

[Return values]

Cube root of d

cbrt / cbrtf / cbrtl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 551 of 1053
Nov 01, 2020

Calculates the square root of the sum of squares of floating-point values ().

[Format]

#include <math.h>
double hypot(double x, double y);
float hypotf(float x, float y);
long double hypotl(long double x, long double y);

[Parameters]

x, y Values for which the square root of the sum of squares of two parameters () is to be calculated

[Return values]

Normal: Square root of the sum of squares of two parameters ()
Abnormal: Range error: Returns HUGE_VAL, HUGE_VALF, or HUGE_VALL depending on the function.

[Remarks]

A range error may occur if the result overflows.

hypot / hypotf / hypotl

x2 y2+

x2 y2+

x2 y2+

R20UT3248EJ0110 Rev.1.10 Page 552 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the error function value of a floating-point number.

[Format]

#include <math.h>
double erf(double d);
float erff(float d);
long double erfl(long double d);

[Parameters]

d Value for which the error function value is to be computed

[Return values]

Error function value of d

erf / erff / erfl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 553 of 1053
Nov 01, 2020

Calculates the complementary error function value of a floating-point number.

[Format]

#include <math.h>
double erfc(double d);
float erfcf(float d);
long double erfcl(long double d);

[Parameters]

d Value for which the complementary error function value is to be computed

[Return values]

Complementary error function value of d

[Remarks]

A range error occurs if the absolute value of d is too large.

erfc / erfcf / erfcl

R20UT3248EJ0110 Rev.1.10 Page 554 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the logarithm of the gamma function of a floating-point number.

[Format]

#include <math.h>
double lgamma(double d);
float lgammaf(float d);
long double lgammal(long double d);

[Parameters]

d Value for which the logarithm of the gamma function is to be computed

[Return values]

Normal: Logarithm of gamma function of d
Abnormal: Domain error: Returns HUGE_VAL, HUGE_VALF, or HUGE_VALL with the mathematically correct sign.
Range error: Returns +HUGE_VAL, +HUGE_VALF, or +HUGE_VALL.

[Remarks]

A range error is set if the absolute value of d is too large or small.
A domain error occurs if d is a negative integer or 0 and the calculation result is not representable.

lgamma / lgammaf / lgammal

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 555 of 1053
Nov 01, 2020

Calculates the gamma function of a floating-point number.

[Format]

#include <math.h>
double tgamma(double d);
float tgammaf(float d);
long double tgammal(long double d);

[Parameters]

d Value for which the gamma function value is to be computed

[Return values]

Normal: Gamma function value of d
Abnormal: Domain error: Returns HUGE_VAL, HUGE_VALF, or HUGE_VALL with the same sign as that of d.
Range error: Returns 0, or returns +HUGE_VAL, +HUGE_VALF, or +HUGE_VALL with the mathematically correct sign

depending on the function.

[Remarks]

A range error is set if the absolute value of d is too large or small.
A domain error occurs if d is a negative integer or 0 and the calculation result is not representable.

tgamma / tgammaf / tgammal

R20UT3248EJ0110 Rev.1.10 Page 556 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Rounds a floating-point number to an integer in the floating-point representation according to the current rounding direc-
tion.

[Format]

#include <math.h>
double nearbyint(double d);
float nearbyintf(float d);
long double nearbyintl(long double d);

[Parameters]

d Value to be rounded to an integer in the floating-point format

[Return values]

d rounded to an integer in the floating-point format

[Remarks]

The nearbyint function group does not generate "inexact" floating-point exceptions.

nearbyint / nearbyintf / nearbyintl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 557 of 1053
Nov 01, 2020

Rounds a floating-point number to an integer in the floating-point representation according to the current rounding direc-
tion.

[Format]

#include <math.h>
double rint(double d);
float rintf(float d);
long double rintl(long double d);

[Parameters]

d Value to be rounded to an integer in the floating-point format

[Return values]

d rounded to an integer in the floating-point format

[Remarks]

The rint function group differs from the nearbyint function group only in that the ring function group may generate "inex-
act" floating-point exceptions.

rint / rintf / rintl

R20UT3248EJ0110 Rev.1.10 Page 558 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Rounds a floating-point number to the nearest integer according to the current rounding direction.

[Format]

#include <math.h>
long int lrint(double d);
long int lrintf(float d);
long int lrintl(long double d);
long long int llrint(double d);
long long int llrintf(float d);
long long int llrintl(long double d);

[Parameters]

d Value to be rounded to an integer

[Return values]

Normal: d rounded to an integer
Abnormal: Range error: Returns an undetermined value.

[Remarks]

A range error may occur if the absolute value of d is too large.
The return value is unspecified when the rounded value is not in the range of the return value type.

lrint / lrintf / lrintl / llrint / llrintf / llrintl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 559 of 1053
Nov 01, 2020

Rounds a floating-point number to the nearest integer in the floating-point representation.

[Format]

#include <math.h>
double round(double d);
float roundf(float d);
long double roundl(long double d);

[Parameters]

d Value to be rounded to an integer

[Return values]

Normal: d rounded to an integer
Abnormal: Range error: Returns an undetermined value.

[Remarks]

A range error may occur if the absolute value of d is too large.

round / roundf / roundl

R20UT3248EJ0110 Rev.1.10 Page 560 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Rounds a floating-point number to the nearest integer.

[Format]

#include <math.h>
long int lround(double d);
long int lroundf(float d);
long int lroundl(long double d);
long long int llround (double d);
long long int llroundf(float d);
long long int llroundl(long double d);

[Parameters]

d Value to be rounded to an integer

[Return values]

Normal: d rounded to an integer
Abnormal: Range error: Returns an undetermined value.

[Remarks]

A range error may occur if the absolute value of d is too large.
When d is at the midpoint between two integers, the lround function group selects the integer farther from 0 regardless

of the current rounding direction. The return value is unspecified when the rounded value is not in the range of the return
value type.

lround / lroundf / lroundl / llround / llroundf / llroundl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 561 of 1053
Nov 01, 2020

Rounds a floating-point number to the nearest integer in the floating-point representation.

[Format]

#include <math.h>
double trunc(double d);
float truncf(float d);
long double truncl(long double d);

[Parameters]

d Value to be rounded to an integer in the floating-point representation

[Return values]

d truncated to an integer in the floating-point format

[Remarks]

The trunc function group rounds d so that the absolute value after rounding is not greater than the absolute value of d.

trunc / truncf / truncl

R20UT3248EJ0110 Rev.1.10 Page 562 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the remainder of a division of two floating-point numbers.

[Format]

#include <math.h>
double remainder(double d1, double d2);
float remainderf(float d1, float d2);
long double remainderl(long double d1, long double d2);

[Parameters]

d1, d2 Values for which remainder of a division is to be computed (d1 / d2)

[Return values]

Remainder of division of d1 by d2

[Remarks]

The remainder calculation by the remainder function group conforms to the IEEE 60559 standard.

remainder / remainderf / remainderl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 563 of 1053
Nov 01, 2020

Calculates the remainder of a division of two floating-point numbers.

[Format]

#include <math.h>
double remquo(double d1, double d2, long *q);
float remquof(float d1, float d2, long *q);
long double remquol(long double d1, long double d2, long *q);

[Parameters]

d1, d2 Values for which remainder of a division is to be computed (d1 / d2)
q Value pointing to the location to store the quotient obtained by remainder calculation

[Return values]

Remainder of division of d1 by d2

[Remarks]

The value stored in the location indicated by q has the same sign as the result of x/y and the integral quotient of mod-
ulo-2n x/y (n is an implementation-defined integer equal to or greater than 3).

remquo / remquof / remquol

R20UT3248EJ0110 Rev.1.10 Page 564 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Generates a value consisting of the absolute value of d1 and the sign of d2.

[Format]

#include <math.h>
double copysign(double d1, double d2);
float copysignf(float d1, float d2);
long double copysignl(long double d1, long double d2);

[Parameters]

d1 Value of which absolute value is to be used in the generated value
d2 Value of which sign is to be used in the generated value

[Return values]

Normal: Value consisting of absolute value of d1 and sign of d2
Abnormal: Range error: Returns an undetermined value.

[Remarks]

When d1 is a not-a-number, the copysign function group generates a not-a-number with the sign bit of d2.

copysign / copysignf / copysignl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 565 of 1053
Nov 01, 2020

Returns not-a-number.

[Format]

#include <math.h>
double nan(const char *c);
float nanf(const char *c);
long double nanl(const char *c);

[Parameters]

c Pointer to a string

[Return values]

qNaN with the contents of the location indicated by c or 0 (when qNaN is not supported)

[Remarks]

The nan("c string") call is equivalent to strtod("NAN(c string)", (char**) NULL). The nanf and nanl calls are equivalent to
the corresponding strtof and strtold calls, respectively.

nan / nanf / nanl

R20UT3248EJ0110 Rev.1.10 Page 566 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the next floating-point representation following d1 in the direction to d2 on the real axis.

[Format]

#include <math.h>
double nextafter(double d1, double d2);
float nextafterf(float d1, float d2);
long double nextafterl(long double d1, long double d2);

[Parameters]

d1 Floating-point value on the real axis
d2 Value indicating the direction viewed from d1, in which a representable floating-point value is to be found

[Return values]

Normal: Representable floating-point value
Abnormal: Range error: Returns HUGE_VAL, HUGE_VALF, or HUGE_VALL with the mathematically correct sign

depending on the function.

[Remarks]

A range error may occur if d1 is the maximum finite value that can be represented in its type and the return value is an
infinity or cannot be represented in its type.

The nextafter function group returns d2 when d1 is equal to d2.

nextafter / nextafterf / nextafterl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 567 of 1053
Nov 01, 2020

Calculates the next floating-point representation following d1 in the direction to d2 on the real axis.

[Format]

#include <math.h>
double nexttoward(double d1, long double d2);
float nexttowardf(float d1, long double d2);
long double nexttowardl(long double d1, long double d2);

[Parameters]

d1 Floating-point value on the real axis
d2 Value indicating the direction viewed from d1, in which a representable floating-point value is to be found

[Return values]

Normal: Representable floating-point value
Abnormal: Range error: Returns HUGE_VAL, HUGE_VALF, or HUGE_VALL with the mathematically correct sign

depending on the function

[Remarks]

A range error may occur if d1 is the maximum finite value that can be represented in its value and the return value is an
infinity or cannot be represented in its type.

The nexttoward function group is equivalent to the nextafter function group except that d2 is of type long double and
returns d2 after conversion depending of the function when d1 is equal to d2.

nexttoward / nexttowardf / nexttowardl

R20UT3248EJ0110 Rev.1.10 Page 568 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the positive difference between two arguments.

[Format]

#include <math.h>
double fdim(double d1, double d2);
float fdimf(float d1, float d2);
long double fdiml(long double d1, long double d2);

[Parameters]

d1, d2 Values of which difference is to be computed (|d1 - d2|)

[Return values]

Normal: Positive difference between two arguments
Abnormal: Range error: HUGE_VAL, HUGE_VALF, or HUGE_VALL

[Remarks]

A range error may occur if the return value overflows.

fdim / fdimf / fdiml

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 569 of 1053
Nov 01, 2020

Obtains the greater of two arguments.

[Format]

#include <math.h>
double fmax(double d1, double d2);
float fmaxf(float d1, float d2);
long double fmaxl(long double d1, long double d2);

[Parameters]

d1, d2 Values to be compared

[Return values]

Greater of two arguments

[Remarks]

The fmax function group recognizes a not-a-number as a lack of data. When one argument is a not-a-number and the
other is a numeric value, the function returns the numeric value.

fmax / fmaxf / fmaxl

R20UT3248EJ0110 Rev.1.10 Page 570 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Obtains the smaller of two arguments.

[Format]

#include <math.h>
double fmin(double d1, double d2);
float fminf(float d1, float d2);
long double fminl(long double d1, long double d2);

[Parameters]

d1, d2 Values to be compared

[Return values]

Smaller of two arguments

[Remarks]

The fmin function group recognizes a not-a-number as a lack of data. When one argument is a not-a-number and the
other is a numeric value, the function returns the numeric value.

fmin / fminf / fminl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 571 of 1053
Nov 01, 2020

Calculates (d1 * d2) + d3 as a single ternary operation.

[Format]

#include <math.h>
double fma(double d1, double d2, double d3);
float fmaf(float d1, float d2, float d3);
long double fmal(long double d1, long double d2, long double d3);

[Parameters]

d1, d2, d3 Floating-point values

[Return values]

Result of (d1 * d2) + d3 calculated as ternary operation

[Remarks]

The fma function group performs calculation as if infinite precision is available and rounds the result only one time in the
rounding mode indicated by FLT_ROUNDS.

fma / fmaf / fmal

R20UT3248EJ0110 Rev.1.10 Page 572 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

7.4.8 <mathf.h>

Performs various mathematical operations.
<mathf.h> declares mathematical functions and defines macros in single-precision format. The mathematical functions

and macros used here do not follow the ANSI specifications. Each function receives float-type arguments and returns a
float-type value.

The following constants (macros) are all implementation-defined.

Type Definition Name Description

Constant
(macro)

EDOM Indicates the value to be set in errno if the value of a parameter input to a func-
tion is outside the range of values defined in the function.

ERANGE Indicates the value to be set in errno if the result of a function cannot be repre-
sented as a float type value, or if an overflow or an underflow occurs.

HUGE_VALF
HUGE_VAL
HUGE_VALL

Indicates the value for the function return value if the result of a function over-
flows.

Function acosf Calculates the arc cosine of a floating-point number.

asinf Calculates the arc sine of a floating-point number.

atanf Calculates the arc tangent of a floating-point number.

atan2f Calculates the arc tangent of the result of a division of two floating-point num-
bers.

cosf Calculates the cosine of a floating-point radian value.

sinf Calculates the sine of a floating-point radian value.

tanf Calculates the tangent of a floating-point radian value.

coshf Calculates the hyperbolic cosine of a floating-point number.

sinhf Calculates the hyperbolic sine of a floating-point number.

tanhf Calculates the hyperbolic tangent of a floating-point number.

expf Calculates the exponential function of a floating-point number.

frexpf Breaks a floating-point number into a [0.5, 1.0) value and a power of 2.

ldexpf Multiplies a floating-point number by a power of 2.

logf Calculates the natural logarithm of a floating-point number.

log10f Calculates the base-ten logarithm of a floating-point number.

modff Breaks a floating-point number into integral and fractional parts.

powf Calculates a power of a floating-point number.

sqrtf Calculates the positive square root of a floating-point number.

ceilf Calculates the smallest integral value not less than or equal to the given float-
ing-point number.

fabsf Calculates the absolute value of a floating-point number.

floorf Calculates the largest integral value not greater than or equal to the given float-
ing-point number.

fmodf Calculates the remainder of a division of two floating-point numbers.

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 573 of 1053
Nov 01, 2020

Operation in the event of an error is described below.

(1) Domain error
A domain error occurs if the value of a parameter input to a function is outside the domain over which the mathe-
matical function is defined. In this case, the value of EDOM is set in errno. The function return value in implemen-
tation-defined.

(2) Range error
A range error occurs if the result of a function cannot be represented as a float type value. In this case, the value
of ERANGE is set in errno. If the result overflows, the function returns the value of HUGE_VALF, with the same
sign as the correct value of the function. If the result underflows, 0 is returned as the return value.

Notes 1. If there is a possibility of a domain error resulting from a <mathf.h> function call, it is dangerous to
use the resultant value directly. The value of errno should always be checked before using the
result in such cases.

[Format]
 .
 .
 .
 1 x=asinf(a);
 2 if (errno==EDOM)
 3 printf ("error\n");
 4 else
 5 printf ("result is : %f\n",x);
 .
 .
 .

In line 1, the arc sine value is computed using the asinf function. If the value of argument a is outside the asinf
function domain [–1.0, 1.0], the EDOM value is set in errno. Line 2 determines whether a domain error has
occurred. If a domain error has occurred, error is output in line 3. If there is no domain error, the arc sine value
is output in line 5.

Notes 2. Whether or not a range error occurs depends on the internal representation format of floating-point
types determined by the compiler. For example, if an internal representation format that allows an
infinity to be represented as a value is used, <mathf.h> library functions can be implemented with-
out causing range errors.

Implementation-Defined Specifications

Item Compiler Specifications

Value returned by a mathematical function if an input
argument is out of the range

A not-a-number is returned. For details on the format of
not-a-numbers, refer to section 4.1.6 (5) Floating-Point
Number Specifications.

Whether errno is set to the value of macro ERANGE if
an underflow error occurs in a mathematical function

Not specified

Whether a range error occurs if the second argument in
the fmodf function is 0

A range error occurs.

R20UT3248EJ0110 Rev.1.10 Page 574 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the arc cosine of a floating-point number.

[Format]

#include <mathf.h>
float acosf (float f);

[Parameters]

f Floating-point number for which arc cosine is to be computed

[Return values]

Normal: Arc cosine of f
Abnormal: Domain error: Returns not-a-number.

[Remarks]

A domain error occurs for a value of f not in the range [–1.0, +1.0]
The acosf function returns the arc cosine in the range [0,] by the radian.

acosf

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 575 of 1053
Nov 01, 2020

Calculates the arc sine of a floating-point number.

[Format]

#include <mathf.h>
float asinf (float f);

[Parameters]

f Floating-point number for which arc sine is to be computed

[Return values]

Normal: Arc sine of f
Abnormal: Domain error: Returns not-a-number.

[Remarks]

A domain error occurs for a value of f not in the range [–1.0, +1.0].
The asinf function returns the arc sine in the range [–/2, +/2] by the radian.

asinf

R20UT3248EJ0110 Rev.1.10 Page 576 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the arc tangent of a floating-point number.

[Format]

#include <mathf.h>
float atanf (float f);

[Parameters]

f Floating-point number for which arc tangent is to be computed

[Return values]

Arc tangent of f

[Remarks]

The atanf function returns the arc tangent in the range (–/2, +/2) by the radian.

atanf

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 577 of 1053
Nov 01, 2020

Calculates the arc tangent of the division of two floating-point numbers.

[Format]

#include <mathf.h>
float atan2f (float y, float x);

[Parameters]

x Divisor
y Dividend

[Return values]

Normal: Arc tangent value when y is divided by x
Abnormal: Domain error: Returns not-a-number.
Error conditions: A domain error occurs if the values of both x and y are 0.0.

[Remarks]

A domain error occurs if the values of both x and y are 0.0.
The atan2f function returns the arc tangent in the range (–, +) by the radian. The meaning of the atan2f function is

illustrated in Figure 7.2. As shown in the figure, the result of the atan2f function is the angle between the X-axis and a
straight line passing through the origin and point (x, y).

If y = 0.0 and x is negative, the result is . If x = 0.0, the result is ±/2, depending on whether y is positive or negative.

Figure 7.2 Meaning of atan2f Function

atan2f

Y

y

x
X

atan2f(y,x)

(x,y)

R20UT3248EJ0110 Rev.1.10 Page 578 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the cosine of a floating-point radian value.

[Format]

#include <mathf.h>
float cosf (float f);

[Parameters]

f Radian value for which cosine is to be computed

[Return values]

Cosine of f

cosf

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 579 of 1053
Nov 01, 2020

Calculates the sine of a floating-point radian value.

[Format]

#include <mathf.h>
float sinf (float f);

[Parameters]

f Radian value for which sine is to be computed

[Return values]

Sine of f

sinf

R20UT3248EJ0110 Rev.1.10 Page 580 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the tangent of a floating-point radian value.

[Format]

#include <mathf.h>
float tanf (float f);

[Parameters]

f Radian value for which tangent is to be computed

[Return values]

Tangent of f

tanf

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 581 of 1053
Nov 01, 2020

Calculates the hyperbolic cosine of a floating-point number.

[Format]

#include <mathf.h>
float coshf (float f);

[Parameters]

f Floating-point number for which hyperbolic cosine is to be computed

[Return values]

Hyperbolic cosine of f

coshf

R20UT3248EJ0110 Rev.1.10 Page 582 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the hyperbolic sine of a floating-point number.

[Format]

#include <mathf.h>
float sinhf (float f);

[Parameters]

f Floating-point number for which hyperbolic sine is to be computed

[Return values]

Hyperbolic sine of f

sinhf

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 583 of 1053
Nov 01, 2020

Calculates the hyperbolic tangent of a floating-point number.

[Format]

#include <mathf.h>
float tanhf (float f);

[Parameters]

f Floating-point number for which hyperbolic tangent is to be computed

[Return values]

Hyperbolic tangent of f

tanhf

R20UT3248EJ0110 Rev.1.10 Page 584 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the exponential function of a floating-point number.

[Format]

#include <mathf.h>
float expf (float f);

[Parameters]

f Floating-point number for which exponential function is to be computed

[Return values]

Exponential function value of f

expf

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 585 of 1053
Nov 01, 2020

Breaks a floating-point number into a [0.5, 1.0) value and a power of 2.

[Format]

#include <mathf.h>
float frexpf (float value, float long *exp);

[Parameters]

value Floating-point number to be broken into a [0.5, 1.0) value and a power of 2
exp Pointer to storage area that holds power-of-2 value

[Return values]

If value is 0.0: 0.0
If value is not 0.0: Value of ret defined by ret * 2value pointed to by exp = value

[Remarks]

The frexpf function breaks value into a [0.5, 1.0) value and a power of 2. It stores the resultant power-of-2 value in the
area pointed to by exp.

The frexpf function returns the return value ret in the range [0.5, 1.0) or as 0.0.
If value is 0.0, the contents of the int storage area pointed to by exp and the value of ret are both 0.0.

frexpf

R20UT3248EJ0110 Rev.1.10 Page 586 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Multiplies a floating-point number by a power of 2.

[Format]

#include <mathf.h>
float ldexpf (float e, long f);

[Parameters]

e Floating-point number to be multiplied by a power of 2
f Power-of-2 value

[Return values]

Result of e * 2f operation

ldexpf

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 587 of 1053
Nov 01, 2020

Calculates the natural logarithm of a floating-point number.

[Format]

#include <mathf.h>
float logf (float f);

[Parameters]

f Floating-point number for which natural logarithm is to be computed

[Return values]

Normal: Natural logarithm of f
Abnormal: Domain error: Returns not-a-number.

[Remarks]

A domain error occurs if f is negative.
A range error occurs if f is 0.0.

logf

R20UT3248EJ0110 Rev.1.10 Page 588 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the base-ten logarithm of a floating-point number.

[Format]

#include <mathf.h>
float log10f (float f);

[Parameters]

f Floating-point number for which base-ten logarithm is to be computed

[Return values]

Normal: Base-ten logarithm of f
Abnormal: Domain error: Returns not-a-number.

[Remarks]

A domain error occurs if f is negative.
A range error occurs if f is 0.0.

log10f

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 589 of 1053
Nov 01, 2020

Breaks a floating-point number into integral and fractional parts.

[Format]

#include <mathf.h>
float modff (float a, float *b);

[Parameters]

a Floating-point number to be broken into integral and fractional parts
b Pointer indicating storage area that stores integral part

[Return values]

Fractional part of a

modff

R20UT3248EJ0110 Rev.1.10 Page 590 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates a power of a floating-point number.

[Format]

#include <mathf.h>
float powf (float x, float y);

[Parameters]

x Value to be raised to a power
y Power value

[Return values]

Normal: Value of x raised to the power y
Abnormal: Domain error: Returns not-a-number.

[Remarks]

A domain error occurs if x is 0.0 and y is 0.0 or less, or if x is negative and y is not an integer.

powf

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 591 of 1053
Nov 01, 2020

Calculates the positive square root of a floating-point number.

[Format]

#include <mathf.h>
float sqrtf (float f);

[Parameters]

f Floating-point number for which positive square root is to be computed

[Return values]

Normal: Positive square root of f
Abnormal: Domain error: Returns not-a-number.

[Remarks]

A domain error occurs if f is negative.

sqrtf

R20UT3248EJ0110 Rev.1.10 Page 592 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Returns the smallest integral value not less than or equal to the given floating-point number.

[Format]

#include <mathf.h>
float ceilf (float f);

[Parameters]

f Floating-point number for which smallest integral value not less than that number is to be computed

[Return values]

Smallest integral value not less than or equal to f

[Remarks]

The ceilf function returns the smallest integral value not less than or equal to f, expressed as a float type value. There-
fore, if f is negative, the value after truncation of the fractional part is returned.

ceilf

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 593 of 1053
Nov 01, 2020

Calculates the absolute value of a floating-point number.

[Format]

#include <mathf.h>
float fabsf (float f);

[Parameters]

f Floating-point number for which absolute value is to be computed

[Return values]

Absolute value of f

fabsf

R20UT3248EJ0110 Rev.1.10 Page 594 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Returns the largest integral value not greater than or equal to the given floating-point number.

[Format]

#include <mathf.h>
float floorf (float f);

[Parameters]

f Floating-point number for which largest integral value not greater than that number is to be computed

[Return values]

Largest integral value not greater than or equal to f

[Remarks]

The floorf function returns the largest integral value not greater than or equal to f, expressed as a float type value.
Therefore, if f is negative, the value after rounding-up of the fractional part is returned.

floorf

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 595 of 1053
Nov 01, 2020

Calculates the remainder of a division of two floating-point numbers.

[Format]

#include <mathf.h>
float fmodf (float x, float y);

[Parameters]

x Dividend
y Divisor

[Return values]

When y is 0.0: x
When y is not 0.0: Remainder of division of x by y

[Remarks]

In the fmodf function, the relationship between parameters x and y and return value ret is as follows:
x = y * i + ret (where i is an integer)
The sign of return value ret is the same as the sign of x.
If the quotient of x/y cannot be represented, the value of the result is not guaranteed.

fmodf

R20UT3248EJ0110 Rev.1.10 Page 596 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

7.4.9 <setjmp.h>

Supports transfer of control between functions.
The following macros are implementation-defined.

The setjmp function saves the execution environment of the current function. The location in the program that called the
setjmp function can subsequently be returned to by calling the longjmp function.

An example of how transfer of control between functions is supported using the setjmp and longjmp functions is shown
below.

[Format]
 1 #include <stdio.h>
 2 #include <setjmp.h>
 3 jmp_buf env;
 4 void sub();
 5 void main()
 6 {
 7
 8 if (setjmp(env)!=0){
 9 printf("return from longjmp\n");
 10 exit(0);
 11 }
 12 sub();
 13 }
 14
 15 void sub()
 16 {
 17 printf("subroutine is running \n");
 18 longjmp(env, 1);
 19 }

Explanation:
The setjmp function is called in line 8. At this time, the environment in which the setjmp function was called is saved in

jmp_buf type variable env. The return value in this case is 0, and therefore function sub is called next.
The environment saved in variable env is restored by the longjmp function called within function sub. As a result, the

program behaves just as if a return had been made from the setjmp function in line 8. However, the return value at this
time is 1 specified by the second argument of the longjmp function. As a result, execution proceeds to line 9.

Type Definition Name Description

Type
(macro)

jmp_buf Indicates the type name corresponding to a storage area for storing information
that enables transfer of control between functions.

Function setjmp Saves the execution environment defined by jmp_buf of the currently executing
function in the specified storage area.

longjmp Restores the function execution environment saved by the setjmp function, and
transfers control to the program location at which the setjmp function was
called.

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 597 of 1053
Nov 01, 2020

Saves the execution environment of the currently executing function in the specified storage area.

[Format]

#include <setjmp.h>
long setjmp (jmp_buf env);

[Parameters]

env Pointer to storage area in which execution environment is to be saved

[Return values]

When setjmp function is called: 0
On return from longjmp function: Nonzero

[Remarks]

The execution environment saved by the setjmp function is used by the longjmp function. The return value is 0 when
the function is called as the setjmp function, but the return value on return from the longjmp function is the value of the
second parameter specified by the longjmp function.

If the setjmp function is called from a complex expression, part of the current execution environment, such as the inter-
mediate result of expression evaluation, may be lost. The setjmp function should only be used in the form of a comparison
between the result of the setjmp function and a constant expression, and should not be called within a complex expres-
sion.

Do not call the setjmp function indirectly using a pointer.

setjmp

R20UT3248EJ0110 Rev.1.10 Page 598 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Restores the function execution environment saved by the setjmp function, and transfers control to the program location
at which the setjmp function was called.

[Format]

#include <setjmp.h>
void longjmp (jmp_buf env, long ret);

[Parameters]

env Pointer to storage area in which execution environment was saved
ret Return code to setjmp function

[Remarks]

From the storage area specified by the first parameter env, the longjmp function restores the function execution environ-
ment saved by the most recent invocation of the setjmp function in the same program, and transfers control to the program
location at which that setjmp function was called. The value of the second parameter ret of the longjmp function is returned
as the setjmp function return value. However, if ret is 0, the value 1 is returned to the setjmp function as a return value.

If the setjmp function has not been called, or if the function that called the setjmp function has already executed a return
statement, the operation of the longjmp function is not guaranteed.

longjmp

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 599 of 1053
Nov 01, 2020

7.4.10 <stdarg.h>

Enables referencing of variable arguments for functions with such arguments.
The following macros are implementation-defined.

An example of a program using the macros defined by this standard include file is shown below.
[Format]

 1 #include <stdio.h>
 2 #include <stdarg.h>
 3
 4 extern void prlist(int count, ...);
 5
 6 void main()
 7 {
 8 prlist(1, 1);
 9 prlist(3, 4, 5, 6);
 10 prlist(5, 1, 2, 3, 4, 5);
 11 }
 12
 13 void prlist(int count, ...)
 14 {
 15 va_list ap;
 16 int i;
 17
 18 va_start(ap, count);
 19 for(i=0; i<count; i++)
 20 printf("%d", va_arg(ap, int));
 21 putchar('\n');
 22 va_end(ap);
 23 }

Explanation:
This example implements function prlist, in which the number of data items to be output is specified in the first argu-

ment and that number of subsequent arguments are output.
In line 18, the variable argument reference is initialized by va_start. Each time an argument is output, the next argu-

ment is referenced by the va_arg macro (line 20). In the va_arg macro, the type name of the argument (in this case, int
type) is specified in the second argument.

When argument referencing ends, the va_end macro is called (line 22).

Type Definition Name Description

Type
(macro)

va_list Indicates the types of variables used in common by the va_start, va_arg,
and va_end macros in order to reference variable arguments.

Function
(macro)

va_start Executes initialization processing for performing variable argument referenc-
ing.

va_arg Enables referencing of the argument following the argument currently being
referenced for a function with variable arguments.

va_end Terminates referencing of the arguments of a function with variable argu-
ments.

va_copy <-lang=c99> Copies variable arguments.

R20UT3248EJ0110 Rev.1.10 Page 600 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Executes initialization processing for referencing variable arguments.

[Format]

#include <stdarg.h>
void va_start (va_list ap, parmN);

[Parameters]

ap Variable for accessing variable arguments
parmN Identifier of rightmost argument

[Remarks]

The va_start macro initializes ap for subsequent use by the va_arg and va_end macros.
The argument parmN is the identifier of the rightmost argument in the argument list in the external function definition

(the one just before the , ...).
To reference variable unnamed arguments, the va_start macro call must be executed first of all.

va_start

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 601 of 1053
Nov 01, 2020

Allows a reference to the argument following the argument currently being referred to in the function with variable argu-
ments.

[Format]

#include <stdarg.h>
type va_arg (va_list ap, type);

[Parameters]

ap Variable for accessing variable arguments
type Type of arguments to be accessed

[Return values]

Argument value

[Remarks]

Specify a variable of the va_list type initialized by the va_start macro as the first argument. The value of ap is updated
each time va_arg is used, and, as a result, a sequence of variable arguments is returned by sequential calls of this macro.

Specify the type to refer to as the second argument type.
The ap argument must be the same as the ap initialized by va_start.
It will not be possible to refer to arguments correctly if argument type is set to a type of which size is changed by type

conversion when it is used as a function argument, i.e., if char type, unsigned char type, short type, unsigned short type, or
float type is specified as type. If such a type is specified, correct operation is not guaranteed.

va_arg

R20UT3248EJ0110 Rev.1.10 Page 602 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Terminates referencing of the arguments of a function with variable arguments.

[Format]

#include <stdarg.h>
void va_end (va_list ap);

[Parameters]

ap Variable for referencing variable arguments

[Remarks]

The ap argument must be the same as the ap initialized by va_start. If the va_end macro is not called before the return
from a function, the operation of that function is not guaranteed.

va_end

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 603 of 1053
Nov 01, 2020

Makes a copy of the argument currently being referenced for a function with variable arguments.

[Format]

#include <stdarg.h>
void va_copy (va_list dest, va_list src);

[Parameters]

dest Copy of variable for referencing variable arguments
src Variable for referencing variable arguments

[Remarks]

A copy is made of the second argument src which is one of the variable arguments that have been initialized by the
va_start macro and used by the va_arg macro, and the copy is saved in the first argument dest.

The src argument must be the same as the src initialized by va_start.
The dest argument can be used as an argument that indicates the variable arguments in the subsequent va_arg mac-

ros.

va_copy

R20UT3248EJ0110 Rev.1.10 Page 604 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

7.4.11 <stdio.h>

Performs processing relating to input/output of stream input/output file.
The following constants (macros) are all implementation-defined.

Type Definition Name Description

Constant
(macro)

FILE Indicates a structure type that stores various control information including a
pointer to the buffer, an error indicator, and an end-of-file indicator, which are
required for stream input/output processing.

_IOFBF Indicates full buffering of input/output as the buffer area usage method.

_IOLBF Indicates line buffering of input/output as the buffer area usage method.

_IONBF Indicates non-buffering of input/output as the buffer area usage method.

BUFSIZ Indicates the buffer size required for input/output processing.

EOF Indicates end-of-file, that is, no more input from a file.

L_tmpnam* Indicates the size of an array large enough to store a string of a temporary
file name generated by the tmpnam function.

SEEK_CUR Indicates a shift of the current file read/write position to an offset from the cur-
rent position.

SEEK_END Indicates a shift of the current file read/write position to an offset from the
end-of-file position.

SEEK_SET Indicates a shift of the current file read/write position to an offset from the
beginning of the file.

SYS_OPEN* Indicates the number of files for which simultaneous opening is guaranteed
by the implementation.

TMP_MAX* Indicates the maximum number of unique file names that shall be generated
by the tmpnam function.

stderr Indicates the file pointer to the standard error file.

stdin Indicates the file pointer to the standard input file.

stdout Indicates the file pointer to the standard output file.

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 605 of 1053
Nov 01, 2020

Function fclose Closes a stream input/output file.

fflush Outputs stream input/output file buffer contents to the file.

fopen Opens a stream input/output file under the specified file name.

freopen Closes a currently open stream input/output file and reopens a new file under
the specified file name.

setbuf Defines and sets a stream input/output buffer area on the user program side.

setvbuf Defines and sets a stream input/output buffer area on the user program side.

fprintf Outputs data to a stream input/output file according to a format.

vfprintf Outputs a variable parameter list to the specified stream input/output file
according to a format.

printf Converts data according to a format and outputs it to the standard output file
(stdout).

vprintf Outputs a variable parameter list to the standard output file (stdout) accord-
ing to a format.

sprintf Converts data according to a format and outputs it to the specified area.

sscanf Inputs data from the specified storage area and converts it according to a for-
mat.

snprintf <-lang=c99> Converts data according to a format and writes it to the specified array.

vsnprintf <-lang=c99> Equivalent to snprintf with the variable argument list replaced by va_list.

vfscanf <-lang=c99> Equivalent to fscanf with the variable argument list replaced by va_list.

vscanf <-lang=c99> Equivalent to scanf with the variable argument list replaced by va_list.

vsscanf <-lang=c99> Equivalent to sscanf with the variable argument list replaced by va_list.

fscanf Inputs data from a stream input/output file and converts it according to a for-
mat.

scanf Inputs data from the standard input file (stdin) and converts it according to a
format.

vsprintf Outputs a variable parameter list to the specified area according to a format.

fgetc Inputs one character from a stream input/output file.

fgets Inputs a string from a stream input/output file.

fputc Outputs one character to a stream input/output file.

fputs Outputs a string to a stream input/output file.

getc (macro) Inputs one character from a stream input/output file.

getchar (macro) Inputs one character from the standard input file.

gets Inputs a string from the standard input file.

putc (macro) Outputs one character to a stream input/output file.

putchar (macro) Outputs one character to the standard output file.

puts Outputs a string to the standard output file.

ungetc Returns one character to a stream input/output file.

Type Definition Name Description

R20UT3248EJ0110 Rev.1.10 Page 606 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Note * These macros are not defined in this implementation.

Implementation-Defined Specifications

Function fread Inputs data from a stream input/output file to the specified storage area.

fwrite Outputs data from a storage area to a stream input/output file.

fseek Shifts the current read/write position in a stream input/output file.

ftell Obtains the current read/write position in a stream input/output file.

rewind Shifts the current read/write position in a stream input/output file to the begin-
ning of the file.

clearerr Clears the error state of a stream input/output file.

feof Tests for the end of a stream input/output file.

ferror Tests for stream input/output file error state.

perror Outputs an error message corresponding to the error number to the standard
error file (stderr).

Type fpos_t Indicates a type that can specify any position in a file.

Constant
(macro)

FOPEN_MAX Indicates the maximum number of files that can be opened simultaneously.

FILENAME_MAX Indicates the maximum length of a file name that can be held.

Item Compiler Specifications

Whether the last line of the input text requires a new-line
character indicating the end

Not specified. Depends on the low-level interface routine
specifications.

Whether the space characters written immediately before
the new-line character are read

Number of null characters added to data written in the
binary file

Initial value of file position indicator in the append mode

Whether file data is lost after output to a text file

File buffering specifications

Whether a file with file length 0 exists

File name configuration rule

Whether the same file is opened simultaneously

Output data representation of the %p format conversion
in the fprintf function

Hexadecimal representation.

Input data representation of the %p format conversion in
the fscanf function.
The meaning of conversion specifier '' in the fscanf
function

Hexadecimal representation.

If '' is not the first or last character or '' does not follow
'^', the range from the previous character to the following
character is indicated.

Value of errno specified by the fgetpos or ftell function The fgetpos function is not supported.
The errno value for the ftell function is not specified. It
depends on the low-level interface routine specifications.

Type Definition Name Description

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 607 of 1053
Nov 01, 2020

(a) The output format of perror function is
<string>:<error message for the error number specified in error>

(b) Table 7.8 shows the format when displaying the floating-point infinity and not-a-number in printf and fprintf func-
tions.

Table 7.8 Display Format of Infinity and Not-a-Number

An example of a program that performs a series of input/output processing operations for a stream input/output file is
shown in the following.

[Format]
 1 #include <stdio.h>
 2
 3 void main()
 4 {
 5 int c;
 6 FILE *ifp, *ofp;
 7
 8 if ((ifp=fopen("INPUT.DAT","r"))==NULL){
 9 fprintf(stderr,"cannot open input file\n");
 10 exit(1);
 11 }
 12 if ((ofp=fopen("OUTPUT.DAT","w"))==NULL){
 13 fprintf(stderr,"cannot open output file\n");
 14 exit(1);
 15 }
 16 while ((c=getc(ifp))!=EOF)
 17 putc(c, ofp);
 18 fclose(ifp);
 19 fclose(ofp);
 20 }

Explanation:
This program copies the contents of file INPUT.DAT to file OUTPUT.DAT.
Input file INPUT.DAT is opened by the fopen function in line 8, and output file OUTPUT.DAT is opened by the fopen

function in line 12. If opening fails, NULL is returned as the return value of the fopen function, an error message is output,
and the program is terminated.

If the fopen function ends normally, the pointer to the data (FILE type) that stores information on the opened files is
returned; these are set in variables ifp and ofp.

After successful opening, input/output is performed using these FILE type data.
When file processing ends, the files are closed with the fclose function.

Output format of messages generated by the perror
function

See (a) below for the output message format.

Value Display Format

Positive infinity ++++++

Negative infinity ------

Not-a-number ******

Item Compiler Specifications

R20UT3248EJ0110 Rev.1.10 Page 608 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Closes a stream input/output file.

[Format]

#include <stdio.h>
long fclose (FILE *fp);

[Parameters]

fp File pointer

[Return values]

Normal: 0
Abnormal: Nonzero

[Remarks]

The fclose function closes the stream input/output file indicated by file pointer fp.
If the output file of the stream input/output file is open and data that is not output remains in the buffer, that data is output

to the file before it is closed.
If the input/output buffer was automatically allocated by the system, it is released.

fclose

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 609 of 1053
Nov 01, 2020

Outputs the stream input/output file buffer contents to the file.

[Format]

#include <stdio.h>
long fflush (FILE *fp);

[Parameters]

fp File pointer

[Return values]

Normal: 0
Abnormal: Nonzero

[Remarks]

When the output file of the stream input/output file is open, the fflush function outputs the contents of the buffer that is
not output for the stream input/output file specified by file pointer fp to the file. When the input file is open, the ungetc func-
tion specification is invalidated.

fflush

R20UT3248EJ0110 Rev.1.10 Page 610 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Opens a stream input/output file under the specified file name.

[Format]

#include <stdio.h>
FILE *fopen (const char *fname, const char *mode);

[Parameters]

fname Pointer to string indicating file name
mode Pointer to string indicating file access mode

[Return values]

Normal: File pointer indicating file information on opened file
Abnormal: NULL

[Remarks]

The fopen function opens the stream input/output file whose file name is the string pointed to by fname. If a file that does
not exist is opened in write mode or append mode, a new file is created wherever possible. When an existing file is
opened in write mode, writing processing is performed from the beginning of the file, and previously written file contents
are erased.

When a file is opened in append mode, write processing is performed from the end-of-file position. When a file is
opened in update mode, both input and output processing can be performed on the file. However, input cannot directly fol-
low output without intervening execution of the fflush, fseek, or rewind function. Similarly, output cannot directly follow
input without intervening execution of the fflush, fseek, or rewind function.

A string indicating the opening method may be added after the string indicating the file access mode.

fopen

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 611 of 1053
Nov 01, 2020

Closes a currently open stream input/output file and reopens a new file under the specified file name.

[Format]

#include <stdio.h>
FILE *freopen (const char *fname, const char *mode, FILE *fp);

[Parameters]

fname Pointer to string indicating new file name
mode Pointer to string indicating file access mode
fp File pointer to currently open stream input/output file

[Return values]

Normal: fp
Abnormal: NULL

[Remarks]

The freopen function first closes the stream input/output file indicated by file pointer fp (the following processing is car-
ried out even if this close processing is unsuccessful). Next, the freopen function opens the file indicated by file name
fname for stream input/output, reusing the FILE structure pointed to by fp.

The freopen function is useful when there is a limit on the number of files being opened at one time.
The freopen function normally returns the same value as fp, but returns NULL when an error occurs.

freopen

R20UT3248EJ0110 Rev.1.10 Page 612 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Defines and sets a stream input/output buffer area by the user program.

[Format]

#include <stdio.h>
void setbuf (FILE *fp, char buf[BUFSIZ]);

[Parameters]

fp File pointer
buf Pointer to buffer area

[Remarks]

The setbuf function defines the storage area pointed to by buf so that it can be used as an input/output buffer area for
the stream input/output file indicated by file pointer fp. As a result, input/output processing is performed using a buffer area
of size BUFSIZ.

setbuf

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 613 of 1053
Nov 01, 2020

Defines and sets a stream input/output buffer area by the user program.

[Format]

#include <stdio.h>
long setvbuf (FILE *fp, char *buf, long type, size_t size);

[Parameters]

fp File pointer
buf Pointer to buffer area
type Buffer management method
size Size of buffer area

[Return values]

Normal: 0
Abnormal: Nonzero

[Remarks]

The setvbuf function defines the storage area pointed to by buf so that it can be used as an input/output buffer area for
the stream input/output file indicated by file pointer fp.

There are three ways of using this buffer area, as follows:

(a) When _IOFBF is specified as type
Input/output is fully buffered.

(b) When _IOLBF is specified as type
Input/output is line buffered; that is, input/output data is fetched from the buffer area when a new-line character
is written, when the buffer area is full, or when input is requested.

(c) When _IONBF is specified as type
Input/output is unbuffered. The setvbuf function usually returns 0. However, when an illegal value is specified for
type or size, or when the request on how to use the buffer could not be accepted, a value other than 0 is
returned.
The buffer area must not be released before the open stream input/output file is closed. In addition, the setvbuf
function must be used between opening of the stream input/output file and execution of input/output processing.

setvbuf

R20UT3248EJ0110 Rev.1.10 Page 614 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Outputs data to a stream input/output file according to the format.

[Format]

#include <stdio.h>
long fprintf (FILE *fp, const char *control[, arg]...);

[Parameters]

fp File pointer
control Pointer to string indicating format
arg,... List of data to be output according to format

[Return values]

Normal: Number of characters converted and output
Abnormal: Negative value

[Remarks]

The fprintf function converts and edits parameter arg according to the string that represents the format pointed to by
control, and outputs the result to the stream input/output file indicated by file pointer fp.

The fprintf function returns the number of characters converted and output when the function is terminated successfully,
or a negative value if an error occurs.

The format specifications are shown below.
Overview of Formats
The string that represents the format is made up of two kinds of string.

- Ordinary characters
A character other than a conversion specification shown below is output unchanged.

- Conversion specifications
A conversion specification is a string beginning with % that specifies the conversion method for the following parame-
ter. The conversion specifications format conforms to the following rules:

When there is no parameter to be actually output according to this conversion specification, the behavior is not guar-
anteed. In addition, when the number of parameters to be actually output is greater than the conversion specification,
the excess parameters are ignored.

Description of Conversion Specifications

(a) Flags
Flags specify modifications to the data to be output, such as addition of a sign. The types of flag that can be
specified and their meanings are shown in Table 7.9.

Table 7.9 Flag Types and Their Meanings

fprintf

Type Meaning

– If the number of converted data characters is less than the field width, the data will be output
left-justified within the field.

+ A plus or minus sign will be prefixed to the result of a signed conversion.

%[Flag...] [*]
[Parameter size specification] Conversion specifier

[Field width]

[*]

[Precision]
.

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 615 of 1053
Nov 01, 2020

(b) Field width
The number of characters in the converted data to be output is specified as a decimal number.
If the number of converted data characters is less than the field width, the data is prefixed with spaces up to the
field width. (However, if '-' is specified as a flag, spaces are suffixed to the data.)
If the number of converted data characters exceeds the field width, the field width is extended to allow the con-
verted result to be output.
If the field width specification begins with 0, the output data is prefixed with characters "0", not spaces.

(c) Precision
The precision of the converted data is specified according to the type of conversion, as described in table 6.10.
The precision is specified in the form of a period (.) followed by a decimal integer. If the decimal integer is omit-
ted, 0 is assumed to be specified.
If the specified precision is incompatible with the field width specification, the field width specification is ignored.
The precision specification has the following meanings according to the conversion type.

- For d, i, o, u, x, and X conversions
The minimum number of digits in the converted data is specified.

- For e, E, and f conversions
The number of digits after the decimal point in the converted data is specified.

- For g and G conversions
The maximum number of significant digits in the converted data is specified.

- For s conversion
The maximum number of printed digits is specified.

(d) Parameter size specification
For d, i, o, u, x, X, e, E, f, g, and G conversions (see Table 7.10), the size (short type, long type, long long
type, or long double type) of the data to be converted is specified. In other conversions, this specification is
ignored. Table 7.10 shows the types of size specification and their meanings.

Table 7.10 Parameter Size Specification Types and Meanings

space If the first character of a signed conversion result is not a sign, a space will be prefixed to the
result. If the space and + flags are both specified, the space flag will be ignored.

The converted data is to be modified according to the conversion types described in table 6.10.
1. For c, d, i, s, and u conversions

This flag is ignored.
2. For o conversion

The converted data is prefixed with 0.
3. For x or X conversion

The converted data is prefixed with 0x (or 0X)
4. For e, E, f, g, and G conversions

A decimal point is output even if the converted data has no fractional part. With g and G con-
versions, the 0 suffixed to the converted data are not removed.

Type Meaning

1 hh For d, i, o, u, x, X, a, A, e, E, f, F, g, and G conversions, specifies that the data to be con-
verted is of signed char type or unsigned char type. For n conversion, specifies that the
data to be converted is of pointer type to signed char type.

2 h For d, i, o, u, x, and X conversions, specifies that the data to be converted is of short
type or unsigned short type. For n conversion, specifies that the data to be converted is
of pointer type to short type.

3 l For d, i, o, u, x, and X conversions, specifies that the data to be converted is of long
type, unsigned long type, or double type.

4 L For e, E, f, g, and G conversions, specifies that the data to be converted is of long dou-
ble type.

Type Meaning

R20UT3248EJ0110 Rev.1.10 Page 616 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

(e) Conversion specifier
The format into which the data is to be converted is specified.
If the data to be converted is structure or array type, or is a pointer pointing to those types, the behavior is not
guaranteed except when a character array is converted by s conversion or when a pointer is converted by p
conversion. Table 7.11 shows the conversion specifier and conversion methods. If a letter which is not shown in
this table is specified as the conversion specifier, the behavior is not guaranteed. The behavior, if a character
that is not a letter is specified, depends on the compiler.

Table 7.11 Conversion Specifiers and Conversion Methods

5 ll For d, i, o, u, x, and X conversions, specifies that the data to be converted is of long
long type or unsigned long long type. For n conversion, specifies that the data to be
converted is of pointer type to long long type.

6 j For d, i, o, u, x, and X conversions, specifies that the data to be converted is of intmax_t
type or uintmax_t type. For n conversion, specifies that the data to be converted is of
pointer type to size_t type.

7 z For d, i, o, u, x, and X conversions, specifies that the data to be converted is of size_t
type or signed integer type corresponding to size_t type. For n conversion, specifies
that the data to be converted is of pointer type to size_t type.

8 t For d, i, o, u, x, and X conversions, specifies that the data to be converted is of ptrdiff_t
type or unsigned integer type corresponding to ptrdiff_t type. For n conversion, speci-
fies that the data to be converted is of pointer type to ptrdiff_t type.

Conver-
sion Speci-

fier

Conversion
Type

Conversion Method Type Sub-
ject to

Conver-
sion

Notes Related to Precision

1 d d conver-
sion

int type data is converted to a
signed decimal string. d con-
version and i conversion
have the same specification.

int type The precision specification
indicates the minimum
number of characters out-
put. If the number of con-
verted data characters is
less than the precision
specification, the string is
prefixed with zeros. If the
precision is omitted, 1 is
assumed. If conversion and
output of data with a value
of 0 is attempted with 0
specified as the precision,
nothing will be output.

2 i i conversion int type

3 o o conver-
sion

int type data is converted to
an unsigned octal string.

int type

4 u u conver-
sion

int type data is converted to
an unsigned decimal string.

int type

5 x x conver-
sion

int type data is converted to
unsigned hexadecimal. a, b,
c, d, e, and f are used as
hexadecimal characters.

int type

6 X X conver-
sion

int type data is converted to
unsigned hexadecimal. A, B,
C, D, E, and F are used as
hexadecimal characters.

int type

Type Meaning

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 617 of 1053
Nov 01, 2020

7 f f conversion double type data is con-
verted to a decimal string with
the format [-] ddd.ddd.

double
type

The precision specification
indicates the number of dig-
its after the decimal point.
When there are characters
after the decimal point, at
least one digit is output
before the decimal point.
When the precision is omit-
ted, 6 is assumed. When 0
is specified as the preci-
sion, the decimal point and
subsequent characters are
not output. The output data
is rounded.

8 F F conver-
sion

double
type

9 e e conver-
sion

double type data is con-
verted to a decimal string with
the format [-] d.ddde±dd. At
least two digits are output as
the exponent.

double
type

The precision specification
indicates the number of dig-
its after the decimal point.
The format is such that one
digit is output before the
decimal point in the con-
verted characters, and a
number of digits equal to
the precision are output
after the decimal point.
When the precision is omit-
ted, 6 is assumed. When 0
is specified as the preci-
sion, characters after the
decimal point are not out-
put. The output data is
rounded.

10 E E conver-
sion

double type data is con-
verted to a decimal string with
the format [-] d.dddE±dd. At
least two digits are output as
the exponent.

double
type

11 g g conver-
sion (or G
conversion)

Whether f conversion format
output or e conversion (or E
conversion) format output is
performed is determined by
the value to be converted and
the precision value that speci-
fies the number of significant
digits. Then double type data
is output. If the exponent of
the converted data is less
than –4, or larger than the
precision that indicates the
number of significant digits,
conversion to e (or E) format
is performed.

double
type

The precision specification
indicates the maximum
number of significant digits
in the converted data.12 G double

type

Conver-
sion Speci-

fier

Conversion
Type

Conversion Method Type Sub-
ject to

Conver-
sion

Notes Related to Precision

R20UT3248EJ0110 Rev.1.10 Page 618 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

(f) * specification for field width or precision
* can be specified as the field width or precision specification value. In this case, the value of the parameter cor-
responding to the conversion specification is used as the field width or precision specification value. When this
parameter has a negative field width, it is interpreted as flag '–' and a positive field width. When the parameter
has a negative precision, the precision is interpreted as being omitted.

13 a a conver-
sion

double type data is con-
verted to a hexadecimal
string with the [-]0xh.hhhhp
d format. At least one digit is
output as the exponent.

double
type

The precision specification
indicates the number of dig-
its after the decimal point.
The format is such that one
digit is output before the
decimal point in the con-
verted characters, and a
number of digits equal to
the precision are output
after the decimal point.
When the precision is omit-
ted, a precision sufficient
for representing an accu-
rate value is assumed.
When 0 is specified as the
precision, characters after
the decimal point are not
output. The output data is
rounded.

14 A A conver-
sion

double type data is con-
verted to a hexadecimal
string with the [-]0Xh.hhhhP
d format. At least one digit is
output as the exponent.

double
type

15 c c conver-
sion

int type data is converted to
unsigned char data, with
conversion to the character
corresponding to that data.

int type The precision specification
is invalid.

16 s s conver-
sion

The string pointed to by
pointer to char type are out-
put up to the null character
indicating the end of the
string or up to the number of
characters specified by the
precision. (Null characters
are not output. Space, hori-
zontal tab, and new-line char-
acters are not included in the
converted string.)

Pointer to
char type

The precision specification
indicates the number of
characters to be output. If
the precision is omitted,
characters are output up to,
but not including, the null
character in the string
pointed to by the data. (Null
characters are not output.
Space, horizontal tab, and
new-line characters are not
included in the converted
string.)

17 p p conver-
sion

Assuming data as a pointer,
conversion is performed to a
string of compiler-defined
printable characters.

Pointer to
void type

The precision specification
is invalid.

18 n No conver-
sion is per-
formed.

Data is regarded as a pointer
to int type, and the number of
characters output so far is set
in the storage area pointed to
by that data.

Pointer to
int type

19 % No conver-
sion is per-
formed.

% is output. None

Conver-
sion Speci-

fier

Conversion
Type

Conversion Method Type Sub-
ject to

Conver-
sion

Notes Related to Precision

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 619 of 1053
Nov 01, 2020

Outputs a variable parameter list to the specified stream input/output file according to a format.

[Format]

#include <stdarg.h>
#include <stdio.h>
long vfprintf (FILE *fp, const char *control, va_list arg);

[Parameters]

fp File pointer
control Pointer to string indicating format
arg Parameter list

[Return values]

Normal: Number of characters converted and output
Abnormal: Negative value

[Remarks]

The vfprintf function sequentially converts and edits a variable parameter list according to the string that represents the
format pointed to by control, and outputs the result to the stream input/output file indicated by fp.

The vfprintf function returns the number of data items converted and output, or a negative value when an error occurs.
Within the vfprintf function, the va_end macro is not invoked.
For details of the format specifications, see the description of the fprintf function.
Parameter arg, indicating the parameter list, must be initialized beforehand by the va_start macro (and the succeeding

va_arg macro).

vfprintf

R20UT3248EJ0110 Rev.1.10 Page 620 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Converts data according to a format and outputs it to the standard output file (stdout).

[Format]

#include <stdio.h>
long printf (const char *control[, arg]...);

[Parameters]

control Pointer to string indicating format
arg,... Data to be output according to format

[Return values]

Normal: Number of characters converted and output
Abnormal: Negative value

[Remarks]

The printf function converts and edits parameter arg according to the string that represents the format pointed to by
control, and outputs the result to the standard output file (stdout).

For details of the format specifications, see the description of the fprintf function.

printf

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 621 of 1053
Nov 01, 2020

Outputs a variable parameter list to the standard output file (stdout) according to a format.

[Format]

#include <stdarg.h>
#include <stdio.h>
long vprintf (const char *control, va_list arg);

[Parameters]

control Pointer to string indicating format
arg Parameter list

[Return values]

Normal: Number of characters converted and output
Abnormal: Negative value

[Remarks]

The vprintf function sequentially converts and edits a variable parameter list according to the string that represents the
format pointed to by control, and outputs the result to the standard output file.

The vprintf function returns the number of data items converted and output, or a negative value when an error occurs.
Within the vprintf function, the va_end macro is not invoked.
For details of the format specifications, see the description of the fprintf function.
Parameter arg, indicating the parameter list, must be initialized beforehand by the va_start macro (and the succeeding

va_arg macro).

vprintf

R20UT3248EJ0110 Rev.1.10 Page 622 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Converts data according to a format and outputs it to the specified area.

[Format]

#include <stdio.h>
long sprintf (char *s, const char *control[, arg...]);

[Parameters]

s Pointer to storage area to which data is to be output
control Pointer to string indicating format
arg,... Data to be output according to format

[Return values]

Number of characters converted

[Remarks]

The sprintf function converts and edits parameter arg according to the string that represents the format pointed to by
control, and outputs the result to the storage area pointed to by s.

A null character is appended at the end of the converted and output string. This null character is not included in the
return value (number of characters output).

For details of the format specifications, see the description of the fprintf function.

sprintf

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 623 of 1053
Nov 01, 2020

Inputs data from the specified storage area and converts it according to a format.

[Format]

#include <stdio.h>
long sscanf (const char *s, const char *control[, ptr...]);

[Parameters]

s Storage area containing data to be input
control Pointer to string indicating format
ptr,... Pointer to storage area that stores input and converted data

[Return values]

Normal: Number of data items successfully input and converted
Abnormal: EOF

[Remarks]

The sscanf function inputs data from the storage area pointed to by s, converts and edits it according to the string that
represents the format pointed to by control, and stores the result in the storage area pointed to by ptr.

The sscanf function returns the number of data items successfully input and converted. EOF is returned when the input
data ends before the first conversion.

For details of the format specifications, see the description of the fscanf function.

sscanf

R20UT3248EJ0110 Rev.1.10 Page 624 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Converts data according to a format and outputs it to the specified area.

[Format]

#include <stdio.h>
long snprintf(char *restrict s, size_t n, const char *restrict control [, arg]...);

[Parameters]

s Pointer to storage area to which data is to be output
n Number of characters to be output
control Pointer to string indicating format
arg,... Data to be output according to format

[Return values]

Number of characters converted

[Remarks]

The snprintf function converts and edits parameter arg according to the format-representing string pointed to by control,
and outputs the result to the storage area pointed to by s.

A null character is appended at the end of the converted and output string. This null character is not included in the
return value (number of characters output). For details of the format specifications, see the description of the fprintf func-
tion.

snprintf

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 625 of 1053
Nov 01, 2020

Converts data according to a format and outputs it to the specified area.

[Format]

#include <stdarg.h>
#include <stdio.h>
long vsnprintf(char *restrict s, size_t n, const char *restrict control, va_list arg);

[Parameters]

s Pointer to storage area to which data is to be output
n Number of characters to be output
control Pointer to string indicating format
arg Parameter list

[Return values]

Number of characters converted

[Remarks]

The vsnprintf function is equivalent to snprintf with arg specified instead of the variable parameters.
Initialize arg through the va_start macro before calling the vsnprintf function.
The vsnprintf function does not call the va_end macro.

vsnprintf

R20UT3248EJ0110 Rev.1.10 Page 626 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Inputs data from a stream input/output file and converts it according to a format.

[Format]

#include <stdarg.h>
#include <stdio.h>
long vfscanf(FILE *restrict fp, const char *restrict control, va_list arg);

[Parameters]

fp File pointer
control Pointer to wide string indicating format
arg Parameter list

[Return values]

Normal: Number of data items successfully input and converted
Abnormal: Input data ends before input data conversion is performed: EOF

[Remarks]

The vfscanf function is equivalent to fscanf with arg specified instead of the variable parameter list.
Initialize arg through the va_start macro before calling the vfscanf function.
The vfscanf function does not call the va_end macro.

vfscanf

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 627 of 1053
Nov 01, 2020

Inputs data from the specified storage area and converts it according to a format.

[Format]

#include <stdarg.h>
#include <stdio.h>
long vscanf(const char *restrict control, va_list arg);

[Parameters]

control Pointer to string indicating format
arg Parameter list

[Return values]

Normal: Number of data items successfully input and converted
Abnormal: Input data ends before input data conversion is performed: EOF

[Remarks]

The vscanf function is equivalent to scanf with arg specified instead of the variable parameters.
Initialize arg through the va_start macro before calling the vscanf function.
The vscanf function does not call the va_end macro.

vscanf

R20UT3248EJ0110 Rev.1.10 Page 628 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Inputs data from the specified storage area and converts it according to a format.

[Format]

#include <stdarg.h>
#include <stdio.h>
long vsscanf(const char *restrict s, const char *restrict control, va_list arg);

[Parameters]

s Storage area containing data to be input
control Pointer to string indicating format
arg Parameter list

[Return values]

Normal: Number of data items successfully input and converted
Abnormal: nput data ends before input data conversion is performed: EOF

[Remarks]

The vsscanf function is equivalent to sscanf with arg specified instead of the variable parameters.
Initialize arg through the va_start macro before calling the vsscanf function.
The vsscanf function does not call the va_end macro.

vsscanf

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 629 of 1053
Nov 01, 2020

Inputs data from a stream input/output file and converts it according to a format.

[Format]

#include <stdio.h>
long fscanf (FILE *fp, const char *control[, ptr]...);

[Parameters]

fp File pointer
control Pointer to string indicating format
ptr,... Pointer to storage area that stores input data

[Return values]

Normal: Number of data items successfully input and converted
Abnormal: Input data ends before input data conversion is performed: EOF

[Remarks]

The fscanf function inputs data from the stream input/output file indicated by file pointer fp, converts and edits it accord-
ing to the string that represents the format pointed to by control, and stores the result in the storage area pointed to by
ptr.

The format specifications for inputting data are shown below.

Overview of Formats
The string that represents the format is made up of the following three kinds of string.

- Space characters
If a space (' '), horizontal tab ('\t'), or new-line character ('\n') is specified, processing is performed to skip to the next
non-white-space character in the input data.

- Ordinary characters
If a character that is neither one of the space characters listed above nor % is specified, one input data character is
input. The input character must match a character specified in the string that represents the format.

- Conversion specification
A conversion specification is a string beginning with % that specifies the method of converting the input data and stor-
ing it in the area pointed to by the following parameter. The conversion specification format conforms to the following
rules:
% [*] [Field width] [Converted data size] Conversion specifier
If there is no pointer to the storage area that stores input data corresponding to the conversion specification in the for-
mat, the behavior is not guaranteed. In addition, when a pointer to a storage area that stores input data remains
though the format is exhausted, that pointer is ignored.

Description of Conversion Specifications

- * specification
Suppresses storage of the input data in the storage area pointed to by the parameter.

- Field width
The maximum number of characters in the data to be input is specified as a decimal number.

- Converted data size
For d, i, o, u, x, X, e, E, and f conversions (see Table 7.13), the size (short type, long type, long long type, or long
double type) of the converted data is specified. In other conversions, this specification is ignored. Table 7.12 shows
the types of size specification and their meanings.

fscanf

R20UT3248EJ0110 Rev.1.10 Page 630 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Table 7.12 Converted Data Size Specification Types and Meanings

- Conversion specifier
The input data is converted according to the type of conversion specified by the conversion specifier. However, pro-
cessing is terminated when a white-space character is read, when a character for which conversion is not permitted is
read, or when the specified field width has been exceeded.

Table 7.13 Conversion Specifiers and Conversion Methods

Type Meaning

1 h For d, i, o, u, x, and X conversions, specifies that the converted data is of short type.

2 l For d, i, o, u, x, and X conversions, specifies that the converted data is of long type.
For e, E, and f conversions, specifies that the converted data is of double type.

3 L For e, E, and f conversions, specifies that the converted data is of long double type.

4 ll For d, i, o, u, x, and X conversions, specifies that the converted data is of long long type.

Conver-
sion

Speci-
fier

Conver-
sion Type

Conversion Method Data Type
Subject to

Conversion

1 d d conver-
sion

A decimal string is converted to integer type data. Integer type

2 i i conver-
sion

A decimal string with a sign prefixed, or a decimal string with u (U)
or l (L) suffixed is converted to integer type data. A string beginning
with 0x (or 0X) is interpreted as hexadecimal, and the string is con-
verted to int type data. A string beginning with 0 is interpreted as
octal, and the string is converted to int type data.

Integer type

3 o o conver-
sion

An octal string is converted to integer type data. Integer type

4 u u conver-
sion

An unsigned decimal string is converted to integer type data. Integer type

5 x x conver-
sion

A hexadecimal string is converted to integer type data.
There is no difference in meaning between x conversion and X
conversion.

Integer type

6 X X conver-
sion

7 s s conver-
sion

Characters are converted as a single string until a space, horizon-
tal tab, or new-line character is read. A null character is appended
at the end of the string. (The string in which the converted data is
set must be large enough to include the null character.)

Character
type

8 c c conver-
sion

One character is input. The input character is not skipped even if it
is a white-space character. To read only non-white-space charac-
ters, specify %1s. If the field width is specified, the number of char-
acters equivalent to that specification are read. In this case,
therefore, the storage area that stores the converted data needs
the specified size.

char type

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 631 of 1053
Nov 01, 2020

If the conversion specifier is a letter not shown in Table 7.13, the behavior is not guaranteed. For the other characters,
the behavior is implementation-defined.

9 e e conver-
sion

A string indicating a floating-point number is converted to float-
ing-point type data. There is no difference in meaning between the
e conversion and E conversion, or between the g conversion and
G conversion.
The input format is a floating-point number that can be represented
by the strtod function.

Float-
ing-point type

10 E E conver-
sion

11 f f conver-
sion

12 g g conver-
sion

13 G G conver-
sion

14 p p conver-
sion

A string converted by p conversion of the fprintf function is con-
verted to pointer type data.

Pointer to
void type

15 n No conver-
sion is per-
formed.

Data input is not performed; the number of data characters input
so far is set.

Integer type

16 [[conver-
sion

A set of characters is specified after [, followed by]. This character
set defines a set of characters comprising a string. If the first char-
acter of the character set is not a circumflex (^), the input data is
input as a single string until a character not in this character set is
first read. If the first character is ^, the input data is input as a sin-
gle string until a character which is in the character set following
the ^ is first read. A null character is automatically appended at the
end of the input string. (The string in which the converted data is
set must be large enough to include the null character.)

Character
type

17 % No conver-
sion is per-
formed.

% is read. None

Conver-
sion

Speci-
fier

Conver-
sion Type

Conversion Method Data Type
Subject to

Conversion

R20UT3248EJ0110 Rev.1.10 Page 632 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Inputs data from the standard input file (stdin) and converts it according to a format.

[Format]

#include <stdio.h>
long scanf (const char *control[, ptr...]);

[Parameters]

control Pointer to string indicating format
ptr,... Pointer to storage area that stores input and converted data

[Return values]

Normal: Number of data items successfully input and converted
Abnormal: EOF

[Remarks]

The scanf function inputs data from the standard input file (stdin), converts and edits it according to the string that rep-
resents the format pointed to by control, and stores the result in the storage area pointed to by ptr.

The scanf function returns the number of data items successfully input and converted as the return value. EOF is
returned if the standard input file ends before the first conversion.

For details of the format specifications, see the description of the fscanf function.
For %e conversion, specify l for double type, and specify L for long double type. The default type is float.

scanf

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 633 of 1053
Nov 01, 2020

Outputs a variable parameter list to the specified storage area according to a format.

[Format]

#include <stdarg.h>
#include <stdio.h>
long vsprintf (char *s, const char *control, va_list arg);

[Parameters]

s Pointer to storage area to which data is to be output
control Pointer to string indicating format
arg Parameter list

[Return values]

Normal: Number of characters converted
Abnormal: Negative value

[Remarks]

The vsprintf function sequentially converts and edits a variable parameter list according to the string that represents the
format pointed to by control, and outputs the result to the storage area pointed to by s.

A null character is appended at the end of the converted and output string. This null character is not included in the
return value (number of characters output).

For details of the format specifications, see the description of the fprintf function.
Parameter arg, indicating the parameter list, must be initialized beforehand by the va_start macro (and the succeeding

va_arg macro).

vsprintf

R20UT3248EJ0110 Rev.1.10 Page 634 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Inputs one character from a stream input/output file.

[Format]

#include <stdio.h>
long fgetc (FILE *fp);

[Parameters]

fp File pointer

[Return values]

Normal: End-of-file: EOF
Otherwise: Input character
Abnormal: EOF

[Remarks]

When a read error occurs, the error indicator for that file is set.
The fgetc function inputs one character from the stream input/output file indicated by file pointer fp.
The fgetc function normally returns the input character, but returns EOF at end-of-file or when an error occurs. At

end-of-file, the end-of-file indicator for that file is set.

fgetc

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 635 of 1053
Nov 01, 2020

Inputs a string from a stream input/output file.

[Format]

#include <stdio.h>
char *fgets (char *s, long n, FILE *fp);

[Parameters]

s Pointer to storage area to which string is input
n Number of bytes of storage area to which string is input
fp File pointer

[Return values]

Normal: End-of-file: NULL
Otherwise: s
Abnormal: NULL

[Remarks]

The fgets function inputs a string from the stream input/output file indicated by file pointer fp to the storage area pointed
to by s.

The fgets function performs input up to the (n–1)th character or a new-line character, or until end-of-file, and appends a
null character at the end of the input string.

The fgets function normally returns s, the pointer to the storage area to which the string is input, but returns NULL at
end-of-file or if an error occurs.

The contents of the storage area pointed to by s do not change at end-of-file, but are not guaranteed when an error
occurs.

fgets

R20UT3248EJ0110 Rev.1.10 Page 636 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Outputs one character to a stream input/output file.

[Format]

#include <stdio.h>
long fputc (long c, FILE *fp);

[Parameters]

c Character to be output
fp File pointer

[Return values]

Normal: Output character
Abnormal: EOF

[Remarks]

When a write error occurs, the error indicator for that file is set.
The fputc function outputs character c to the stream input/output file indicated by file pointer fp.
The fputc function normally returns c, the output character, but returns EOF when an error occurs.

fputc

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 637 of 1053
Nov 01, 2020

Outputs a string to a stream input/output file.

[Format]

#include <stdio.h>
long fputs (const char *s, FILE *fp);

[Parameters]

s Pointer to string to be output
fp File pointer

[Return values]

Normal: 0
Abnormal: Nonzero

[Remarks]

The fputs function outputs the string pointed to by s up to the character preceding the null character to the stream input/
output file indicated by file pointer fp. The null character indicating the end of the string is not output.

The fputs function normally returns zero, but returns nonzero when an error occurs.

fputs

R20UT3248EJ0110 Rev.1.10 Page 638 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Inputs one character from a stream input/output file.

[Format]

#include <stdio.h>
long getc (FILE *fp);

[Parameters]

fp File pointer

[Return values]

Normal: End-of-file: EOF
Otherwise: Input character
Abnormal: EOF

[Remarks]

When a read error occurs, the error indicator for that file is set.
The getc function inputs one character from the stream input/output file indicated by file pointer fp.
The getc function normally returns the input character, but returns EOF at end-of-file or when an error occurs. At

end-of-file, the end-of-file indicator for that file is set.

getc

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 639 of 1053
Nov 01, 2020

Inputs one character from the standard input file (stdin).

[Format]

#include <stdio.h>
long getchar (void);

[Return values]

Normal: End-of-file: EOF
Otherwise: Input character
Abnormal: EOF

[Remarks]

When a read error occurs, the error indicator for that file is set.
The getchar function inputs one character from the standard input file (stdin).
The getchar function normally returns the input character, but returns EOF at end-of-file or when an error occurs. At

end-of-file, the end-of-file indicator for that file is set.

getchar

R20UT3248EJ0110 Rev.1.10 Page 640 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Inputs a string from the standard input file (stdin).

[Format]

#include <stdio.h>
char *gets (char *s);

[Parameters]

s Pointer to storage area to which string is input

[Return values]

Normal: End-of-file: NULL
Otherwise: s
Abnormal: NULL

[Remarks]

The gets function inputs a string from the standard input file (stdin) to the storage area starting at s.
The gets function inputs characters up to end-of-file or until a new-line character is input, and appends a null character

instead of a new-line character.
The gets function normally returns s, the pointer to the storage area to which the string is input, but returns NULL at the

end of the standard input file or when an error occurs.
The contents of the storage area pointed to by s do not change at the end of the standard input file, but are not guaran-

teed when an error occurs.

gets

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 641 of 1053
Nov 01, 2020

Outputs one character to a stream input/output file.

[Format]

#include <stdio.h>
long putc (long c, FILE *fp);

[Parameters]

c Character to be output
fp File pointer

[Return values]

Normal: Output character
Abnormal: EOF

[Remarks]

When a write error occurs, the error indicator for that file is set.
The putc function outputs character c to the stream input/output file indicated by file pointer fp.
The putc function normally returns c, the output character, but returns EOF when an error occurs.

putc

R20UT3248EJ0110 Rev.1.10 Page 642 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Outputs one character to the standard output file (stdout).

[Format]

#include <stdio.h>
long putchar (long c);

[Parameters]

c Character to be output

[Return values]

Normal: Output character
Abnormal: EOF

[Remarks]

When a write error occurs, the error indicator for that file is set.
The putchar function outputs character c to the standard output file (stdout).
The putchar function normally returns c, the output character, but returns EOF when an error occurs.

putchar

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 643 of 1053
Nov 01, 2020

Outputs a string to the standard output file (stdout).

[Format]

#include <stdio.h>
long puts (const char *s);

[Parameters]

s Pointer to string to be output

[Return values]

Normal: 0
Abnormal: Nonzero

[Remarks]

The puts function outputs the string pointed to by s to the standard output file (stdout). The null character indicating the
end of the string is not output, but a new-line character is output instead.

The puts function normally returns zero, but returns nonzero when an error occurs.

puts

R20UT3248EJ0110 Rev.1.10 Page 644 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Returns one character to a stream input/output file.

[Format]

#include <stdio.h>
long ungetc (long c, FILE *fp);

[Parameters]

c Character to be returned
fp File pointer

[Return values]

Normal: Returned character
Abnormal: EOF

[Remarks]

The ungetc function returns character c to the stream input/output file indicated by file pointer fp. Unless the fflush,
fseek, or rewind function is called, this returned character will be the next input data.

The ungetc function normally returns c, which is the returned character, but returns EOF when an error occurs.
The behavior is not guaranteed when the ungetc function is called more than once without intervening fflush, fseek, or

rewind function execution. When the ungetc function is executed, the current file position indicator for that file is moved
back one position; however, when this file position indicator has already been positioned at the beginning of the file, its
value is not guaranteed.

ungetc

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 645 of 1053
Nov 01, 2020

Inputs data from a stream input/output file to the specified storage area.

[Format]

#include <stdio.h>
size_t fread (void *ptr, size_t size, size_t n, FILE *fp);

[Parameters]

ptr Pointer to storage area to which data is input
size Number of bytes in one member
n Number of members to be input
fp File pointer

[Return values]

When size or n is 0: 0
When size and n are both nonzero: Number of successfully input members

[Remarks]

The fread function inputs n members whose size is specified by size, from the stream input/output file indicated by file
pointer fp, into the storage area pointed to by ptr. The file position indicator for the file is advanced by the number of bytes
input.

The fread function returns the number of members successfully input, which is normally the same as the value of n.
However, at end-of-file or when an error occurs, the number of members successfully input so far is returned, and then the
return value will be less than n. The ferror and feof functions should be used to distinguish between end-of-file and error
occurrence.

When the value of size or n is zero, zero is returned as the return value and the contents of the storage area pointed to
by ptr do not change. When an error occurs or when only a part of the members can be input, the file position indicator is
not guaranteed.

fread

R20UT3248EJ0110 Rev.1.10 Page 646 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Outputs data from a memory area to a stream input/output file.

[Format]

#include <stdio.h>
size_t fwrite (const void *ptr, size_t size, size_t n, FILE *fp);

[Parameters]

ptr Pointer to storage area storing data to be output
size Number of bytes in one member
n Number of members to be output
fp File pointer

[Return values]

Number of successfully output members

[Remarks]

The fwrite function outputs n members whose size is specified by size, from the storage area pointed to by ptr, to the
stream input/output file indicated by file pointer fp. The file position indicator for the file is advanced by the number of bytes
output.

The fwrite function returns the number of members successfully output, which is normally the same as the value of n.
However, when an error occurs, the number of members successfully output so far is returned, and then the return value
will be less than n.

When an error occurs, the file position indicator is not guaranteed.

fwrite

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 647 of 1053
Nov 01, 2020

Shifts the current read/write position in a stream input/output file.

[Format]

#include <stdio.h>
long fseek (FILE *fp, long offset, long type);

[Parameters]

fp File pointer
offset Offset from position specified by type of offset
type Type of offset

[Return values]

Normal: 0
Abnormal: Nonzero

[Remarks]

The fseek function shifts the current read/write position in the stream input/output file indicated by file pointer fp by off-
set bytes from the position specified by type (the type of offset).

The types of offset are shown in Table 7.14.
The fseek function normally returns zero, but returns nonzero in response to an invalid request.

Table 7.14 Types of Offset

For a text file, the type of offset must be SEEK_SET and offset must be zero or the value returned by the ftell function
for that file. Note also that calling the fseek function cancels the effect of the ungetc function.

fseek

Offset Type Meaning

SEEK_SET Shifts to a position which is located offset bytes away from the beginning of the file. The value
specified by offset must be zero or positive.

SEEK_CUR Shifts to a position which is located offset bytes away from the current position in the file. The
shift is toward the end of the file if the value specified by offset is positive, and toward the
beginning of the file if negative.

SEEK_END Shifts to a position which is located offset bytes forward from end-of-file. The value specified
by offset must be zero or negative.

R20UT3248EJ0110 Rev.1.10 Page 648 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Obtains the current read/write position in a stream input/output file.

[Format]

#include <stdio.h>
long ftell (FILE *fp);

[Parameters]

fp File pointer

[Return values]

Current file position indicator position (text file)
Number of bytes from beginning of file to current position (binary file)

[Remarks]

The ftell function obtains the current read/write position in the stream input/output file indicated by file pointer fp.
For a binary file, the ftell function returns the number of bytes from the beginning of the file to the current position. For a

text file, it returns, as the position of the file position indicator, an implementation-defined value that can be used by the
fseek function.

When the ftell function is used twice for a text file, the difference in the return values will not necessarily represent the
actual distance in the file.

ftell

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 649 of 1053
Nov 01, 2020

Shifts the current read/write position in a stream input/output file to the beginning of the file.

[Format]

#include <stdio.h>
void rewind (FILE *fp);

[Parameters]

fp File pointer

[Remarks]

The rewind function shifts the current read/write position in the stream input/output file indicated by file pointer fp, to the
beginning of the file.

The rewind function clears the end-of-file indicator and error indicator for the file.
Note that calling the rewind function cancels the effect of the ungetc function.

rewind

R20UT3248EJ0110 Rev.1.10 Page 650 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Clears the error state of a stream input/output file.

[Format]

#include <stdio.h>
void clearerr (FILE *fp);

[Parameters]

fp File pointer

[Remarks]

The clearerr function clears the error indicator and end-of-file indicator for the stream input/output file indicated by file
pointer fp.

clearerr

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 651 of 1053
Nov 01, 2020

Tests for the end of a stream input/output file.

[Format]

#include <stdio.h>
long feof (FILE *fp);

[Parameters]

fp File pointer

[Return values]

End-of-file: Nonzero
Otherwise: 0

[Remarks]

The feof function tests for the end of the stream input/output file indicated by file pointer fp.
The feof function tests the end-of-file indicator for the specified stream input/output file, and if the indicator is set,

returns nonzero to indicate that the file is at its end. If the end-of-file indicator is not set, the feof function returns zero to
show that the file is not yet at its end.

feof

R20UT3248EJ0110 Rev.1.10 Page 652 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Tests for stream input/output file error state.

[Format]

#include <stdio.h>
long ferror (FILE *fp);

[Parameters]

fp File pointer

[Return values]

If file is in error state: Nonzero
Otherwise: 0

[Remarks]

The ferror function tests whether the stream input/output file indicated by file pointer fp is in the error state.
The ferror function tests the error indicator for the specified stream input/output file, and if the indicator is set, returns

nonzero to show that the file is in the error state. If the error indicator is not set, the ferror function returns zero to show
that the file is not in the error state.

ferror

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 653 of 1053
Nov 01, 2020

Outputs an error message corresponding to the error number to the standard error file (stderr).

[Format]

#include <stdio.h>
void perror (const char *s)

[Parameters]

s Pointer to error message

[Remarks]

The perror function maps errno to the error message indicated by s, and outputs the message to the standard error file
(stderr).

If s is not NULL and the string pointed to by s is not a null character, the output format is as follows: the string pointed to
by s followed by a colon and space, then the implementation-defined error message, and finally a new-line character.

perror

R20UT3248EJ0110 Rev.1.10 Page 654 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

7.4.12 <stdlib.h>

Defines standard functions for standard processing of C programs.
The following macros are implementation-defined.

Type Definition Name Description

Type
(macro)

onexit_t Indicates the type returned by the function registered by the onexit function and
the type of the value returned by the onexit function.

div_t Indicates the type of structure of the value returned by the div function.

ldiv_t Indicates the type of structure of the value returned by the ldiv function.

lldiv_t Indicates the type of structure of the value returned by the lldiv function.

Constant
(macro)

RAND_MAX Indicates the maximum value of pseudo-random integers generated by the rand
function.

EXIT_SUCCESS Indicates the successfully completed state.

Function atof Converts a number-representing string to a double type floating-point number.

atoi Converts a decimal-representing string to an int type integer.

atol Converts a decimal-representing string to a long type integer.

atoll Converts a decimal-representing string to a long long type integer.

strtod Converts a number-representing string to a double type floating-point number.

strtof Converts a number-representing string to a float type floating-point number.

strtold Converts a number-representing string to a long double type floating-point
number.

strtol Converts a number-representing string to a long type integer.

strtoul Converts a number-representing string to an unsigned long type integer.

strtoll Converts a number-representing string to a long long type integer.

strtoull Converts a number-representing string to an unsigned long long type integer.

rand Generates pseudo-random integers from 0 to RAND_MAX.

srand Sets an initial value of the pseudo-random number sequence generated by the
rand function.

calloc Allocates a storage area and clears all bits in the allocated storage area to 0.

free Releases specified storage area.

malloc Allocates a storage area.

realloc Changes the size of storage area to a specified value.

bsearch Performs binary search.

qsort Performs sorting.

abs Calculates the absolute value of an int type integer.

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 655 of 1053
Nov 01, 2020

Implementation-Defined Specifications

Function div Carries out division of int type integers and obtains the quotient and remainder.

labs Calculates the absolute value of a long type integer.

ldiv Carries out division of long type integers and obtains the quotient and remain-
der.

llabs Calculates the absolute value of a long long type integer.

lldiv Carries out division of long long type integers and obtains the quotient and
remainder.

Item Compiler Specifications

calloc, malloc, or realloc function operation when the size
is 0.

NULL is returned.

Type Definition Name Description

R20UT3248EJ0110 Rev.1.10 Page 656 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Converts a number-representing string to a double type floating-point number.

[Format]

#include <stdlib.h>
double atof (const char *nptr);

[Parameters]

nptr Pointer to a number-representing string to be converted

[Return values]

Converted data as a double type floating-point number

[Remarks]

If the converted result overflows or underflows, errno is set.
Data is converted up to the first character that does not fit the floating-point data type.
The atof function does not guarantee the return value if an error such as an overflow occurs. When you want to acquire

the guaranteed return value, use the strtod function.

atof

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 657 of 1053
Nov 01, 2020

Converts a decimal-representing string to an int type integer.

[Format]

#include <stdlib.h>
long atoi (const char *nptr);

[Parameters]

nptr Pointer to a number-representing string to be converted

[Return values]

Converted data as an int type integer

[Remarks]

If the converted result overflows, errno is set.
Data is converted up to the first character that does not fit the decimal data type.
The atoi function does not guarantee the return value if an error such as an overflow occurs. When you want to acquire

the guaranteed return value, use the strtol function.

atoi

R20UT3248EJ0110 Rev.1.10 Page 658 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Converts a decimal-representing string to a long type integer.

[Format]

#include <stdlib.h>
long atol (const char *nptr);

[Parameters]

nptr Pointer to a number-representing string to be converted

[Return values]

Converted data as a long type integer

[Remarks]

If the converted result overflows, errno is set.
Data is converted up to the first character that does not fit the decimal data type.
The atol function does not guarantee the return value if an error such as an overflow occurs. When you want to acquire

the guaranteed return value, use the strtol function.

atol

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 659 of 1053
Nov 01, 2020

Converts a decimal-representing string to a long long type integer.

[Format]

#include <stdlib.h>
long long atoll (const char *nptr);

[Parameters]

nptr Pointer to a number-representing string to be converted

[Return values]

Converted data as a long long type integer

[Remarks]

If the converted result overflows, errno is set.
Data is converted up to the first character that does not fit the decimal data type.
The atoll function does not guarantee the return value if an error such as an overflow occurs. When you want to acquire

the guaranteed return value, use the strtoll function.

atoll

R20UT3248EJ0110 Rev.1.10 Page 660 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Converts a number-representing string to a double type floating-point number.

[Format]

#include <stdlib.h>
double strtod (const char *nptr, char **endptr);

[Parameters]

nptr Pointer to a number-representing string to be converted
endptr Pointer to the storage area containing a pointer to the first character that does not represent a floating-point

number

[Return values]

Normal: If the string pointed by nptr begins with a character that does not represent a floating-point number: 0
If the string pointed by nptr begins with a character that represents a floating-point number: Converted data as a
double type floating-point number

Abnormal: If the converted data overflows: HUGE_VAL with the same sign as that of the string before conversion
If the converted data underflows: 0

[Remarks]

The strtod function converts data, from the first digit or the decimal point up to the character immediately before the
character that does not represent a floating-point number, into a double type floating-point number. However, if neither an
exponent nor a decimal point is found in the data to be converted, the compiler assumes that the decimal point comes next
to the last digit in the string. In the area pointed by endptr, the function sets up a pointer to the first character that does not
represent a floating-point number. If some characters that do not represent a floating-point number come before digits, the
value of nptr is set. If endptr is NULL, nothing is set in this area.

strtod

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 661 of 1053
Nov 01, 2020

Converts a number-representing string to a float type floating-point number.

[Format]

#include <stdlib.h>
float strtof (const char *nptr, char **endptr);

[Parameters]

nptr Pointer to a number-representing string to be converted
endptr Pointer to the storage area containing a pointer to the first character that does not represent a floating-point

number

[Return values]

Normal: If the string pointed by nptr begins with a character that does not represent a floating-point number: 0
If the string pointed by nptr begins with a character that represents a floating-point number: Converted data as a
float type floating-point number

Abnormal: If the converted data overflows: HUGE_VALF with the same sign as that of the string before conversion
If the converted data underflows: 0

[Remarks]

If the converted result overflows or underflows, errno is set.
The strtof function converts data, from the first digit or the decimal point up to the character immediately before the

character that does not represent a floating-point number, into a float type floating-point number. However, if neither an
exponent nor a decimal point is found in the data to be converted, the compiler assumes that the decimal point comes next
to the last digit in the string. In the area pointed by endptr, the function sets up a pointer to the first character that does not
represent a floating-point number. If some characters that do not represent a floating-point number come before digits, the
value of nptr is set. If endptr is NULL, nothing is set in this area.

strtof

R20UT3248EJ0110 Rev.1.10 Page 662 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Converts a number-representing string to a long double type floating-point number.

[Format]

#include <stdlib.h>
long double strtold (const char *nptr, char **endptr);

[Parameters]

nptr Pointer to a number-representing string to be converted
endptr Pointer to the storage area containing a pointer to the first character that does not represent a floating-point

number

[Return values]

Normal: If the string pointed by nptr begins with a character that does not represent a floating-point number: 0
If the string pointed by nptr begins with a character that represents a floating-point number: Converted data as a
long double type floating-point number

Abnormal: If the converted data overflows: HUGE_VALL with the same sign as that of the string before conversion
If the converted data underflows: 0

[Remarks]

If the converted result overflows or underflows, errno is set.
The strtold function converts data, from the first digit or the decimal point up to the character immediately before the

character that does not represent a floating-point number, into a long double type floating-point number. However, if nei-
ther an exponent nor a decimal point is found in the data to be converted, the compiler assumes that the decimal point
comes next to the last digit in the string. In the area pointed by endptr, the function sets up a pointer to the first character
that does not represent a floating-point number. If some characters that do not represent a floating-point number come
before digits, the value of nptr is set. If endptr is NULL, nothing is set in this area.

strtold

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 663 of 1053
Nov 01, 2020

Converts a number-representing string to a long type integer.

[Format]

#include <stdlib.h>
long strtol (const char *nptr, char **endptr, long base);

[Parameters]

nptr Pointer to a number-representing string to be converted
endptr Pointer to the storage area containing a pointer to the first character that does not represent an integer
base Radix of conversion (0 or 2 to 36)

[Return values]

Normal: If the string pointed by nptr begins with a character that does not represent an integer: 0
If the string pointed by nptr begins with a character that represents an integer: Converted data as a long type inte-
ger

Abnormal: If the converted data overflows: LONG_MAX or LONG_MIN depending on the sign of the string before con-
version

[Remarks]

If the converted result overflows, errno is set.
The strtol function converts data, from the first digit up to the character before the first character that does not represent

an integer, into a long type integer.
In the storage area pointed by endptr, the function sets up a pointer to the first character that does not represent an

integer. If some characters that do not represent an integer come before the first digit, the value of nptr is set in this area.
If endptr is NULL, nothing is set in this area.

If the value of base is 0, the rules described in section 3.1.3 (4), Integers, are observed at conversion. If the value of
base is 2 to 36, it indicates the radix of conversion, where a (or A) to z (or Z) in the string to be converted correspond to
numbers 10 to 35. If a character that is not smaller than the base value is found in the string to be converted, conversion
stops immediately. A 0 after a sign is ignored at conversion. Similarly, 0x (or 0X) is ignored when base is 16.

strtol

R20UT3248EJ0110 Rev.1.10 Page 664 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Converts a number-representing string to an unsigned long type integer.

[Format]

#include <stdlib.h>
unsigned long strtoul (const char *nptr, char **endptr, long base);

[Parameters]

nptr Pointer to a number-representing string to be converted
endptr Pointer to the storage area containing a pointer to the first character that does not represent an integer
base Radix of conversion (0 or 2 to 36)

[Return values]

Normal: If the string pointed by nptr begins with a character that does not represent an integer: 0
If the string pointed by nptr begins with a character that represents an integer: Converted data as an unsigned
long type integer

Abnormal: If the converted data overflows: ULONG_MAX

[Remarks]

If the converted result overflows, errno is set.
The strtoul function converts data, from the first digit up to the character before the first character that does not repre-

sent an integer, into an unsigned long type integer.
In the storage area pointed by endptr, the function sets up a pointer to the first character that does not represent an

integer. If some characters that do not represent an integer come before the first digit, the value of nptr is set in this area.
If endptr is NULL, nothing is set in this area.

If the value of base is 0, the rules described in section 3.1.3 (4), Integers, are observed at conversion. If the value of
base is 2 to 36, it indicates the radix of conversion, where a (or A) to z (or Z) in the string to be converted correspond to
numbers 10 to 35. If a character that is not smaller than the base value is found in the string to be converted, conversion
stops immediately. A 0 after a sign is ignored at conversion. Similarly, 0x (or 0X) is ignored when base is 16.

strtoul

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 665 of 1053
Nov 01, 2020

Converts a number-representing string to a long long type integer.

[Format]

#include <stdlib.h>
long long strtoll (const char *nptr, char **endptr, long base);

[Parameters]

nptr Pointer to a number-representing string to be converted
endptr Pointer to the storage area containing a pointer to the first character that does not represent an integer
base Radix of conversion (0 or 2 to 36)

[Return values]

Normal: If the string pointed by nptr begins with a character that does not represent an integer: 0
If the string pointed by nptr begins with a character that represents an integer: Converted data as a long long
type integer

Abnormal: If the converted data overflows: LLONG_MAX or LLONG_MIN depending on the sign of the string before
conversion

[Remarks]

If the converted result overflows, errno is set.
The strtoll function converts data, from the first digit up to the character before the first character that does not repre-

sent an integer, into a long long type integer.
In the storage area pointed by endptr, the function sets up a pointer to the first character that does not represent an

integer. If some characters that do not represent an integer come before the first digit, the value of nptr is set in this area.
If endptr is NULL, nothing is set in this area.

If the value of base is 0, the rules described in section 3.1.3 (4), Integers, are observed at conversion. If the value of
base is 2 to 36, it indicates the radix of conversion, where a (or A) to z (or Z) in the string to be converted correspond to
numbers 10 to 35. If a character that is not smaller than the base value is found in the string to be converted, conversion
stops immediately. A 0 after a sign is ignored at conversion. Similarly, 0x (or 0X) is ignored when base is 16.

strtoll

R20UT3248EJ0110 Rev.1.10 Page 666 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Converts a number-representing string to an unsigned long long type integer.

[Format]

#include <stdlib.h>
unsigned long long strtoull (const char *nptr, char **endptr, long base);

[Parameters]

nptr Pointer to a number-representing string to be converted
endptr Pointer to the storage area containing a pointer to the first character that does not represent an integer
base Radix of conversion (0 or 2 to 36)

[Return values]

Normal: If the string pointed by nptr begins with a character that does not represent an integer: 0
If the string pointed by nptr begins with a character that represents an integer: Converted data as an unsigned
long long type integer

Abnormal: If the converted data overflows: ULLONG_MAX

[Remarks]

If the converted result overflows, errno is set.
The strtoull function converts data, from the first digit up to the character before the first character that does not repre-

sent an integer, into an unsigned long long type integer.
In the storage area pointed by endptr, the function sets up a pointer to the first character that does not represent an

integer. If some characters that do not represent an integer come before the first digit, the value of nptr is set in this area.
If endptr is NULL, nothing is set in this area.

If the value of base is 0, the rules described in section 3.1.3 (4), Integers, are observed at conversion. If the value of
base is 2 to 36, it indicates the radix of conversion, where a (or A) to z (or Z) in the string to be converted correspond to
numbers 10 to 35. If a character that is not smaller than the base value is found in the string to be converted, conversion
stops immediately. A 0 after a sign is ignored at conversion. Similarly, 0x (or 0X) is ignored when base is 16.

strtoull

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 667 of 1053
Nov 01, 2020

Generates a pseudo-random integer from 0 to RAND_MAX.

[Format]

#include <stdlib.h>
long rand (void);

[Return values]

Pseudo-random integer

rand

R20UT3248EJ0110 Rev.1.10 Page 668 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Sets an initial value of the pseudo-random number sequence generated by the rand function.

[Format]

#include <stdlib.h>
void srand (unsigned long seed);

[Parameters]

seed Initial value for pseudo-random number sequence generation

[Remarks]

The srand function sets up an initial value for pseudo-random number sequence generation of the rand function. If
pseudo-random number sequence generation by the rand function is repeated and if the same initial value is set up again
by the srand function, the same pseudo-random number sequence is repeated.

If the rand function is called before the srand function, 1 is set as the initial value for the pseudo-random number gen-
eration.

srand

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 669 of 1053
Nov 01, 2020

Allocates a storage area and clears all bits in the allocated storage area to 0.

[Format]

#include <stdlib.h>
void *calloc (size_t nelem, size_t elsize);

[Parameters]

nelem Number of elements
elsize Number of bytes occupied by a single element

[Return values]

Normal: Starting address of an allocated storage area
Abnormal: Storage allocation failed, or either of the parameter is 0: NULL

[Remarks]

The calloc function allocates as many storage units of size elsize (bytes) as the number specified by nelem. The func-
tion also clears all the bits in the allocated storage area to 0.

The CC-RX has a security facility for detecting illegal operations to storage areas. For details, refer to the
-secure_malloc option in "2.5.4 Library Generator Options".

calloc

R20UT3248EJ0110 Rev.1.10 Page 670 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Releases the specified storage area.

[Format]

#include <stdlib.h>
void free (void *ptr);

[Parameters]

ptr Address of storage area to release

[Remarks]

The free function releases the storage area pointed by ptr, to enable reallocation for use. If ptr is NULL, the function
carries out nothing.

If the storage area attempted to release was not allocated by the calloc, malloc, or realloc function, or when the area
has already been released by the free or realloc function, correct operation is not guaranteed. Operation result of refer-
ence to a released storage area is also not guaranteed.

The CC-RX has a security facility for detecting illegal operations to storage areas. For details, refer to the
-secure_malloc option in "2.5.4 Library Generator Options".

free

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 671 of 1053
Nov 01, 2020

Allocates a storage area.

[Format]

#include <stdlib.h>
void *malloc (size_t size);

[Parameters]

size Size in number of bytes of storage area to allocate

[Return values]

Normal: Starting address of allocated storage area
Abnormal: Storage allocation failed, or size is 0: NULL

[Remarks]

The malloc function allocates a storage area of a specified number of bytes by size.
The CC-RX has a security facility for detecting illegal operations to storage areas. For details, refer to the

-secure_malloc option in "2.5.4 Library Generator Options".

malloc

R20UT3248EJ0110 Rev.1.10 Page 672 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Changes the size of a storage area to a specified value.

[Format]

#include <stdlib.h>
void *realloc (void *ptr, size_t size);

[Parameters]

ptr Starting address of storage area to be changed
size Size of storage area in number of bytes after the change

[Return values]

Normal: Starting address of storage area whose size has been changed
Abnormal: Storage area allocation has failed, or size is 0: NULL

[Remarks]

The realloc function changes the size of the storage area specified by ptr to the number of bytes specified by size. If
the newly allocated storage area is smaller than the old one, the contents are left unchanged up to the size of the newly
allocated area.

When ptr is not a pointer to the storage area allocated by the calloc, malloc, or realloc function or when ptr is a pointer
to the storage area released by the free or realloc function, operation is not guaranteed.

The CC-RX has a security facility for detecting illegal operations to storage areas. For details, refer to the
-secure_malloc option in "2.5.4 Library Generator Options".

realloc

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 673 of 1053
Nov 01, 2020

Performs binary search.

[Format]

// C
#include <stdlib.h>
void *bsearch (const void *key, const void *base, size_t nmemb, size_t size, long (*compar)(const void *, const void *));

// C++/EC++
void *bsearch(const void *key, const void *base, size_t nmemb, size_t size, int (*compar)(const void *, const void *));

[Parameters]

key Pointer to data to find
base Pointer to a table to be searched
nmemb Number of members to be searched
size Number of bytes of a member to be searched
compar Pointer to a function that performs comparison

[Return values]

If a matching member is found: Pointer to the matching member
If no matching member is found: NULL

[Remarks]

The bsearch function searches the table specified by base for a member that matches the data specified by key, by
binary search method. The function that performs comparison should receive pointers p1 (first parameter) and p2 (second
parameter) to two data items to compare, and return the result complying with the specification below.

*p1 < *p2: Returns a negative value.
*p1 == *p2: Returns 0.
*p1 > *p2: Returns a positive value.

Members to be searched must be placed in the ascending order.

bsearch

R20UT3248EJ0110 Rev.1.10 Page 674 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Performs sorting.

[Format]

// C
#include <stdlib.h>
void qsort (const void *base, size_t nmemb, size_t size, long (*compar)(const void *, const void *));

// C++/EC++
#include <stdlib.h>
void qsort(const void *base, size_t nmemb, size_t size, int (*compar)(const void *, const void *));

[Parameters]

base Pointer to the table to be sorted
nmemb Number of members to sort
size Number of bytes of a member to be sorted
compar Pointer to a function to perform comparison

[Remarks]

The qsort function sorts out data on the table pointed to by base. The data arrangement order is specified by the
pointer to a function to perform comparison. This comparison function should receive pointers p1 (first parameter) and p2
(second parameter) as two data items to be compared, and return the result complying with the specification below.

*p1 < *p2: Returns a negative value.
*p1 == *p2: Returns 0.
*p1 > *p2: Returns a positive value.

qsort

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 675 of 1053
Nov 01, 2020

Calculates the absolute value of an int type integer.

[Format]

#include <stdlib.h>
long abs (long i);

[Parameters]

i Integer to calculate the absolute value

[Return values]

Absolute value of i

[Remarks]

If the resultant absolute value cannot be expressed as an int type integer, correct operation is not guaranteed.

abs

R20UT3248EJ0110 Rev.1.10 Page 676 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Carries out division of int type integers and obtains the quotient and remainder.

[Format]

#include <stdlib.h>
div_t div (long numer, long denom);

[Parameters]

numer Dividend
denom Divisor

[Return values]

Quotient and remainder of division of numer by denom.

div

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 677 of 1053
Nov 01, 2020

Calculates the absolute value of a long type integer.

[Format]

#include <stdlib.h>
long labs (long j);

[Parameters]

j Integer to calculate the absolute value

[Return values]

Absolute value of j

[Remarks]

If the resultant absolute value cannot be expressed as a long type integer, correct operation is not guaranteed.

labs

R20UT3248EJ0110 Rev.1.10 Page 678 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Carries out division of long type integers and obtains the quotient and remainder.

[Format]

#include <stdlib.h>
ldiv_t ldiv (long numer, long denom);

[Parameters]

numer Dividend
denom Divisor

[Return values]

Quotient and remainder of division of numer by denom.

ldiv

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 679 of 1053
Nov 01, 2020

Calculates the absolute value of a long long type integer.

[Format]

#include <stdlib.h>
long long llabs (long long j);

[Parameters]

j Integer to calculate the absolute value

[Return values]

Absolute value of j

[Remarks]

If the resultant absolute value cannot be expressed as a long long type integer, correct operation is not guaranteed.

llabs

R20UT3248EJ0110 Rev.1.10 Page 680 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Carries out division of long long type integers and obtains the quotient and remainder.

[Format]

#include <stdlib.h>
lldiv_t lldiv (long long numer, long long denom);

[Parameters]

numer Dividend
denom Divisor

[Return values]

Quotient and remainder of division of numer by denom.

lldiv

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 681 of 1053
Nov 01, 2020

7.4.13 <string.h>

Defines functions for handling character arrays.

Implementation-Defined Specifications

Type Definition Name Description

Function memcpy Copies contents of a source storage area of a specified length to a destination
storage area.

strcpy Copies contents of a source string including the null character to a destination
storage area.

strncpy Copies a source string of a specified length to a destination storage area.

strcat Concatenates a string after another string.

strncat Concatenates a string of a specified length after another string.

memcmp Compares two storage areas specified.

strcmp Compares two strings specified.

strncmp Compares two strings specified for a specified length.

memchr Searches a specified storage area for the first occurrence of a specified charac-
ter.

strchr Searches a specified string for the first occurrence of a specified character.

strcspn Checks a specified string from the beginning and counts the number of consec-
utive characters at the beginning that are not included in another string speci-
fied.

strpbrk Searches a specified string for the first occurrence of any character that is
included in another string specified.

strrchr Searches a specified string for the last occurrence of a specified character.

strspn Checks a specified string from the beginning and counts the number of consec-
utive characters at the beginning that are included in another string specified.

strstr Searches a specified string for the first occurrence of another string specified.

strtok Divides a specified string into some tokens.

memset Sets a specified character for a specified number of times at the beginning of a
specified storage area.

strerror Sets an error message.

strlen Calculates the length of a string.

memmove Copies contents of a source storage area of a specified length to a destination
storage area. Even if a part of the source storage area and a part of the destina-
tion storage area overlap, correct copy is performed.

Item Compiler Specifications

Error message returned by the strerror function Refer to section 10.5.6, Standard Library Error Mes-
sages.

R20UT3248EJ0110 Rev.1.10 Page 682 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

When using functions defined in this standard include file, note the following.

(1) On copying a string, if the destination area is smaller than the source area, correct operation is not guaranteed.

Example
 char a[]="abc";
 char b[3];
 .
 .
 .
 strcpy (b, a);

In the above example, the size of array a (including the null character) is 4 bytes. Copying by strcpy overwrites
data beyond the boundary of array b.

(2) On copying a string, if the source area overlaps the destination area, correct operation is not guaranteed.

Example
 int a[]="a";
 :
 :
 strcpy(&a[1], a);
 :

In the above example, before the null character of the source is read, 'a' is written over the null character. Then the
subsequent data after the source string is overwritten in succession.

a a b c b a b

Before copy After copy

Lost data

c

b Other data b a b c

\0 \0

\0

Subsequent data is copied in succession.

a a Other data

&a[2]
&a[1]

a Other data\0

a &a[1]

Before copy After copy

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 683 of 1053
Nov 01, 2020

Copies the contents of a source storage area of a specified length to a destination storage area.

[Format]

#include <string.h>
void *memcpy (void *s1, const void *s2, size_t n);

[Parameters]

s1 Pointer to destination storage area
s2 Pointer to source storage area
n Number of characters to be copied

[Return values]

s1 value

memcpy

R20UT3248EJ0110 Rev.1.10 Page 684 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Copies the contents of a source string including the null character to a destination storage area.

[Format]

#include <string.h>
char *strcpy (char *s1, const char *s2);

[Parameters]

s1 Pointer to destination storage area
s2 Pointer to source string

[Return values]

s1 value

strcpy

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 685 of 1053
Nov 01, 2020

Copies a source string of a specified length to a destination storage area.

[Format]

#include <string.h>
char *strncpy (char *s1, const char *s2, size_t n);

[Parameters]

s1 Pointer to destination storage area
s2 Pointer to source string
n Number of characters to be copied

[Return values]

s1 value

[Remarks]

The strncpy function copies up to n characters from the beginning of the string pointed by s2 to a storage area pointed
by s1. If the length of the string specified by s2 is shorter than n characters, the function elongates the string to the length
by padding with null characters.

If the length of the string specified by s2 is longer than n characters, the copied string in s1 storage area ends with a
character other than the null character.

strncpy

R20UT3248EJ0110 Rev.1.10 Page 686 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Concatenates a string after another string.

[Format]

#include <string.h>
char *strcat (char *s1, const char *s2);

[Parameters]

s1 Pointer to the string after which another string is appended
s2 Pointer to the string to be appended after the other string

[Return values]

s1 value

[Remarks]

The strcat function concatenates the string specified by s2 at the end of another string specified by s1. The null charac-
ter indicating the end of the s2 string is also copied. The null character at the end of the s1 string is deleted.

strcat

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 687 of 1053
Nov 01, 2020

Concatenates a string of a specified length after another string.

[Format]

#include <string.h>
char *strncat (char *s1, const char *s2, size_t n);

[Parameters]

s1 Pointer to the string after which another string is appended
s2 Pointer to the string to be appended after the other string
n Number of characters to concatenate

[Return values]

s1 value

[Remarks]

The strncat function concatenates up to n characters from the beginning of the string specified by s2 at the end of
another string specified by s1. The null character at the end of the s1 string is replaced by the first character of the s2
string. A null character is appended to the end of the concatenated string.

strncat

R20UT3248EJ0110 Rev.1.10 Page 688 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Compares the contents of two storage areas specified.

[Format]

#include <string.h>
long memcmp (const void *s1, const void *s2, size_t n);

[Parameters]

s1 Pointer to the reference storage area to be compared
s2 Pointer to the storage area to compare to the reference
n Number of characters to compare

[Return values]

If storage area pointed by s1 > storage area pointed by s2: Positive value
If storage area pointed by s1 == storage area pointed by s2: 0
If storage area pointed by s1 < storage area pointed by s2: Negative value

[Remarks]

The memcmp function compares the contents of the first n characters in the storage areas pointed by s1 and s2. The
rules of comparison are implementation-defined.

memcmp

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 689 of 1053
Nov 01, 2020

Compares the contents of two strings specified.

[Format]

#include <string.h>
long strcmp (const char *s1, const char *s2);

[Return values]

If string pointed by s1 > string pointed by s2: Positive value
If string pointed by s1 == string pointed by s2: 0
If string pointed by s1 < string pointed by s2: Negative value

[Parameters]

s1 Pointer to the reference string to be compared
s2 Pointer to the string to compare to the reference

[Remarks]

The strcmp function compares the contents of the strings pointed by s1 and s2, and sets up the comparison result as a
return value. The rules of comparison are implementation-defined.

strcmp

R20UT3248EJ0110 Rev.1.10 Page 690 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Compares two strings specified up to a specified length.

[Format]

#include <string.h>
long strncmp (const char *s1, const char *s2, size_t n);

[Parameters]

s1 Pointer to the reference string to be compared
s2 Pointer to the string to compare to the reference
n Maximum number of characters to compare

[Return values]

If string pointed by s1 > string pointed by s2: Positive value
If string pointed by s1 == string pointed by s2: 0
If string pointed by s1 < string pointed by s2: Negative value

[Remarks]

The strncmp function compares the contents of the strings pointed by s1 and s2, up to n characters. The rules of com-
parison are implementation-defined.

strncmp

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 691 of 1053
Nov 01, 2020

Searches a specified storage area for the first occurrence of a specified character.

[Format]

#include <string.h>
void *memchr (const void *s, long c, size_t n);

[Parameters]

s Pointer to the storage area to be searched
c Character to search for
n Number of characters to search

[Return values]

If the character is found: Pointer to the found character
If the character is not found: NULL

[Remarks]

The memchr function searches the storage area specified by s from the beginning up to n characters, looking for the
first occurrence of the character specified as c. If the c character is found, the function returns the pointer to the found
character.

memchr

R20UT3248EJ0110 Rev.1.10 Page 692 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Searches a specified string for the first occurrence of a specified character.

[Format]

char *strchr (const char *s, long c);

[Parameters]

s Pointer to the string to be searched
c Character to search for

[Return values]

If the character is found: Pointer to the found character
If the character is not found: NULL

[Remarks]

The strchr function searches the string specified by s looking for the first occurrence of the character specified as c. If
the c character is found, the function returns the pointer to the found character.

The null character at the end of the s string is included in the search object.

strchr

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 693 of 1053
Nov 01, 2020

Checks a specified string from the beginning and counts the number of consecutive characters at the beginning that are
not included in another string specified.

[Format]

#include <string.h>
size_t strcspn (const char *s1, const char *s2);

[Parameters]

s1 Pointer to the string to be checked
s2 Pointer to the string used to check s1

[Return values]

Number of characters at the beginning of the s1 string that are not included in the s2 string

[Remarks]

The strcspn function checks from the beginning of the string specified by s1, counts the number of consecutive charac-
ters that are not included in another string specified by s2, and returns that length.

The null character at the end of the s2 string is not taken as a part of the s2 string.

strcspn

R20UT3248EJ0110 Rev.1.10 Page 694 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Searches a specified string for the first occurrence of the character that is included in another string specified.

[Format]

#include <string.h>
char *strpbrk (const char *s1, const char *s2);

[Parameters]

s1 Pointer to the string to be searched
s2 Pointer to the string that indicates the characters to search s1 for

[Return values]

If the character is found: Pointer to the found character
If the character is not found: NULL

[Remarks]

The strpbrk function searches the string specified by s1 looking for the first occurrence of any character included in the
string specified by s2. If any searched character is found, the function returns the pointer to the first occurrence.

strpbrk

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 695 of 1053
Nov 01, 2020

Searches a specified string for the last occurrence of a specified character.

[Format]

#include <string.h>
char *strrchr (const char *s, long c);

[Parameters]

s Pointer to the string to be searched
c Character to search for

[Return values]

If the character is found: Pointer to the found character
If the character is not found: NULL

[Remarks]

The strrchr function searches the string specified by s looking for the last occurrence of the character specified by c. If
the c character is found, the function returns the pointer to the last occurrence of that character.

The null character at the end of the s string is included in the search objective.

strrchr

R20UT3248EJ0110 Rev.1.10 Page 696 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Checks a specified string from the beginning and counts the number of consecutive characters at the beginning that are
included in another string specified.

[Format]

#include <string.h>
size_t strspn (const char *s1, const char *s2);

[Parameters]

s1 Pointer to the string to be checked
s2 Pointer to the string used to check s1

[Return values]

Number of characters at the beginning of the s1 string that are included in the s2 string

[Remarks]

The strspn function checks from the beginning of the string specified by s1, counts the number of consecutive charac-
ters that are included in another string specified by s2, and returns that length.

strspn

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 697 of 1053
Nov 01, 2020

Searches a specified string for the first occurrence of another string specified.

[Format]

#include <string.h>
char *strstr (const char *s1, const char *s2);

[Parameters]

s1 Pointer to the string to be searched
s2 Pointer to the string to search for

[Return values]

If the string is found: Pointer to the found string
If the string is not found: NULL

[Remarks]

The strstr function searches the string specified by s1 looking for the first occurrence of another string specified by s2,
and returns the pointer to the first occurrence.

strstr

R20UT3248EJ0110 Rev.1.10 Page 698 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Divides a specified string into some tokens.

[Format]

#include <string.h>
char *strtok (char *s1, const char *s2);

[Return values]

If division into tokens is successful: Pointer to the first token divided
If division into tokens is unsuccessful: NULL

[Parameters]

s1 Pointer to the string to be divided into some tokens
s2 Pointer to the string representing string-dividing characters

[Remarks]

The strtok function should be repeatedly called to divide a string.

(a) First call
The string pointed by s1 is divided at a character included in the string pointed by s2. If a token has been sepa-
rated, the function returns a pointer to the beginning of that token. Otherwise, the function returns NULL.

(b) Second and subsequent calls
Starting from the next character separated before as the token, the function repeats division at a character
included in the string pointed by s2. If a token has been separated, the function returns a pointer to the begin-
ning of that token. Otherwise, the function returns NULL.
At the second and subsequent calls, specify NULL as the first parameter. The string pointed by s2 can be
changed at each call. The null character is appended at the end of a separated token.
An example of use of the strtok function is shown below.

Example
 1 #include <string.h>
 2 static char s1[]="a@b, @c/@d";
 3 char *ret;
 4
 5 ret = strtok(s1, "@");
 6 ret = strtok(NULL, ",@");
 7 ret = strtok(NULL, "/@");
 8 ret = strtok(NULL, "@");

Explanation:
The above example program uses the strtok function to divide string "a@b, @c/@d" into tokens a, b, c, and d.
The second line specifies string "a@b, @c/@d" as an initial value for string s1.
The fifth line calls the strtok function to divide tokens using '@' as the delimiter. As a result, a pointer to charac-
ter 'a' is returned, and the null character is embedded at '@,' the first delimiter after character 'a.' Thus string 'a'
has been separated.
Specify NULL for the first parameter to consecutively separate tokens from the same string, and repeat calling
the strtok function.
Consequently, the function separates strings 'b,' 'c,' and 'd.'

strtok

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 699 of 1053
Nov 01, 2020

Sets a specified character a specified number of times at the beginning of a specified storage area.

[Format]

#include <string.h>
void *memset (void *s, long c, size_t n);

[Parameters]

s Pointer to storage area to set characters in
c Character to be set
n Number of characters to be set

[Return values]

Value of s

[Remarks]

The memset function sets the character specified by c a number of times specified by n in the storage area specified by
s.

memset

R20UT3248EJ0110 Rev.1.10 Page 700 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Returns an error message corresponding to a specified error number.

[Format]

#include <string.h>
char *strerror (long s);

[Parameters]

s Error number

[Return values]

Pointer to the error message (string) corresponding to the specified error number

[Remarks]

The strerror function receives an error number specified by s and returns an error message corresponding to the num-
ber. Contents of error messages are implementation-defined.

If the returned error message is modified, correct operation is not guaranteed.

strerror

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 701 of 1053
Nov 01, 2020

Calculates the length of a string.

[Format]

#include <string.h>
size_t strlen (const char *s);

[Parameters]

s Pointer to the string to check the length of

[Return values]

Number of characters in the string

[Remarks]

The null character at the end of the s string is excluded from the string length.

strlen

R20UT3248EJ0110 Rev.1.10 Page 702 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Copies the specified size of the contents of a source area to a destination storage area. If part of the source storage
area and the destination storage area overlap, data is copied to the destination storage area before the overlapped source
storage area is overwritten. Therefore, correct copy is enabled.

[Format]

#include <string.h>
void *memmove (void *s1, const void *s2, size_t n);

[Parameters]

s1 Pointer to the destination storage area
s2 Pointer to the source storage area
n Number of characters to be copied

[Return values]

Value of s1

memmove

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 703 of 1053
Nov 01, 2020

7.4.14 <complex.h>

Performs various complex number operations. For double-type complex number functions, the definition names are
used as function names without change. For float-type and long double-type function names, "f" and "l" are added to the
end of definition names, respectively.

R20UT3248EJ0110 Rev.1.10 Page 704 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Type Definition Name Description

Function cacosf / cacos / cacosl
<-lang=c99>

Calculates the arc cosine of a complex number.

casinf / casin / casinl
<-lang=c99>

Calculates the arc sine of a complex number.

catanf / catan / catanl
<-lang=c99>

Calculates the arc tangent of a complex number.

ccosf / ccos / ccosl
<-lang=c99>

Calculates the cosine of a complex number.

csinf / csin / csinl
<-lang=c99>

Calculates the sine of a complex number.

ctanf / ctan / ctanl
<-lang=c99>

Calculates the tangent of a complex number.

cacoshf / cacosh / cacoshl
<-lang=c99>

Calculates the arc hyperbolic cosine of a complex number.

casinhf / casinh / casinhl
<-lang=c99>

Calculates the arc hyperbolic sine of a complex number.

catanhf / catanh / catanhl
<-lang=c99>

Calculates the arc hyperbolic tangent of a complex number.

ccoshf / ccosh / ccoshl
<-lang=c99>

Calculates the hyperbolic cosine of a complex number.

csinhf / csinh / csinhl
<-lang=c99>

Calculates the hyperbolic sine of a complex number.

ctanhf / ctanh / ctanhl
<-lang=c99>

Calculates the hyperbolic tangent of a complex number.

cexpf / cexp / cexpl
<-lang=c99>

Calculates the natural logarithm base e raised to the complex power 2.

clogf / clog / clogl
<-lang=c99>

Calculates the natural logarithm of a complex number.

cabsf / cabs / cabsl
<-lang=c99>

Calculates the absolute value of a complex number.

cpowf / cpow / cpowl
<-lang=c99>

Calculates a power of a complex number.

csqrtf / csqrt / csqrtl
<-lang=c99>

Calculates the square root of a complex number.

cargf / carg / cargl
<-lang=c99>

Calculates the argument of a complex number.

cimagf / cimag / cimagl
<-lang=c99>

Calculates the imaginary part of a complex number.

conjf / conj / conjl
<-lang=c99>

Reverses the sign of the imaginary part and calculates the complex con-
jugate of a complex number.

cprojf / cproj / cprojl
<-lang=c99>

Calculates the projection of a complex number on Riemann sphere.

crealf / creal / creall
<-lang=c99>

Calculates the real part of a complex number.

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 705 of 1053
Nov 01, 2020

Calculates the arc cosine of a complex number.

[Format]

#include <complex.h>
float complex cacosf(float complex z);
double complex cacos(double complex z);
long double complex cacosl(long double complex z);

[Parameters]

z Complex number for which arc cosine is to be computed

[Return values]

Complex arc cosine of z

[Remarks]

The cacos function returns the arc cosine in the range [0,] on the real axis and in the infinite range on the imaginary
axis.

cacosf / cacos / cacosl

R20UT3248EJ0110 Rev.1.10 Page 706 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the arc sine of a complex number.

[Format]

#include <complex.h>
float complex casinf(float complex z);
double complex casin(double complex z);
long double complex casinl(long double complex z);

[Parameters]

z Complex number for which arc sine is to be computed

[Return values]

Complex arc sine of z

[Remarks]

The casin function returns the arc sine in the range [–/2, /2] on the real axis and in the infinite range on the imaginary
axis.

casinf / casin / casinl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 707 of 1053
Nov 01, 2020

Calculates the arc tangent of a complex number.

[Format]

#include <complex.h>
float complex catanf(float complex z);
double complex catan(double complex z);
long double complex catanl(long double complex z);

[Parameters]

z Complex number for which arc tangent is to be computed

[Return values]

Complex arc tangent of z

[Remarks]

The catan function returns the arc tangent in the range [–/2, /2] on the real axis and in the infinite range on the imag-
inary axis.

catanf / catan / catanl

R20UT3248EJ0110 Rev.1.10 Page 708 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the cosine of a complex number.

[Format]

#include <complex.h>
float complex ccosf(float complex z);
double complex ccos(double complex z);
long double complex ccosl(long double complex z);

[Parameters]

z Complex number for which cosine is to be computed

[Return values]

Complex cosine of z

ccosf / ccos / ccosl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 709 of 1053
Nov 01, 2020

Calculates the sine of a complex number.

[Format]

#include <complex.h>
float complex csinf(float complex z);
double complex csin(double complex z);
long double complex csinl(long double complex z);

[Parameters]

z Complex number for which sine is to be computed

[Return values]

Complex sine of z

csinf / csin / csinl

R20UT3248EJ0110 Rev.1.10 Page 710 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the tangent of a complex number.

[Format]

#include <complex.h>
float complex ctanf(float complex z);
double complex ctan(double complex z);
long double complex ctanl(long double complex z);

[Parameters]

z Complex number for which tangent is to be computed

[Return values]

Complex tangent of z

ctanf / ctan / ctanl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 711 of 1053
Nov 01, 2020

Calculates the arc hyperbolic cosine of a complex number.

[Format]

#include <complex.h>
float complex cacoshf(float complex z);
double complex cacosh(double complex z);
long double complex cacoshl(long double complex z);

[Parameters]

z Complex number for which arc hyperbolic cosine is to be computed

[Return values]

Complex arc hyperbolic cosine of z

[Remarks]

The cacoshf function returns the arc hyperbolic cosine in the range [0,].

cacoshf / cacosh / cacoshl

R20UT3248EJ0110 Rev.1.10 Page 712 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the arc hyperbolic sine of a complex number.

[Format]

#include <complex.h>
float complex casinhf(float complex z);
double complex casinh(double complex z);
long double complex casinhl(long double complex z);

[Parameters]

z Complex number for which arc hyperbolic sine is to be computed

[Return values]

Complex arc hyperbolic sine of z

casinhf / casinh / casinhl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 713 of 1053
Nov 01, 2020

Calculates the arc hyperbolic tangent of a complex number.

[Format]

#include <complex.h>
float complex catanhf(float complex z);
double complex catanh(double complex z);
long double complex catanhl(long double complex z);

[Parameters]

z Complex number for which arc hyperbolic tangent is to be computed

[Return values]

Complex arc hyperbolic tangent of z

catanhf / catanh / catanhl

R20UT3248EJ0110 Rev.1.10 Page 714 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the hyperbolic cosine of a complex number.

[Format]

#include <complex.h>
float complex ccoshf(float complex z);
double complex ccosh(double complex z);
long double complex ccoshl(long double complex z);

[Parameters]

z Complex number for which hyperbolic cosine is to be computed

[Return values]

Complex hyperbolic cosine of z

ccoshf / ccosh / ccoshl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 715 of 1053
Nov 01, 2020

Calculates the hyperbolic sine of a complex number.

[Format]

#include <complex.h>
float complex csinhf(float complex z);
double complex csinh(double complex z);
long double complex csinhl(long double complex z);

[Parameters]

z Complex number for which hyperbolic sine is to be computed

[Return values]

Complex hyperbolic sine of z

csinhf / csinh / csinhl

R20UT3248EJ0110 Rev.1.10 Page 716 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the hyperbolic tangent of a complex number.

[Format]

#include <complex.h>
float complex ctanhf(float complex z);
double complex ctanh(double complex z);
long double complex ctanhl(long double complex z);

[Parameters]

z Complex number for which hyperbolic tangent is to be computed

[Return values]

Complex hyperbolic tangent of z

ctanhf / ctanh / ctanhl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 717 of 1053
Nov 01, 2020

Calculates the exponential function value of a complex number.

[Format]

#include <complex.h>
float complex cexpf(float complex z);
double complex cexp(double complex z);
long double complex cexpl(long double complex z);

[Parameters]

z Complex number for which exponential function is to be computed

[Return values]

Exponential function value of z

cexpf / cexp / cexpl

R20UT3248EJ0110 Rev.1.10 Page 718 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the natural logarithm of a complex number.

[Format]

#include <complex.h>
float complex clogf(float complex z);
double complex clog(double complex z);
long double complex clogl(long double complex z);

[Parameters]

z Complex number for which natural logarithm is to be computed

[Return values]

Normal: Natural logarithm of z
Abnormal: Domain error: Returns not-a-number.

[Remarks]

A domain error occurs if z is negative.
A range error occurs if z is 0.0.
The clog function returns the natural logarithm in the infinite range on the real axis and in the range [–i, +i] on the

imaginary axis.

clogf / clog / clogl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 719 of 1053
Nov 01, 2020

Calculates the absolute value of a complex number.

[Format]

#include <complex.h>
float cabsf(float complex z);
double cabs(double complex z);
long double cabsl(long double complex z);

[Parameters]

z Complex number for which absolute value is to be computed

[Return values]

Absolute value of z

cabsf / cabs / cabsl

R20UT3248EJ0110 Rev.1.10 Page 720 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates a power of a complex number.

[Format]

#include <complex.h>
float complex cpowf(float complex x, float complex y);
double complex cpow(double complex x, double complex y);
long double complex cpowl(long double complex x, long double complex y);

[Parameters]

x Value to be raised to a power
y Power value

[Return values]

Normal: Value of x raised to the power y
Abnormal: Domain error: Returns not-a-number.

[Remarks]

A domain error occurs if x is 0.0 and y is 0.0 or smaller, or if x is negative and y is not an integer.
The branch cut for the first parameter of the cpow function group is along the negative real axis.

cpowf / cpow / cpowl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 721 of 1053
Nov 01, 2020

Calculates the square root of a complex number.

[Format]

#include <complex.h>
float complex csqrtf(float complex z);
double complex csqrt(double complex z);
long double complex csqrtl(long double complex z);

[Parameters]

z Complex number for which the square root is to be computed

[Return values]

Normal: Complex square root of z
Abnormal: Domain error: Returns not-a-number.

[Remarks]

A domain error occurs if z is negative.
The branch cut for the csqrt function group is along the negative real axis.
The range of the return value from the csqrt function group is the right halfplane including the imaginary axis.

csqrtf / csqrt / csqrtl

R20UT3248EJ0110 Rev.1.10 Page 722 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the argument.

[Format]

#include <complex.h>
float cargf(float complex z);
double carg(double complex z);
long double cargl(long double complex z);

[Parameters]

z Complex number for which the argument is to be computed

[Return values]

Argument value of z

[Remarks]

The branch cut for the carg function group is along the negative real axis.
The carg function group returns the argument in the range [–, +].

cargf / carg / cargl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 723 of 1053
Nov 01, 2020

Calculates the imaginary part.

[Format]

#include <complex.h>
float cimagf(float complex z);
double cimag(double complex z);
long double cimagl(long double complex z);

[Parameters]

z Complex number for which the imaginary part is to be computed

[Return values]

Imaginary part value of z as a real number

cimagf / cimag / cimagl

R20UT3248EJ0110 Rev.1.10 Page 724 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Reverses the sign of the imaginary part of a complex number and calculates the complex conjugate.

[Format]

#include <complex.h>
float complex conjf(float complex z);
double complex conj(double complex z);
long double complex conjl(long double complex z);

[Parameters]

z Complex number for which the complex conjugate is to be computed

[Return values]

Complex conjugate of z

conjf / conj / conjl

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 725 of 1053
Nov 01, 2020

Calculates the projection of a complex number on the Riemann sphere.

[Format]

#include <complex.h>
float complex cprojf(float complex z);
double complex cproj(double complex z);
long double complex cprojl(long double complex z);

[Parameters]

z Complex number for which the projection on the Riemann sphere is to be computed

[Return values]

Projection of z on the Riemann sphere

cprojf / cproj / cprojl

R20UT3248EJ0110 Rev.1.10 Page 726 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the real part of a complex number.

[Format]

#include <complex.h>
float crealf(float complex z);
double creal(double complex z);
long double creall(long double complex z);

[Parameters]

z Complex number for which the real part value is to be computed

[Return values]

Real part value of z

crealf / creal / creall

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 727 of 1053
Nov 01, 2020

7.4.15 <fenv.h>

Provides access to the floating-point environment.
The following macros and functions are all implementation-defined.

Type Definition Name Description

Type
(macro)

fenv_t Indicates the type of the entire floating-point environment.

fexcept_t Indicates the type of the floating-point status flags.

Constant
(macro)

FE_DIVBYZERO
FE_INEXACT
FE_INVALID
FE_OVERFLOW
FE_UNDERFLOW
FE_ALL_EXCEPT

Indicates the values (macros) defined when the floating-point exception is
supported.

FE_DOWNWARD
FE_TONEAREST
FE_TOWARDZERO
FE_UPWARD

Indicates the values (macros) of the floating-point rounding direction.

FE_DFL_ENV Indicates the default floating-point environment of the program.

Function feclearexcept Attempts to clear a floating-point exception.

fegetexceptflag Attempts to store the state of a floating-point flag in an object.

feraiseexcept Attempts to generate a floating-point exception.

fesetexceptflag Attempts to set a floating-point flag.

fetestexcept Checks if floating-point flags are set.

fegetround Gets the rounding direction.

fesetround Sets the rounding direction.

fegetenv Attempts to get the floating-point environment.

feholdexcept Saves the floating-point environment, clears the floating-point status flags,
and sets the non-stop mode for the floating-point exceptions.

fesetenv Attempts to set the floating-point environment.

feupdateenv Attempts to save the floating-point exceptions in the automatic storage, set
the floating-point environment, and generate the saved floating-point excep-
tions.

R20UT3248EJ0110 Rev.1.10 Page 728 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Attempts to clear a floating-point exception.

[Format]

#include <fenv.h>
long feclearexcept(long e);

[Parameters]

e Floating-point exception

[Return values]

Normal: 0
Abnormal: Nonzero

[Remarks]

Do not use this function when compiler option nofpu is selected. If used, the function returns a nonzero value, which
indicates an abnormality.

feclearexcept

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 729 of 1053
Nov 01, 2020

Gets the state of a floating-point flag.

[Format]

#include <fenv.h>
long fegetexceptflag(fexcept_t *f, long e);

[Parameters]

f Pointer to area to store the exception flag state
e Value indicating the exception flag whose state is to be acquired

[Return values]

Normal: 0
Abnormal: Nonzero

[Remarks]

Do not use this function when compiler option nofpu is selected. If used, the function returns a nonzero value, which
indicates an abnormality.

fegetexceptflag

R20UT3248EJ0110 Rev.1.10 Page 730 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Attempts to generate a floating-point exception.

[Format]

#include <fenv.h>
long feraiseexcept(long e);

[Parameters]

e Value indicating the exception to be generated

[Return values]

Normal: 0
Abnormal: Nonzero

[Remarks]

When generating an "overflow" or "underflow" floating-point exception, whether the feraiseexcept function also gener-
ates an "inexact" floating-point exception is implementation-defined.

Do not use this function when compiler option nofpu is selected. If used, the function returns a nonzero value, which
indicates an abnormality.

feraiseexcept

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 731 of 1053
Nov 01, 2020

Sets the state of an exception flag.

[Format]

#include <fenv.h>
long fesetexceptflag(const fexcept_t *f, long e);

[Parameters]

f Pointer to the source location from which the exception flag state is to be acquired
e Value indicating the exception flag whose state is to be set

[Return values]

Normal: 0
Abnormal: Nonzero

[Remarks]

Before calling the fesetexceptflag function, specify a flag state in the source location through the fegetexceptflag func-
tion.

The fesetexceptflag function only sets the flag state without generating the corresponding floating-point exception.
Do not use this function when compiler option nofpu is selected. If used, the function returns a nonzero value, which

indicates an abnormality.

fesetexceptflag

R20UT3248EJ0110 Rev.1.10 Page 732 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Checks the exception flag states.

[Format]

#include <fenv.h>
long fetestexcept(long e);

[Parameters]

e Value indicating flags whose states are to be checked (multiple flags can be specified)

[Return values]

Bitwise OR of e and floating-point exception macros

[Remarks]

A single fetestexcept function call can check multiple floating-point exceptions.
Do not use this function when compiler option nofpu is selected. If used, the function returns a nonzero value, which

indicates an abnormality.

fetestexcept

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 733 of 1053
Nov 01, 2020

Gets the current rounding direction.

[Format]

#include <fenv.h>
long fegetround(void);

[Return values]

Normal: 0
Abnormal: Negative value when there is no rounding direction macro value or the rounding direction cannot be deter-

mined

[Remarks]

Do not use this function when compiler option nofpu is selected. If used, the function returns a nonzero value, which
indicates an abnormality.

fegetround

R20UT3248EJ0110 Rev.1.10 Page 734 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Sets the current rounding direction.

[Format]

#include <fenv.h>
#include <assert.h>
long fesetround(long rnd);

[Return values]

0 only when the rounding direction has been set successfully

[Remarks]

The rounding direction is not changed if the rounding direction requests through the fesetround function differs from the
rounding macro value.

Do not use this function when compiler option nofpu is selected. If used, the function returns a nonzero value, which
indicates an abnormality.

fesetround

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 735 of 1053
Nov 01, 2020

Gets the floating-point environment.

[Format]

#include <fenv.h>
long fegetenv(fenv_t *f);

[Parameters]

f Pointer to area to store the floating-point environment

[Return values]

Normal: 0
Abnormal: Nonzero

[Remarks]

Do not use this function when compiler option nofpu is selected. If used, the function returns a nonzero value, which
indicates an abnormality.

fegetenv

R20UT3248EJ0110 Rev.1.10 Page 736 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Saves the floating-point environment.

[Format]

#include <fenv.h>
long feholdexcept(fenv_t *f);

[Parameters]

f Pointer to the floating-point environment

[Return values]

0 only when the environment has been saved successfully

[Remarks]

When saving the floating-point function environment, the feholdexcept function clears the floating-point status flags
and sets the non-stop mode for all floating-point exceptions. In non-stop mode, execution continues even after a float-
ing-point exception occurs.

Do not use this function when compiler option nofpu is selected. If used, the function returns a nonzero value, which
indicates an abnormality.

feholdexcept

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 737 of 1053
Nov 01, 2020

Sets the floating-point environment.

[Format]

#include <fenv.h>
long fesetenv(const fenv_t *f);

[Parameters]

f Pointer to the floating-point environment

[Return values]

Normal: 0
Abnormal: Nonzero

[Remarks]

For the argument of this function, specify the environment stored or saved by the fegetenv or feholdexcept function, or
the environment equal to the floating-point environment macro.

Do not use this function when compiler option nofpu is selected. If used, the function returns a nonzero value, which
indicates an abnormality.

fesetenv

R20UT3248EJ0110 Rev.1.10 Page 738 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Sets the floating-point environment with the previously generated exceptions retained.

[Format]

#include <fenv.h>
long feupdateenv(const fenv_t *f);

[Parameters]

f Pointer to the floating-point environment to be set

[Return values]

Normal: 0
Abnormal: Nonzero

[Remarks]

For the argument of this function, specify the object stored or saved by the fegetenv or feholdexcept function call, or
the floating-point environment equal to the floating-point environment macro.

Do not use this function when compiler option nofpu is selected. If used, the function returns a nonzero value, which
indicates an abnormality.

feupdateenv

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 739 of 1053
Nov 01, 2020

7.4.16 <inttypes.h>

Extends the integer types.
The following macros and functions are all implementation-defined.

Type Definition Name Description

Type
(macro)

Imaxdiv_t Indicates the type of the value returned by the imaxdiv function.

R20UT3248EJ0110 Rev.1.10 Page 740 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Variable
(macro)

PRIdN
PRIdLEASTN
PRIdFASTN
PRIdMAX
PRIdPTR
PRIiN
PRIiLEASTN
PRIiFASTN
PRIiMAX
PRIiPTR
PRIoN
PRIoLEASTN
PRIoFASTN
PRIoMAX
PRIoPTR
PRIuN
PRIuLEASTN
PRIuFASTN
PRIuMAX
PRIuPTR
PRIxN
PRIxLEASTN
PRIxFASTN
PRIxMAX
PRIxPTR
PRIXN
PRIXLEASTN
PRIXFASTN
PRIXMAX
PRIXPTR
SCNdN
SCNdLEASTN
SCNdFASTN
SCNdMAX
SCNdPTR
SCNiN
SCNiLEASTN
SCNiFASTN
SCNiMAX
SCNiPTR
SCNoN
SCNoLEASTN
SCNoFASTN
SCNoMAX
SCNoPTR
SCNuN
SCNuLEASTN
SCNuFASTN
SCNuMAX
SCNuPTR
SCNxN
SCNxLEASTN
SCNxFASTN
SCNxMAX
SCNxPTR

Type Definition Name Description

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 741 of 1053
Nov 01, 2020

Function imaxabs Calculates the absolute value.

imaxdiv Calculates the quotient and remainder.

strtoimax / strtoumax Equivalent to the strtol, strtoll, strtoul, and strtoull functions, except that
the initial part of the string is converted to intmax_t and uintmax_t repre-
sentation.

wcstoimax / wcstoumax Equivalent to the wcstol, wcstoll, wcstoul, and wcstoull functions except
that the initial part of the wide string is converted to intmax_t and
uintmax_t representation.

Type Definition Name Description

R20UT3248EJ0110 Rev.1.10 Page 742 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the absolute value.

[Format]

#include <inttypes.h>
intmax_t imaxabs(intmax_t a);

[Parameters]

a Value for which the absolute value is to be computed

[Return values]

Absolute value of a

imaxabs

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 743 of 1053
Nov 01, 2020

Performs "/" and "%" operations for the same operands simultaneously.

[Format]

#include <inttypes.h>
imaxdiv_t imaxdiv(intmax_t n, intmax_t d);

[Parameters]

n The left hand side operand of "/" or "%" operator
d The right hand side operand of "/" or "%" operator

[Return values]

An object typed as struct imaxdiv_t, which has members quot (the quotient) and rem (the remainder).

imaxdiv

R20UT3248EJ0110 Rev.1.10 Page 744 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Converts a number-representing string to an intmax_t type integer.

[Format]

#include <inttypes.h>
intmax_t strtoimax(const char *nptr, char **endptr, long base);
uintmax_t strtoumax(const char *nptr, char **endptr, long base);

[Parameters]

nptr Pointer to a number-representing string to be converted
endptr Pointer to the storage area containing a pointer to the first character that does not represent an integer
base Radix of conversion (0 or 2 to 36)

[Return Values]

Normal: If the string pointed by nptr begins with a character that does not represent an integer: 0
If the string pointed by nptr begins with a character that represents an integer: Converted data as an intmax_t
type integer

Abnormal: If the converted data overflows: INTMAX_MAX, INTMAX_MIN, or UINTMAX_MAX

[Remarks]

If the converted result overflows, ERANGE is set in errno.
The strtoimax and strtoumax functions are equivalent to the strtol, strtoll, strtoul, and strtoull functions except that

the initial part of the string is respectively converted to intmax_t and uintmax_t integers.

strtoimax / strtoumax

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 745 of 1053
Nov 01, 2020

Converts a number-representing string to an intmax_t or uintmax_t type integer.

[Format]

#include <stddef.h>
#include <inttypes.h>
intmax_t wcstoimax(const wchar_t * restrict nptr, wchar_t ** restrict endptr, long base);
uintmax_t wcstoumax(const wchar_t * restrict nptr, wchar_t ** restrict endptr, long base);

[Parameters]

nptr Pointer to a number-representing string to be converted
endptr Pointer to the storage area containing a pointer to the first character that does not represent an integer
base Radix of conversion (0 or 2 to 36)

[Return Values]

Normal: If the string pointed by nptr begins with a character that does not represent an integer: 0
If the string pointed by nptr begins with a character that represents an integer: Converted data as an intmax_t
type integer

Abnormal: If the converted data overflows: INTMAX_MAX, INTMAX_MIN, or UINTMAX_MAX

[Remarks]

If the converted result overflows, ERANGE is set in errno.
The wcstoimax and wcstoumax functions are equivalent to the wcstol, wcstoll, wcstoul, and wcstoull functions,

except that the initial part of the string is respectively converted to intmax_t and uintmax_t integers.

wcstoimax / wcstoumax

R20UT3248EJ0110 Rev.1.10 Page 746 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

7.4.17 <iso646.h>

This header file defines macros only.

Type Definition Name Description

Macro and &&

and_eq &=

bitand &

bitor |

compl ~

not !

not_eq !=

or ||

or_eq |=

xor ^

xor_eq ^=

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 747 of 1053
Nov 01, 2020

7.4.18 <stdbool.h>

This header file defines macros only.

Type Definition Name Description

Macro
(variable)

bool Expanded to _Bool.

Macro
(constant)

true Expanded to 1.

false Expanded to 0.

__bool_true_false_are_defined Expanded to 1.

R20UT3248EJ0110 Rev.1.10 Page 748 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

7.4.19 <stdint.h>

This header file defines macros only.

Type Definition Name Description

Macro int_least8_t
uint_least8_t
int_least16_t
uint_least16_t
int_least32_t
uint_least32_t
int_least64_t
uint_least64_t

Indicates the types whose size is large enough to store signed and
unsigned integer types of 8, 16, 32, and 64 bits.

int_fast8_t
uint_fast8_t
int_fast16_t
uint_fast16_t
int_fast32_t
uint_fast32_t
int_fast64_t
uint_fast64_t

Indicates the types which can operate signed and unsigned integer types
of 8, 16, 32, and 64 bits at the fastest speed.

intptr_t
uintptr_t

These indicate signed and unsigned integer types that can be converted to
or from pointers to void.

intmax_t
uintmax_t

These indicate signed and unsigned integer types that can represent all
signed and unsigned integer types.

intN_t
uintN_t

These indicate N-bit signed and unsigned inter types.

INTN_MIN
INTN_MAX
UINTN_MAX

Indicates the minimum value of exact-width signed integer type.
Indicates the maximum value of exact-width signed integer type.
Indicates the maximum value of exact-width unsigned integer type.

INT_LEASTN_MIN
INT_LEASTN_MAX
UINT_LEASTN_MAX

Indicates the minimum value of minimum-width signed integer type.
Indicates the maximum value of minimum-width signed integer type.
Indicates the maximum value of minimum-width unsigned integer type.

INT_FASTN_MIN
INT_FASTN_MAX
UINT_FASTN_MAX

Indicates the minimum value of fastest minimum-width signed integer type.
Indicates the maximum value of fastest minimum-width signed integer
type.
Indicates the maximum value of fastest minimum-width unsigned integer
type.

INTPTR_MIN
INTPTR_MAX
UINTPTR_MAX

Indicates the minimum value of pointer-holding signed integer type.
Indicates the maximum value of pointer-holding signed integer type.
Indicates the maximum value of pointer-holding unsigned integer type.

INTMAX_MIN
INTMAX_MAX
UINTMAX_MAX

Indicates the minimum value of greatest-width signed integer type.
Indicates the maximum value of greatest-width signed integer type.
Indicates the maximum value of greatest-width unsigned integer type.

PTRDIFF_MIN
PTRDIFF_MAX

–65535
+65535

SIG_ATOMIC_MIN
SIG_ATOMIC_MAX

–127
+127

SIZE_MAX 65535

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 749 of 1053
Nov 01, 2020

Macro WCHAR_MIN
WCHAR_MAX

0
65535U

WINT_MIN
WINT_MAX

0
4294967295U

Function
(macro)

INTN_C
UINTN_C

Expanded to an integer constant expression corresponding to
Int_leastN_t.
Expanded to an integer constant expression corresponding to
Uint_leastN_t.

INT_MAX_C
UINT_MAX_C

Expanded to an integer constant expression with type intmax_t.
Expanded to an integer constant expression with type uintmax_t.

Type Definition Name Description

R20UT3248EJ0110 Rev.1.10 Page 750 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

7.4.20 <tgmath.h>

This header file defines macros only.

Type-Generic Macro <math.h> Functions <complex.h> Functions

acos acos cacos

asin asin casin

atan atan catan

acosh acosh cacosh

asinh asinh casinh

atanh atanh catanh

cos cos ccos

sin sin csin

tan tan ctan

cosh cosh ccosh

sinh sinh csinh

tanh tanh ctanh

exp exp cexp

log log clog

pow pow cpow

sqrt sqrt csqrt

fabs fabs cfabs

atan2 atan2 -

cbrt cbrt -

ceil ceil -

copysign copysign -

erf erf -

erfc erfc -

exp2 exp2 -

expm1 expm1 -

fdim fdim -

floor floor -

fma fma -

fmax fmax -

fmin fmin -

fmod fmod -

frexp frexp -

hypot hypot -

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 751 of 1053
Nov 01, 2020

ilogb ilogb -

ldexp ldexp -

lgamma lgamma -

llrint llrint -

llround llround -

log10 log10 -

log1p log1p -

log2 log2 -

logb logb -

lrint lrint -

lround lround -

nearbyint nearbyint -

nextafter nextafter -

nexttoward nexttoward -

remainder remainder -

remquo remquo -

rint rint -

round round -

scalbn scalbn -

scalbln scalbln -

tgamma tgamma -

trunc trunc -

carg - carg

cimag - cimag

conj - conj

cproj - cproj

creal - creal

Type-Generic Macro <math.h> Functions <complex.h> Functions

R20UT3248EJ0110 Rev.1.10 Page 752 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

7.4.21 <wchar.h>

The following shows macros.

Type Definition Name Description

Macro mbstate_t Indicates the type for holding the necessary state of conversion between
sequences of multibyte characters and wide characters.

wint_t Indicates the type for holding extended characters.

Constant
(macro)

WEOF Indicates the end-of-file.

Function fwprintf Converts the output format and outputs data to a stream.

vfwprintf Equivalent to fwprintf with the variable argument list replaced by va_list.

swprintf Converts the output format and writes data to an array of wide characters.

vswprintf Equivalent to swprintf with the variable argument list replaced by va_list.

wprintf Equivalent to fwprintf with stdout added as an argument before the spec-
ified arguments.

vwprintf Equivalent to wprintf with the variable argument list replaced by va_list.

fwscanf Inputs and converts data from the stream under control of the wide string
and assigns it to an object.

vfwscanf <-lang=c99> Equivalent to fwscanf with the variable argument list replaced by va_list.

swscanf Converts data under control of the wide string and assigns it to an object.

vswscanf <-lang=c99> Equivalent to swscanf with the variable argument list replaced by va_list.

wscanf Equivalent to fwscanf with stdin added as an argument before the speci-
fied arguments.

vwscanf <-lang=c99> Equivalent to wscanf with the variable argument list replaced by va_list.

fgetwc Inputs a wide character as the wchar_t type and converts it to the wint_t
type.

fgetws Stores a sequence of wide characters in an array.

fputwc Writes a wide character.

fputws Writes a wide string.

fwide Specifies the input/output unit.

getwc Equivalent to fgetwc.

getwchar Equivalent to getwc with stdin specified as an argument.

putwc Equivalent to fputwc.

putwchar Equivalent to putwc with stdout specified as the second argument.

ungetwc Returns a wide character to a stream.

wcstod / wcstof / wcstold These convert the initial part of a wide string to double, float, or long
double representation.

wcstol / wcstoll / wcstoul
/ wcstoull
(wcstoll <-lang=c99>)
(wcstoull <-lang=c99>)

These convert the initial part of a wide string to long int, long long int,
unsigned long int, or unsigned long long int representation.

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 753 of 1053
Nov 01, 2020

Function wcscpy Copies a wide string.

wcsncpy Copies n or fewer wide characters.

wmemcpy Copies n wide characters.

wmemmove Copies n wide characters.

wcscat Copies a wide string and appends it to the end of another wide string.

wcsncat Copies a wide string with n or fewer wide characters and appends it to the
end of another wide character string.

wcscmp Compares two wide strings.

wcsncmp Compares two arrays with n or fewer wide characters.

wmemcmp Compares n wide characters.

wcschr Searches for a specified wide string in another wide string.

wcscspn Checks if a wide string contains another specified wide string.

wcspbrk Searches for the first occurrence of a specified wide string in another wide
string.

wcsrchr Searches for the last occurrence of a specified wide character in a wide
string.

wcsspn Calculates the length of the maximum initial segment of a wide string,
which consists of specified wide characters.

wcsstr Searches for the first occurrence of a specified sequence of wide charac-
ters in a wide string.

wcstok Divides a wide string into a sequence of tokens delimited by a specified
wide character.

wmemchr Searches for the first occurrence of a specified wide character within the
first n wide characters in an object.

wcslen Calculates the length of a wide string.

wmemset Copies n wide characters.

mbsinit Checks if a specified object indicates the initial conversion state.

mbrlen Calculates the number of bytes in a multibyte character.

Type Definition Name Description

R20UT3248EJ0110 Rev.1.10 Page 754 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Outputs data to a stream input/output file according to the format.

[Format]

#include <stdio.h>
#include <wchar.h>
long fwprintf(FILE *restrict fp, const wchar_t *restrict control [, arg]...);

[Parameters]

fp File pointer
control Pointer to wide string indicating format
arg,... List of data to be output according to format

[Return values]

Normal: Number of wide strings converted and output
Abnormal: Negative value

[Remarks]

The fwprintf function is the wide-character version of the fprintf function.

fwprintf

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 755 of 1053
Nov 01, 2020

Outputs a variable parameter list to the specified stream input/output file according to a format.

[Format]

#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>
long vfwprintf(FILE *restrict fp, const char *restrict control, va_list arg);

[Parameters]

fp File pointer
control Pointer to wide string indicating format
arg Parameter list

[Return values]

Normal: Number of characters converted and output
Abnormal: Negative value

[Remarks]

The vfwprintf function is the wide-character version of the vfprintf function.

vfwprintf

R20UT3248EJ0110 Rev.1.10 Page 756 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Converts data according to a format and outputs it to the specified area.

[Format]

#include <stdio.h>
#include <wchar.h>
long swprintf(wchar_t *restrict s, size_t n, const wchar_t *restrict control [, arg]...);

[Parameters]

s Pointer to storage area to which data is to be output
n Number of wide characters to be output
control Pointer to wide string indicating format
arg,... Data to be output according to format

[Return values]

Normal: Number of characters converted
Abnormal: When a representation format error occurs or writing n or morewide characters is requested: Negative value

[Remarks]

The swprintf function is the wide-character version of the sprintf function.

swprintf

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 757 of 1053
Nov 01, 2020

Outputs a variable parameter list to the specified storage area according to a format.

[Format]

#include <stdarg.h>
#include <wchar.h>
long vswprintf(wchar_t *restrict s, size_t n, const wchar_t *restrict control, va_list arg);

[Parameters]

s Pointer to storage area to which data is to be output
n Number of wide characters to be output
control Pointer to wide string indicating format
arg Parameter list

[Return values]

Normal: Number of characters converted
Abnormal: Negative value

[Remarks]

The vswprintf function is the wide-character version of the vsprintf function.

vswprintf

R20UT3248EJ0110 Rev.1.10 Page 758 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Converts data according to a format and outputs it to the standard output file (stdout).

[Format]

#include <stdio.h>
#include <wchar.h>
long wprintf(const wchar_t *restrict control [, arg]...);

[Parameters]

control Pointer to string indicating format
arg,... Data to be output according to format

[Return values]

Normal: Number of wide characters converted and output
Abnormal: Negative value

[Remarks]

The wprintf function is the wide-character version of printf function.

wprintf

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 759 of 1053
Nov 01, 2020

Outputs a variable parameter list to the standard output file (stdout) according to a format.

[Format]

#include <stdarg.h>
#include <wchar.h>
long vwprintf(const wchar_t *restrict control, va_list arg);

[Parameters]

control Pointer to wide string indicating format
arg Parameter list

[Return values]

Normal: Number of characters converted and output
Abnormal: Negative value

[Remarks]

The vwprintf function is the wide-character version of the vprintf function.

vwprintf

R20UT3248EJ0110 Rev.1.10 Page 760 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Inputs data from a stream input/output file and converts it according to a format.

[Format]

#include <stdio.h>
#include <wchar.h>
long fwscanf(FILE *restrict fp, const wchar_t *restrict control [, ptr]...);

[Parameters]

fp File pointer
control Pointer to wide string indicating format
ptr Pointer to storage area that stores input data

[Return values]

Normal: Number of data items successfully input and converted
Abnormal: Input data ends before input data conversion is performed: EOF

[Remarks]

The fwscanf function is the wide-character version of the fscanf function.

fwscanf

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 761 of 1053
Nov 01, 2020

Inputs data from a stream input/output file and converts it according to a format.

[Format]

#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>
long vfwscanf(FILE *restrict fp, const wchar_t *restrict control, va_list arg);

[Parameters]

fp File pointer
control Pointer to wide string indicating format
arg Parameter list

[Return values]

Normal: Number of data items successfully input and converted
Abnormal: Input data ends before input data conversion is performed: EOF

[Remarks]

The vfwscanf is the wide-character version of the vfscanf function.

vfwscanf

R20UT3248EJ0110 Rev.1.10 Page 762 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Inputs data from the specified storage area and converts it according to a format.

[Format]

#include <stdio.h>
#include <wchar.h>
long swscanf(const wchar_t *restrict s, const wchar_t *restrict control [, ptr]...);

[Parameters]

s Storage area containing data to be input
control Pointer to wide string indicating format
ptr,... Pointer to storage area that stores input and converted data

[Return values]

Normal: Number of data items successfully input and converted
Abnormal: EOF

[Remarks]

The swscanf is the wide-character version of the sscanf function.

swscanf

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 763 of 1053
Nov 01, 2020

Inputs data from the specified storage area and converts it according to a format.

[Format]

#include <stdarg.h>
#include <wchar.h>
long vswscanf(const wchar_t *restrict s, const wchar_t *restrict control, va_list arg);

[Parameters]

s Storage area containing data to be input
control Pointer to wide string indicating format
arg Parameter list

[Return values]

Normal: Number of data items successfully input and converted
Abnormal: EOF

vswscanf

R20UT3248EJ0110 Rev.1.10 Page 764 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Inputs data from the standard input file (stdin) and converts it according to a format.

[Format]

#include <wchar.h>
long wscanf(const wchar_t *control [, ptr]...);

[Parameters]

control Pointer to wide string indicating format
ptr,... Pointer to storage area that stores input and converted data

[Return values]

Normal: Number of data items successfully input and converted
Abnormal: EOF

[Remarks]

The wscanf function is the wide-character version of the scanf function.

wscanf

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 765 of 1053
Nov 01, 2020

Inputs data from the specified storage area and converts it according to a format.

[Format]

#include <stdarg.h>
#include <wchar.h>
long vwscanf(const wchar_t *restrict control, va_list arg);

[Parameters]

control Pointer to wide string indicating format
arg Parameter list

[Return values]

Normal: Number of data items successfully input and converted
Abnormal: Input data ends before input data conversion is performed: EOF

[Remarks]

The vwscanf function is provided to support wide-character format with the vscanf function.

vwscanf

R20UT3248EJ0110 Rev.1.10 Page 766 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Inputs one wide character from a stream input/output file.

[Format]

#include <stdio.h>
#include <wchar.h>
wint_t fgetwc(FILE *fp);

[Parameters]

fp File pointer

[Return values]

Normal: End-of-file: EOF
Otherwise: Input wide character
Abnormal: EOF

[Remarks]

When a read error occurs, the error indicator for that file is set.
The fgetwc function is provided to support wide-character input to the fgetc function.

fgetwc

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 767 of 1053
Nov 01, 2020

Inputs a wide string from a stream input/output file.

[Format]

#include <stdio.h>
#include <wchar.h>
wchar_t *fgetws(wchar_t *restrict s, long n, FILE *fp);

[Parameters]

s Pointer to storage area to which wide string is input
n Number of bytes of storage area to which wide string is input
fp File pointer

[Return values]

Normal: End-of-file: NULL
Otherwise: s
Abnormal: NULL

[Remarks]

The fgetws function is provided to support wide-character input to the fgets function.

fgetws

R20UT3248EJ0110 Rev.1.10 Page 768 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Outputs one wide character to a stream input/output file.

[Format]

#include <stdio.h>
#include <wchar.h>
wint_t fputwc(wchar_t c, FILE *fp);

[Parameters]

c Character to be output
fp File pointer

[Return values]

Normal: Output wide character
Abnormal: EOF

[Remarks]

When a write error occurs, the error indicator for that file is set.
The fputwc function is the wide-character version of the fputc function.

fputwc

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 769 of 1053
Nov 01, 2020

Outputs a wide string to a stream input/output file.

[Format]

#include <stdio.h>
#include <wchar.h>
long fputws(const wchar_t *restrict s, FILE *restrict fp);

[Parameters]

s Pointer to wide string to be output
fp File pointer

[Return values]

Normal: 0
Abnormal: EOF

[Remarks]

The fputws function is the wide-character version of the fputs function.

fputws

R20UT3248EJ0110 Rev.1.10 Page 770 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Specifies the input unit of a file.

[Format]

#include <stdio.h>
#include <wchar.h>
long fwide(FILE *fp, long mode);

[Parameters]

fp File pointer
mode Value indicating the input unit

[Return values]

A wide character is specified as the unit: Value greater than 0
A byte is specified as the unit: Value smaller than 0
No input/output unit is specified: 0

[Remarks]

The fwide function does not change the stream input/output unit that has already been determined.

fwide

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 771 of 1053
Nov 01, 2020

Inputs one wide character from a stream input/output file.

[Format]

#include <stdio.h>
#include <wchar.h>
long getwc(FILE *fp);

[Parameters]

fp File pointer

[Return values]

Normal: End-of-file: WEOF
Otherwise: Input wide character
Abnormal: EOF

[Remarks]

When a read error occurs, the error indicator for that file is set.
The getwc function is equivalent to fgetwc, but getwc may evaluate fp two or more times because it is implemented as

a macro. Accordingly, specify an expression without side effects for fp.

getwc

R20UT3248EJ0110 Rev.1.10 Page 772 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Inputs one wide character from the standard input file (stdin).

[Format]

#include <wchar.h>
long getwchar(void);

[Return values]

Normal: End-of-file: WEOF
Otherwise: Input wide character
Abnormal: EOF

[Remarks]

When a read error occurs, the error indicator for that file is set.
The getwchar function is the wide-character version of the getchar function.

getwchar

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 773 of 1053
Nov 01, 2020

Outputs one wide character to a stream input/output file.

[Format]

#include <stdio.h>
#include <wchar.h>
wint_t putwc(wchar_t c, FILE *fp);

[Parameters]

c Wide character to be output
fp File pointer

[Return values]

Normal: Output wide character
Abnormal: WEOF

[Remarks]

When a write error occurs, the error indicator for that file is set.
The putwc function is equivalent to fputwc, but putwc may evaluate fp two or more times because it is implemented as

a macro. Accordingly, specify an expression without side effects for fp.

putwc

R20UT3248EJ0110 Rev.1.10 Page 774 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Outputs one wide character to the standard output file (stdout).

[Format]

#include <wchar.h>
wint_t putwchar(wchar_t c);

[Parameters]

c Wide character to be output

[Return values]

Normal: Output wide character
Abnormal: WEOF

[Remarks]

When a write error occurs, the error indicator for that file is set.
The putwchar function is the wide-character version of the putchar function.

putwchar

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 775 of 1053
Nov 01, 2020

Returns one wide character to a stream input/output file.

[Format]

#include <stdio.h>
#include <wchar.h>
wint_t ungetwc(wint_t c, FILE *fp);

[Parameters]

c Wide character to be returned
fp File pointer

[Return values]

Normal: Returned wide character
Abnormal: WEOF

[Remarks]

The ungetwc function is the wide-character version of the ungetc function.

ungetwc

R20UT3248EJ0110 Rev.1.10 Page 776 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Converts the initial part of a wide string to a specified-type floating-point number.

[Format]

#include <wchar.h>
double wcstod(const wchar_t *restrict nptr, wchar_t **restrict endptr);
float wcstof(const wchar_t *restrict nptr, wchar_t **restrict endptr);
long double wcstold(const wchar_t *restrict nptr, wchar_t **restrict endptr);

[Parameters]

nptr Pointer to a number-representing string to be converted
endptr Pointer to the storage area containing a pointer to the first character that does not represent a floating-point

number

[Return Values]

Normal: f the string pointed by nptr begins with a character that does not represent a floating-point number: 0
If the string pointed by nptr begins with a character thatrepresents a floating-point number: Converted data as a
specified-type floating-point number

Abnormal: If the converted data overflows: HUGE_VAL, HUGE_VALF, or HUGE_VALL with the same sign as that of
the string before conversion

If the converted data underflows: 0

[Remarks]

If the converted result overflows or underflows, errno is set.
The wcstod function group is the wide-character version of the strtod function group.

wcstod / wcstof / wcstold

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 777 of 1053
Nov 01, 2020

Converts the initial part of a wide string to a specified-type integer.

[Format]

#include <wchar.h>
long int wcstol(const wchar_t * restrict nptr, wchar_t ** restrict endptr, long base);
long long int wcstoll(const wchar_t * restrict nptr, wchar_t ** restrict endptr, long base);
unsigned long int wcstoul(const wchar_t * restrict nptr, wchar_t ** restrict endptr, long base);
unsigned long long int wcstoull(const wchar_t * restrict nptr, wchar_t ** restrict endptr, long base;

[Parameters]

nptr Pointer to a number-representing string to be converted
endptr Pointer to the storage area containing a pointer to the first character that does not represent an integer
base Radix of conversion (0 or 2 to 36)

[Return values]

Normal: f the string pointed by nptr begins with a character that does not represent an integer: 0
If the string pointed by nptr begins with a character that represents an integer: Converted data as a specified-type
integer

Abnormal: If the converted data overflows: LONG_MIN, LONG_MAX, LLONG_MIN, LLONG_MAX, ULONG_MAX, or
ULLONG_MAX depending on the sign of the string before conversion

[Remarks]

If the converted result overflows, errno is set.
The wcstol function group is the wide-character version of the strtol function group.

wcstol / wcstoll / wcstoul / wcstoull

R20UT3248EJ0110 Rev.1.10 Page 778 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Copies the contents of a source wide string including the null character to a destination storage area.

[Format]

#include <wchar.h>
wchar_t *wcscpy(wchar_t * restrict s1, const wchar_t * restrict s2);

[Parameters]

s1 Pointer to destination storage area
s2 Pointer to source string

[Return values]

s1 value

[Remarks]

The wcscpy function group is the wide-character version of the strcpy function group.

wcscpy

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 779 of 1053
Nov 01, 2020

Copies a source wide string of a specified length to a destination storage area.

[Format]

#include <wchar.h>
wchar_t *wcsncpy(wchar_t * restrict s1, const wchar_t * restrict s2, size_t n);

[Parameters]

s1 Pointer to destination storage area
s2 Pointer to source string
n Number of characters to be copied

[Return values]

s1 value

[Remarks]

The wcsncpy function is the wide-character version of the strncpy function.

wcsncpy

R20UT3248EJ0110 Rev.1.10 Page 780 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Copies the contents of a source storage area of a specified length to a destination storage area.

[Format]

#include <wchar.h>
wchar_t *wmemcpy(wchar_t *restrict s1, const wchar_t *restrict s2, size_t n);

[Parameters]

s1 Pointer to destination storage area
s2 Pointer to source storage area
n Number of characters to be copied

[Return values]

s1 value

[Remarks]

The wmemcpy function is the wide-character version of the memcpy function.

wmemcpy

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 781 of 1053
Nov 01, 2020

Copies the specified size of the contents of a source area to a destination storage area. If part of the source storage
area and the destination storage area overlap, data is copied to the destination storage area before the overlapped source
storage area is overwritten. Therefore, correct copy is enabled.

[Format]

#include <wchar.h>
wchar_t *wmemmove(wchar_t *s1, const wchar_t *s2, size_t n);

[Parameters]

s1 Pointer to destination storage area
s2 Pointer to source storage area
n Number of characters to be copied

[Return values]

s1 value

[Remarks]

The wmemmove function is the wide-character version of the memmove function.

wmemmove

R20UT3248EJ0110 Rev.1.10 Page 782 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Concatenates a string after another string.

[Format]

#include <wchar.h>
wchar_t *wcscat(wchar_t *s1, const wchar_t *s2);

[Parameters]

s1 Pointer to the string after which another string is appended
s2 Pointer to the string to be appended after the other string

[Return values]

s1 value

[Remarks]

The wcscat function is the wide-character version of the strcat function.

wcscat

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 783 of 1053
Nov 01, 2020

Concatenates a string of a specified length after another string.

[Format]

#include <wchar.h>
wchar_t *wcsncat(wchar_t * restrict s1, const wchar_t * restrict s2, size_t n);

[Parameters]

s1 Pointer to the string after which another string is appended
s2 Pointer to the string to be appended after the other string
n Number of characters to concatenate

[Return values]

s1 value

[Remarks]

The wcsncat function is the wide-character version of the strncat function.

wcsncat

R20UT3248EJ0110 Rev.1.10 Page 784 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Compares the contents of two strings specified.

[Format]

#include <wchar.h>
long wcscmp(const wchar_t *s1, const wchar_t *s2);

[Parameters]

s1 Pointer to the reference string to be compared
s2 Pointer to the string to compare to the reference

[Return values]

If string pointed by s1 > string pointed by s2: Positive value
If string pointed by s1 == string pointed by s2: 0
If string pointed by s1 < string pointed by s2: Negative value

[Remarks]

The wcscmp function is the wide-character version of the strcmp function.

wcscmp

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 785 of 1053
Nov 01, 2020

Compares two strings specified up to a specified length.

[Format]

#include <wchar.h>
long wcsncmp(const wchar_t *s1, const wchar_t *s2, size_t n);

[Parameters]

s1 Pointer to the reference string to be compared
s2 Pointer to the string to compare to the reference
n Maximum number of characters to compare

[Return values]

If string pointed by s1 > string pointed by s2: Positive value
If string pointed by s1 == string pointed by s2: 0
If string pointed by s1 < string pointed by s2: Negative value

[Remarks]

The wcsncmp function is the wide-character version of the strncmp function.

wcsncmp

R20UT3248EJ0110 Rev.1.10 Page 786 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Compares the contents of two storage areas specified.

[Format]

#include <wchar.h>
long wmemcmp(const wchar_t * s1, const wchar_t * s2, size_t n);

[Parameters]

s1 Pointer to the reference storage area to be compared
s2 Pointer to the storage area to compare to the reference
n Number of characters to compare

[Return values]

If storage area pointed by s1 > storage area pointed by s2: Positive value
If storage area pointed by s1 == storage area pointed by s2: 0
If storage area pointed by s1 < storage area pointed by s2: Negative value

[Remarks]

The wmemcmp function is the wide-character version of the memcmp function.

wmemcmp

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 787 of 1053
Nov 01, 2020

Searches a specified string for the first occurrence of a specified character.

[Format]

#include <wchar.h>
wchar_t *wcschr(const wchar_t *s, wchar_t c);

[Parameters]

s Pointer to the string to be searched
c Character to search for

[Return values]

If the character is found: Pointer to the found character
If the character is not found: NULL

[Remarks]

The wcschr function is the wide-character version of the strchr function.

wcschr

R20UT3248EJ0110 Rev.1.10 Page 788 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Checks a specified string from the beginning and counts the number of consecutive characters at the beginning that are
not included in another string specified.

[Format]

#include <wchar.h>
size_t wcscspn(const wchar_t *s1, const wchar_t *s2);

[Parameters]

s1 Pointer to the string to be checked
s2 Pointer to the string used to check s1

[Return values]

Number of characters at the beginning of the s1 string that are not included in the s2 string

[Remarks]

The wcscspn function is the wide-character version of the strcspn function.

wcscspn

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 789 of 1053
Nov 01, 2020

Searches a specified string for the first occurrence of the character that is included in another string specified.

[Format]

#include <wchar.h>
wchar_t *wcspbrk(const wchar_t *s1, const wchar_t *s2);

[Parameters]

s1 Pointer to the string to be searched
s2 Pointer to the string that indicates the characters to search s1 for

[Return values]

If the character is found: Pointer to the found character
If the character is not found: NULL

[Remarks]

The wcspbrk function is the wide-character version of the strpbrk function.

wcspbrk

R20UT3248EJ0110 Rev.1.10 Page 790 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Searches a specified string for the last occurrence of a specified character.

[Format]

#include <wchar.h>
wchar_t *wcsrchr(const wchar_t *s, wchar_t c);

[Parameters]

s Pointer to the string to be searched
c Character to search for

[Return values]

If the character is found: Pointer to the found character
If the character is not found: NULL

wcsrchr

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 791 of 1053
Nov 01, 2020

Checks a specified string from the beginning and counts the number of consecutive characters at the beginning that are
included in another string specified.

[Format]

#include <wchar.h>
size_t wcsspn(const wchar_t *s1, const wchar_t *s2);

[Parameters]

s1 Pointer to the string to be checked
s2 Pointer to the string used to check s1

[Return values]

Number of characters at the beginning of the s1 string that are included in the s2 string

[Remarks]

The wcsspn function is the wide-character version of the strspn function.

wcsspn

R20UT3248EJ0110 Rev.1.10 Page 792 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Searches a specified string for the first occurrence of another string specified.

[Format]

#include <wchar.h>
wchar_t *wcsstr(const wchar_t *s1, const wchar_t *s2);

[Parameters]

s1 Pointer to the string to be searched
s2 Pointer to the string to search for

[Return values]

If the string is found: Pointer to the found string
If the string is not found: NULL

wcsstr

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 793 of 1053
Nov 01, 2020

Divides a specified string into some tokens.

[Format]

#include <wchar.h>
wchar_t* wcstok(wchar_t * restrict s1, const wchar_t * restrict s2, wchar_t ** restrict ptr);

[Parameters]

s1 Pointer to the string to be divided into some tokens
s2 Pointer to the string representing string-dividing characters
ptr Pointer to the string where search is to be started at the next function call

[Return values]

If division into tokens is successful: Pointer to the first token divided
If division into tokens is unsuccessful: NULL

[Remarks]

The wcstok function is the wide-character version of the strtok function.
To search the same string for the second or later time, set s1 to NULL and ptr to the value returned by the previous

function call to the same string.

wcstok

R20UT3248EJ0110 Rev.1.10 Page 794 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Searches a specified storage area for the first occurrence of a specified character.

[Format]

#include <wchar.h>
wchar_t *wmemchr(const wchar_t *s, wchar_t c, size_t n);

[Parameters]

s Pointer to the storage area to be searched
c Character to search for
n Number of characters to search

[Return values]

If the character is found: Pointer to the found character
If the character is not found: NULL

[Remarks]

The wmemchr function is the wide-character version of the memchr function.

wmemchr

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 795 of 1053
Nov 01, 2020

Calculates the length of a wide string except the terminating null wide character.

[Format]

#include <wchar.h>
size_t wcslen(const wchar_t *s);

[Parameters]

s Pointer to the wide string to check the length of

[Return values]

Number of characters in the wide string

[Remarks]

The wcslen function is the wide-character version of the strlen function.

wcslen

R20UT3248EJ0110 Rev.1.10 Page 796 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Sets a specified character a specified number of times at the beginning of a specified storage area.

[Format]

#include <wchar.h>
wchar_t *wmemset(wchar_t *s, wchar_t c, size_t n);

[Parameters]

s Pointer to storage area to set characters in
c Character to be set
n Number of characters to be set

[Return values]

Value of s

[Remarks]

The wmemset function is the wide-character version of the memset function.

wmemset

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 797 of 1053
Nov 01, 2020

Checks if a specified mbstate_t object indicates the initial conversion state.

[Format]

#include <wchar.h>
long mbsinit(const mbstate_t *ps);

[Parameters]

ps Pointer to mbstate_t object

[Return values]

Initial conversion state: Nonzero
Otherwise: 0

mbsinit

R20UT3248EJ0110 Rev.1.10 Page 798 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the number of bytes in a specified multibyte character.

[Format]

#include <wchar.h>
size_t mbrlen(const char * restrict s, size_t n, mbstate_t *restrict ps);

[Parameters]

s Pointer to multibyte string
n Maximum number of bytes to be checked for multibyte character
ps Pointer to mbstate_t object

[Return values]

0: A null wide character is detected in n or fewer bytes.
From 1 to n inclusive: A multibyte character is detected in n or fewer bytes.
(size_t)(–2): No complete multibyte character is detected in n bytes.
(size_t)(–1): An illegal multibyte sequence is detected.

mbrlen

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 799 of 1053
Nov 01, 2020

7.5 EC++ Class Libraries

This section describes the specifications of the EC++ class libraries, which can be used as standard libraries in C++
programs. The class library types and corresponding standard include files are described. The specifications of each class
library are given in accordance with the library configuration.

- Library types
Table 7.15 shows the class library types and the corresponding standard include files.

Table 7.15 Class Library Types and Corresponding Standard Include Files

7.5.1 Stream Input/Output Class Library

The header files for stream input/output class libraries are as follows:

- <ios>
Defines data members and function members that specify input/output formats and manage the input/output states.
The <ios> header file also defines the Init and ios_base classes in addition to the ios class.

- <streambuf>
Defines functions for the stream buffer.

- <istream>
Defines input functions from the input stream.

- <ostream>
Defines output functions to the output stream.

- <iostream>
Defines input/output functions.

- <iomanip>
Defines manipulators with parameters.

The following shows the inheritance relation of the above classes. An arrow (->) indicates that a derived class refer-
ences a base class. The streambuf class has no inheritance relation.

Library Type Description Standard Include Files

Stream input/output class library Performs input/output processing <ios>, <streambuf>,
<istream>, <ostream>,
<iostream>, <iomanip>

Memory management library Performs memory allocation and deallo-
cation

<new>

Complex number calculation class
library

Performs calculation of complex num-
ber data

<complex>

String manipulation class library Performs string manipulation <string>

R20UT3248EJ0110 Rev.1.10 Page 800 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

The following types are used by stream input/output class libraries.

(a) ios_base::Init Class

Constructor of class Init.
Increments init_cnt.

Destructor of class Init.
Decrements init_cnt.

Type Definition Name Description

Type streamoff Defined as long type.

streamsize Defined as size_t type.

int_type Defined as int type.

pos_type Defined as long type.

off_type Defined as long type.

Type Definition Name Description

Variable init_cnt Static data member that counts the number of stream input/output
objects. The data must be initialized to 0 by a low-level interface.

Function Init() Constructor.

~Init() Destructor.

ios_base::Init::Init()

ios_base::Init::~Init()

ios_base::Init

ios_base

ostream

ostream::sentry

istream

istream::sentry

ios

streambuf

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 801 of 1053
Nov 01, 2020

(b) ios_base Class

Type Definition Name Description

Type fmtflags Type that indicates the format control information.

iostate Type that indicates the stream buffer input/output
state.

openmode Type that indicates the open mode of the file.

seekdir Type that indicates the seek state of the stream
buffer.

Variable fmtfl Format flag.

wide Field width.

prec Precision (number of decimal point digits) at out-
put.

fillch Fill character.

Function void _ec2p_init_base() Initializes the base class.

void _ec2p_copy_base(
 ios_base&ios_base_dt)

Copies ios_base_dt.

ios_base() Constructor.

~ios_base() Destructor.

fmtflags flags() const References the format flag (fmtfl).

fmtflags flags(fmtflags fmtflg) Sets fmtflg&format flag (fmtfl) to the format flag
(fmtfl).

fmtflags setf(fmtflags fmtflg) Sets fmtflg to format flag (fmtfl).

fmtflags setf(
 fmtflags fmtflg,
 fmtflags mask)

Sets mask&fmtflg to the format flag (fmtfl).

void unsetf(fmtflags mask) Sets ~mask&format flag (fmtfl) to the format flag
(fmtfl).

char fill() const References the fill character (fillch).

char fill(char ch) Sets ch as the fill character (fillch).

int precision() const References the precision (prec).

streamsize precision(
 streamsize preci)

Sets preci as precision (prec).

streamsize width() const References the field width (wide).

streamsize width(streamsize wd) Sets wd as field width (wide).

R20UT3248EJ0110 Rev.1.10 Page 802 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Defines the format control information relating to input/output processing.
The definition for each bit mask of fmtflags is as follows:

Defines the input/output state of the stream buffer.
The definition for each bit mask of iostate is as follows:

ios_base::fmtflags

const ios_base::fmtflags ios_base::boolalpha = 0x0000;

const ios_base::fmtflags ios_base::skipws = 0x0001;

const ios_base::fmtflags ios_base::unitbuf = 0x0002;

const ios_base::fmtflags ios_base::uppercase = 0x0004;

const ios_base::fmtflags ios_base::showbase = 0x0008;

const ios_base::fmtflags ios_base::showpoint = 0x0010;

const ios_base::fmtflags ios_base::showpos = 0x0020;

const ios_base::fmtflags ios_base::left = 0x0040;

const ios_base::fmtflags ios_base::right = 0x0080;

const ios_base::fmtflags ios_base::internal = 0x0100;

const ios_base::fmtflags ios_base::adjustfield = 0x01c0;

const ios_base::fmtflags ios_base::dec = 0x0200;

const ios_base::fmtflags ios_base::oct = 0x0400;

const ios_base::fmtflags ios_base::hex = 0x0800;

const ios_base::fmtflags ios_base::basefield = 0x0e00;

const ios_base::fmtflags ios_base::scientific = 0x1000;

const ios_base::fmtflags ios_base::fixed = 0x2000;

const ios_base::fmtflags ios_base::floatfield = 0x3000;

const ios_base::fmtflags ios_base::_fmtmask = 0x3fff;

ios_base::iostate

const ios_base::iostate ios_base::goodbit = 0x0;

const ios_base::iostate ios_base::eofbit = 0x1;

const ios_base::iostate ios_base::failbit = 0x2;

const ios_base::iostate ios_base::badbit = 0x4;

const ios_base::iostate ios_base::_statemask = 0x7;

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 803 of 1053
Nov 01, 2020

Defines open mode of the file.
The definition for each bit mask of openmode is as follows:

Defines the seek state of the stream buffer.
Determines the position in a stream to continue the input/output of data.
The definition for each bit mask of seekdir is as follows:

The initial settings are as follows:
 fmtfl = skipws | dec;
 wide = 0;
 prec = 6;
 fillch = ’ ’;

Copies ios_base_dt.

Constructor of class ios_base.
Calls Init::Init().

Destructor of class ios_base.

References the format flag (fmtfl).
Return value: Format flag (fmtfl).

ios_base::openmode

const ios_base::openmode ios_base::in = 0x01; Opens the input file.

const ios_base::openmode ios_base::out = 0x02; Opens the output file.

const ios_base::openmode ios_base::ate = 0x04; Seeks for eof only once after the file has
been opened.

const ios_base::openmode ios_base::app = 0x08; Seeks for eof each time the file is written
to.

const ios_base::openmode ios_base::trunc = 0x10; Opens the file in overwrite mode.

const ios_base::openmode ios_base::binary = 0x20; Opens the file in binary mode.

ios_base::seekdir

const ios_base::seekdir ios_base::beg = 0x0;

const ios_base::seekdir ios_base::cur = 0x1;

const ios_base::seekdir ios_base::end = 0x2;

void ios_base::_ec2p_init_base()

void ios_base::_ec2p_copy_base(ios_base& ios_base_dt)

ios_base::ios_base()

ios_base::~ios_base()

ios_base::fmtflags ios_base::flags() const

R20UT3248EJ0110 Rev.1.10 Page 804 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Sets fmtflg&format flag (fmtfl) to the format flag (fmtfl).
Return value: Format flag (fmtfl) before setting.

Sets fmtflg to the format flag (fmtfl).
Return value: Format flag (fmtfl) before setting.

Sets the mask&fmtflg value to the format flag (fmtfl).
Return value: Format flag (fmtfl) before setting.

Sets ~mask&format flag (fmtfl) to the format flag (fmtfl).

References the fill character (fillch).
Return value: Fill character (fillch).

Sets ch as the fill character (fillch).
Return value: Fill character (fillch) before setting.

References the precision (prec).
Return value: Precision (prec).

Sets preci as the precision (prec).
Return value: Precision (prec) before setting.

References the field width (wide).
Return value: Field width (wide).

Sets wd as the field width (wide).
Return value: Field width (wide) before setting.

ios_base::fmtflags ios_base::flags(fmtflags fmtflg)

ios_base::fmtflags ios_base::setf(fmtflags fmtflg)

ios_base::fmtflags ios_base::setf((fmtflags fmtflg, fmtflags mask)

void ios_base::unsetf(fmtflags mask)

char ios_base::fill() const

char ios_base::fill(char ch)

int ios_base::precision() const

streamsize ios_base::precision(streamsize preci)

streamsize ios_base::width() const

streamsize ios_base::width(streamsize wd)

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 805 of 1053
Nov 01, 2020

(c) ios Class

Constructor of class ios.
Calls init(0) and sets the initial value to the member object.

Constructor of class ios.
Calls init(sbptr) and sets the initial value to the member object.

Type Definition Name Description

Variable sb Pointer to the streambuf object.

tiestr Pointer to the ostream object.

state State flag of streambuf.

Function ios() Constructor.

ios(streambuf* sbptr)

void init(streambuf* sbptr) Performs initial setting.

virtual ~ios() Destructor.

operator void*() const Tests whether an error has been generated
(!state&(badbit | failbit).

bool operator!() const Tests whether an error has been generated
(state&(badbit | failbit)).

iostate rdstate() const References the state flag (state).

void clear(iostate st = goodbit) Clears the state flag (state) except for the specified
state (st).

void setstate(iostate st) Specifies st as the state flag (state).

bool good() const Tests whether an error has been generated
(state==goodbit).

bool eof() const Tests for the end of an input stream (state&eofbit).

bool bad() const Tests whether an error has been generated
(state&badbit).

bool fail() const Tests whether the input text matches the requested
pattern (state&(badbit | failbit)).

ostream* tie() const References the pointer to the ostream object
(tiestr).

ostream* tie(ostream* tstrptr) Sets tstrptr as the pointer to the ostream object
(tiestr).

streambuf* rdbuf() const References the pointer to the streambuf object
(sb).

streambuf* rdbuf(streambuf* sbptr) Sets sbptr as the pointer to the streambuf object
(sb).

ios& copyfmt(const ios& rhs) Copies the state flag (state) of rhs.

ios::ios()

ios::ios(streambuf* sbptr)

R20UT3248EJ0110 Rev.1.10 Page 806 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Sets sbptr to sb.
Sets state and tiestr to 0.

Destructor of class ios.

Tests whether an error has been generated (!state&(badbit | failbit)).
Return value: An error has been generated: false
 No error has been generated: true

Tests whether an error has been generated (state&(badbit | failbit)).
Return value: An error has been generated: true
 No error has been generated: false

References the state flag (state).
Return value: State flag (state).

Clears the state flag (state) except for the specified state (st).
If the pointer to the streambuf object (sb) is 0, badbit is set to the state flag (state).

Sets st to the state flag (state).

Tests whether an error has been generated (state==goodbit).
Return value: An error has been generated: false
 No error has been generated: true

Tests for the end of the input stream (state&eofbit).
Return value: End of the input stream has been reached: true
 End of the input stream has not been reached: false

Tests whether an error has been generated (state&badbit).
Return value: An error has been generated: true
 No error has been generated: false

void ios::init(streambuf* sbptr)

virtual ios::~ios()

ios::operator void*() const

bool ios::operator!() const

iostate ios::rdstate() const

void ios::clear(iostate st = goodbit)

void ios::setstate(iostate st)

bool ios::good() const

bool ios::eof() const

bool ios::bad() const

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 807 of 1053
Nov 01, 2020

Tests whether the input text matches the requested pattern (state&(badbit | failbit)).
Return value: Does not match the requested pattern: true
 Matches the requested pattern: false

References the pointer (tiestr) to the ostream object.
Return value: Pointer to the ostream object (tiestr).

Sets tstrptr as the pointer (tiestr) to the ostream object.
Return value: Pointer to the ostream object (tiestr) before setting.

References the pointer to the streambuf object (sb).
Return value: Pointer to the streambuf object (sb).

Sets sbptr as the pointer to the streambuf object (sb).
Return value: Pointer to the streambuf object (sb) before setting.

Copies the state flag (state) of rhs.
Return value: *this

bool ios::fail() const

ostream* ios::tie() const

ostream* ios::tie(ostream* tstrptr)

streambuf* ios::rdbuf() const

streambuf* ios::rdbuf(streambuf* sbptr)

ios& ios::copyfmt(const ios& rhs)

R20UT3248EJ0110 Rev.1.10 Page 808 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

(d) ios Class Manipulators

Specifies an output mode of prefixing a radix at the beginning of data.
For a hexadecimal, 0x is prefixed. For a decimal, nothing is prefixed. For an octal, 0 is prefixed.
Return value: str

Clears the output mode of prefixing a radix at the beginning of data.
Return value: str

Specifies the output mode of showing the decimal point.
If no precision is specified, six decimal-point (fraction) digits are displayed.
Return value: str

Clears the output mode of showing the decimal point.
Return value: str

Type Definition Name Description

Function ios_base& showbase(ios_base& str) Specifies the radix display prefix mode.

ios_base& noshowbase(ios_base& str) Clears the radix display prefix mode.

ios_base& showpoint(ios_base& str) Specifies the decimal-point generation mode.

ios_base& noshowpoint(ios_base& str) Clears the decimal-point generation mode.

ios_base& showpos(ios_base& str) Specifies the + sign generation mode.

ios_base& noshowpos(ios_base& str) Clears the + sign generation mode.

ios_base& skipws(ios_base& str) Specifies the space skipping mode.

ios_base& noskipws (ios_base& str) Clears the space skipping mode.

ios_base& uppercase(ios_base& str) Specifies the uppercase letter conversion mode.

ios_base& nouppercase(ios_base& str) Clears the uppercase letter conversion mode.

ios_base& internal(ios_base& str) Specifies the internal fill mode.

ios_base& left(ios_base& str) Specifies the left side fill mode.

ios_base& right(ios_base& str) Specifies the right side fill mode.

ios_base& dec(ios_base& str) Specifies the decimal mode.

ios_base& hex(ios_base& str) Specifies the hexadecimal mode.

ios_base& oct(ios_base& str) Specifies the octal mode.

ios_base& fixed(ios_base& str) Specifies the fixed-point mode.

ios_base& scientific(ios_base& str) Specifies the scientific description mode.

ios_base& showbase(ios_base& str)

ios_base& noshowbase(ios_base& str)

ios_base& showpoint(ios_base& str)

ios_base& noshowpoint(ios_base& str)

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 809 of 1053
Nov 01, 2020

Specifies the output mode of generating the + sign (adds a + sign to a positive number).
Return value: str

Clears the output mode of generating the + sign.
Return value: str

Specifies the input mode of skipping spaces (skips consecutive spaces).
Return value: str

Clears the input mode of skipping spaces.
Return value: str

Specifies the output mode of converting letters to uppercases.
In hexadecimal, the radix will be uppercase letters 0X, and the numeric value letters will be uppercase letters.
The exponential representation of a floating-point value will also use uppercase letter E.
Return value: str

Clears the output mode of converting letters to uppercases.
Return value: str

When data is output in the field width (wide) range, it is output in the order of
Sign and radix
Fill character (fill)
Numeric value
Return value: str

When data is output in the field width (wide) range, it is aligned to the left.
Return value: str

When data is output in the field width (wide) range, it is aligned to the right.
Return value: str

Specifies the conversion radix to the decimal mode.
Return value: str

ios_base& showpos(ios_base& str)

ios_base& noshowpos(ios_base& str)

ios_base& skipws(ios_base& str)

ios_base& noskipws(ios_base& str)

ios_base& uppercase(ios_base& str)

ios_base& nouppercase(ios_base& str)

ios_base& internal(ios_base& str)

ios_base& left(ios_base& str)

ios_base& right(ios_base& str)

ios_base& dec(ios_base& str)

R20UT3248EJ0110 Rev.1.10 Page 810 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Specifies the conversion radix to the hexadecimal mode.
Return value: str

Specifies the conversion radix to the octal mode.
Return value: str

Specifies the fixed-point output mode.
Return value: str

Specifies the scientific description output mode (exponential description).
Return value: str

(e) streambuf Class

ios_base& hex(ios_base& str)

ios_base& oct(ios_base& str)

ios_base& fixed(ios_base& str)

ios_base& scientific(ios_base& str)

Type Definition Name Description

Constant eof Indicates the end of the file.

Variable _B_cnt_ptr Pointer to the length of valid data in the buf-
fer.

B_beg_ptr Pointer to the base pointer of the buffer.

_B_len_ptr Pointer to the length of the buffer.

B_next_ptr Pointer to the next position of the buffer from
which data is to be read.

B_end_ptr Pointer to the end position of the buffer.

B_beg_pptr Pointer to the start position of the control
buffer.

B_next_pptr Pointer to the next position of the buffer from
which data is to be read.

C_flg_ptr Pointer to the input/output control flag of the
file.

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 811 of 1053
Nov 01, 2020

Function char* _ec2p_getflag() const References the pointer for the file input/out-
put control flag.

char*& _ec2p_gnptr() References the pointer to the next position
of the buffer from which data is to be read.

char*& _ec2p_pnptr() References the pointer to the next position
of the buffer where data is to be written.

void _ec2p_bcntplus() Increments the valid data length of the buf-
fer.

void _ec2p_bcntminus() Decrements the valid data length of the buf-
fer.

void _ec2p_setbPtr(
 char** begptr,
 char** curptr,
 long* cntptr,
 long* lenptr,
 char* flgptr)

Sets the pointers of streambuf.

streambuf() Constructor.

virtual ~streambuf() Destructor.

streambuf* pubsetbuf(char* s,
 streamsize n)

Allocates the buffer for stream input/output.
This function calls setbuf (s,n)*1.

pos_type pubseekoff(
 off_type off,
 ios_base::seekdir way,
 ios_base::openmode
 which = ios_base::in | ios_base::out)

Moves the position to read or write data in
the input/output stream by using the method
specified by way.
This function calls
seekoff(off,way,which)*1.

pos_type pubseekpos(
 pos_type sp,
 ios_base::openmode
 which = ios_base::in | ios_base::out)

Calculates the offset from the beginning of
the stream to the current position.
This function calls seekpos(sp,which)*1.

int pubsync() Flushes the output stream.
This function calls sync()*1.

streamsize in_avail() Calculates the offset from the end of the
input stream to the current position.

int_type snextc() Reads the next character.

int_type sbumpc() Reads one character and sets the pointer to
the next character.

int_type sgetc() Reads one character.

int sgetn(char* s, streamsize n) Reads n characters and sets them in the
memory area specified by s.

int_type sputbackc(char c) Puts back the read position.

int sungetc() Puts back the read position.

int sputc(char c) Inserts character c.

int_type sputn(const char* s,
 streamsize n)

Inserts n characters at the position pointed
to by the amount specified by s.

char* eback() const Reads the start pointer of the input stream.

Type Definition Name Description

R20UT3248EJ0110 Rev.1.10 Page 812 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Notes 1. This class does not define the processing.

Function char* gptr() const Reads the next pointer of the input stream.

char* egptr() const Reads the end pointer of the input stream.

void gbump(int n) Moves the next pointer of the input stream
by the amount specified by n.

void setg(
 char* gbeg,
 char* gnext,
 char* gend)

Assigns each pointer of the input stream.

char* pbase() const Calculates the start pointer of the output
stream.

char* pptr() const Calculates the next pointer of the output
stream.

char* epptr() const Calculates the end pointer of the output
stream.

void pbump(int n) Moves the next pointer of the output stream
by the amount specified by n.

void setp(char* pbeg, char* pend) Assigns each pointer of the output stream.

virtual streambuf* setbuf(char* s,
 streamsize n)*1

For each derived class, a defined operation
is executed.

virtual pos_type seekoff(
 off_type off,
 ios_base::seekdir way,
 ios_base::openmode = (ios_base::openmode)
 (ios_base::in | ios_base::out))*1

Changes the stream position.

virtual pos_type seekpos(
 pos_type sp,
 ios_base::openmode = (ios_base::openmode)
 (ios_base::in | ios_base::out))*1

Changes the stream position.

virtual int sync()*1 Flushes the output stream.

virtual int showmanyc()*1 Calculates the number of valid characters in
the input stream.

virtual streamsize xsgetn(char* s, streamsize n) Sets n characters in the memory area speci-
fied by s.

virtual int_type underflow()*1 Reads one character without moving the
stream position.

virtual int_type uflow()*1 Reads one character of the next pointer.

virtual int_type pbackfail(int type c = eof)*1 Puts back the character specified by c.

virtual streamsize xsputn(const char* s,
 streamsize n)

Inserts n characters in the position specified
by s.

virtual int_type overflow(int type c = eof)*1 Inserts character c in the output stream.

Type Definition Name Description

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 813 of 1053
Nov 01, 2020

References the pointer for the file input/output control flag.

References the pointer to the next position of the buffer from which data is to be read.

References the pointer to the next position of the buffer where data is to be written.

Increments the valid data length of the buffer.

Decrements the valid data length of the buffer.

Sets the pointers of streambuf.

Constructor.
The initial settings are as follows:
_B_cnt_ptr = B_beg_ptr = B_next_ptr = B_end_ptr = C_flg_ptr = _B_len_ptr = 0
B_beg_pptr = &B_beg_ptr
B_next_pptr = &B_next_ptr

Destructor.

Allocates the buffer for stream input/output.
This function calls setbuf (s,n).
Return value: *this

Moves the read or write position for the input/output stream by using the method specified by way.
This function calls seekoff(off,way,which).
Return value: The stream position newly specified.

char* streambuf::_ec2p_getflag() const

char*& streambuf::_ec2p_gnptr()

char*& streambuf::_ec2p_pnptr()

void streambuf::_ec2p_bcntplus()

void streambuf::_ec2p_bcntminus()

void _ec2p_setbPtr(char** begptr, char** curptr, long* cntptr, long* lenptr, char* flgptr)

streambuf::streambuf()

virtual streambuf::~streambuf()

streambuf* streambuf::pubsetbuf(char* s, streamsize n)

pos_type streambuf::pubseekoff(off_type off, ios_base::seekdir way, ios_base::openmode which =
(ios_base::openmode)(ios_base::in | ios_base::out))

R20UT3248EJ0110 Rev.1.10 Page 814 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the offset from the beginning of the stream to the current position.
Moves the current stream pointer by the amount specified by sp.
This function calls seekpos(sp,which).
Return value: The offset from the beginning of the stream.

Flushes the output stream.
This function calls sync().
Return value: 0

Calculates the offset from the end of the input stream to the current position.
Return value:
If the position where data is read is valid: The offset from the end of the stream to the current position.
If the position where data is read is invalid: 0 (showmanyc() is called).

Reads one character. If the character read is not eof, the next character is read.
Return value: If the character read is not eof: The character read
 If the character read is eof: eof

Reads one character and moves forward the pointer to the next.
Return value: If the position where data is read is valid: The character read
 If the position where data is read is invalid: eof

Reads one character.
Return value: If the position where data is read is valid: The character read
 If the position where data is read is invalid: eof

Sets n characters in the memory area specified by s. If an eof is found in the string read, setting is stopped.
Return value: The specified number of characters.

If the data read position is correct and the put back data of the position is the same as c, the read position is put
back.
Return value: If the read position was put back: The value of c
 If the read position was not put back: eof

pos_type streambuf::pubseekpos(pos_type sp, ios_base::openmode which = (ios_base::open-
mode)(ios_base::in | ios_base::out))

int streambuf::pubsync()

streamsize streambuf::in_avail()

int_type streambuf::snextc()

int_type streambuf::sbumpc()

int_type streambuf::sgetc()

int streambuf::sgetn(char* s, streamsize n)

int_type streambuf::sputbackc(char c)

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 815 of 1053
Nov 01, 2020

If the data read position is correct, the read position is put back.
Return value: If the read position was put back: The value that was put back
 If the read position was not put back: eof

Inserts character c.
Return value: If the write position is correct: The value of c
 If the write position is incorrect: eof

Inserts n characters at the position specified by s.
If the buffer is smaller than n, the number of characters for the buffer is inserted.
Return value: The number of characters inserted.

Calculates the start pointer of the input stream.
Return value: Start pointer.

Calculates the next pointer of the input stream.
Return value: Next pointer.

Calculates the end pointer of the input stream.
Return value: End pointer.

Moves forward the next pointer of the input stream by the amount specified by n.

Sets each pointer of the input stream as follows:
 *B_beg_pptr = gbeg;
 *B_next_pptr = gnext;
 B_end_ptr = gend;
 *_B_cnt_ptr = gend-gnext;
 *_B_len_ptr = gend-gbeg;

Calculates the start pointer of the output stream.
Return value: Start pointer.

int streambuf::sungetc()

int streambuf::sputc(char c)

int_type streambuf::sputn(const char* s, streamsize n)

char* streambuf::eback() const

char* streambuf::gptr() const

char* streambuf::egptr() const

void streambuf::gbump(int n)

void streambuf::setg(char* gbeg, char* gnext, char* gend)

char* streambuf::pbase() const

R20UT3248EJ0110 Rev.1.10 Page 816 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the next pointer of the output stream.
Return value: Next pointer.

Calculates the end pointer of the output stream.
Return value: End pointer.

Moves forward the next pointer of the output stream by the amount specified by n.

The settings for each pointer of the output stream are as follows:
*B_beg_pptr = pbeg;
*B_next_pptr = pbeg;
B_end_ptr = pend;
*_B_cnt_ptr = pend-pbeg;
*_B_len_ptr = pend-pbeg;

For each derived class from streambuf, a defined operation is executed.
Return value: *this (This class does not define the processing.)

Changes the stream position.
Return value: -1 (This class does not define the processing.)

Changes the stream position.
Return value: -1 (This class does not define the processing.)

Flushes the output stream.
Return value: 0 (This class does not define the processing.)

Calculates the number of valid characters in the input stream.
Return value: 0 (This class does not define the processing.)

char* streambuf::pptr() const

char* streambuf::epptr() const

void streambuf::pbump(int n)

void streambuf::setp(char* pbeg, char* pend)

virtual streambuf* streambuf::setbuf(char* s, streamsize n)

virtual pos_type streambuf::seekoff(off_type off, ios_base::seekdir way, ios_base::openmode =
(ios_base::openmode)(ios_base::in | ios_base::out))

virtual pos_type streambuf::seekpos(pos_type sp, ios_base::openmode = (ios_base::open-
mode)(ios_base::in | ios_base::out))

virtual int streambuf::sync()

virtual int streambuf::showmanyc()

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 817 of 1053
Nov 01, 2020

Sets n characters in the memory area specified by s.
If the buffer is smaller than n, the number of characters for the buffer is inserted.
Return value: The number of characters input.

Reads one character without moving the stream position.
Return value: eof (This class does not define the processing.)

Reads one character of the next pointer.
Return value: eof (This class does not define the processing.)

Puts back the character specified by c.
Return value: eof (This class does not define the processing.)

Inserts n characters specified by s in to the stream position.
If the buffer is smaller than n, the number of characters for the buffer is inserted.
Return value: The number of characters inserted.

Inserts character c in the output stream.
Return value: eof (This class does not define the processing.)

(f) istream::sentry Class

Constructor of internal class sentry.
If good() is non-zero, enables input with or without a format.
If tie() is non-zero, flushes the related output stream.

Destructor of internal class sentry.

virtual streamsize streambuf::xsgetn(char* s, streamsize n)

virtual int_type streambuf::underflow()

virtual int_type streambuf::uflow()

virtual int_type streambuf::pbackfail(int_type c = eof)

virtual streamsize streambuf::xsputn(const char* s, streamsize n)

virtual int_type streambuf::overflow(int_type c = eof)

Type Definition Name Description

Variable ok_ Whether the current state is input-enabled.

Function sentry(istream& is, bool noskipws = false) Constructor.

~sentry() Destructor.

operator bool() References ok_.

istream::sentry::sentry(istream& is, bool noskipws = _false)

istream::sentry::~sentry()

R20UT3248EJ0110 Rev.1.10 Page 818 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

References ok_.
Return value: ok_

(g) istream Class

istream::sentry::operator bool()

Type Definition Name Description

Variable chcount The number of characters extracted by the input
function called last.

Function int _ec2p_getistr(char* str, unsigned int dig,
int mode)

Converts str with the radix specified by dig.

istream(streambuf* sb) Constructor.

virtual ~istream() Destructor.

istream& operator>>(bool& n) Stores the extracted characters in n.

istream& operator>>(short& n)

istream& operator>>(unsigned short& n)

istream& operator>>(int& n)

istream& operator>>(unsigned int& n)

istream& operator>>(long& n)

istream& operator>>(unsigned long& n)

istream& operator>>(long long& n)

istream& operator>>(unsigned long long&
n)

istream& operator>>(float& n)

istream& operator>>(double& n)

istream& operator>>(long double& n)

istream& operator>>(void*& p) Converts the extracted characters to a pointer to
void and stores them in p.

istream& operator >>(streambuf* sb) Extracts characters and stores them in the mem-
ory area specified by sb.

streamsize gcount() const Calculates chcount (number of characters
extracted).

int_type get() Extracts a character

istream& get(char& c) Extracts characters and stores them in c.

istream& get(signed char& c)

istream& get(unsigned char& c)

istream& get(char* s, streamsize n) Extracts strings with size n-1 and stores them in
the memory area specified by s.

istream& get(signed char* s, streamsize n)

istream& get(unsigned char* s, streamsize
n)

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 819 of 1053
Nov 01, 2020

Function istream& get(char* s, streamsize n, char
delim)

Extracts strings with size n-1 and stores them in
the memory area specified by s. If delim is found
in the string, input is stopped.

istream& get(
 signed char* s,
 streamsize n,
 char delim)

istream& get(
 unsigned char* s,
 streamsize n,
 char delim)

istream& get(streambuf& sb) Extracts strings and stores them in the memory
area specified by sb.

istream& get(streambuf& sb, char delim) Extracts strings and stores them in the memory
area specified by sb. If delim is found in the
string, input is stopped.

istream& getline(char* s, streamsize n) Extracts strings with size n-1 and stores them in
the memory area specified by s.

istream& getline(signed char* s, streamsize
n)

istream& getline(unsigned char* s, stream-
size n)

istream& getline(char* s, streamsize n,
char delim)

Extracts strings with size n-1 and stores them in
the memory area specified by s. If delim is found
in the string, input is stopped.

istream& getline(
 signed char* s,
 streamsize n,
 char delim)

istream& getline(
 unsigned char* s,
 streamsize n,
 char delim)

istream& ignore(
 streamsize n = 1,
 int_type delim = streambuf::eof)

Skips reading the number of characters specified
by n. If delim is found in the string, skipping is
stopped.

int_type peek() Seeks for input characters that can be acquired
next.

istream& read(char* s, streamsize n) Extracts strings with size n and stores them in the
memory area specified by s.

istream& read(signed char* s, streamsize
n)

istream& read(unsigned char* s, stream-
size n)

streamsize readsome(char* s, streamsize
n)

Extracts strings with size n and stores them in the
memory area specified by s.

streamsize readsome(signed char* s,
streamsize n)

streamsize readsome(
 unsigned char* s,
 streamsize n)

Type Definition Name Description

R20UT3248EJ0110 Rev.1.10 Page 820 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Converts str to the radix specified by dig.
Return value: The converted radix.

Constructor of class istream.
Calls ios::init(sb).
Specifies chcount=0.

Destructor of class istream.

Stores the extracted characters in n.
Return value: *this

Stores the extracted characters in n.
Return value: *this

Stores the extracted characters in n.
Return value: *this

Stores the extracted characters in n.
Return value: *this

Function istream& putback(char c) Puts back a character to the input stream.

istream& unget() Puts back the position of the input stream.

int sync() Checks the existence of the input stream.
This function calls streambuf::pubsync().

pos_type tellg() Finds the input stream position.
This function calls streambuf::pub-
seekoff(0,cur,in).

istream& seekg(pos_type pos) Moves the current stream pointer by the amount
specified by pos.
This function calls streambuf::pubseek-
pos(pos).

istream& seekg(off_type off,
ios_base::seekdir dir)

Moves the position to read the input stream by
using the method specified by dir.
This function calls streambuf::pub-
seekoff(off,dir).

int istream::_ec2p_getistr(char* str, unsigned int dig, int mode)

istream::istream(streambuf* sb)

virtual istream::~istream()

istream& istream::operator>>(bool& n)

istream& istream::operator>>(short& n)

istream& istream::operator>>(unsigned short& n)

istream& istream::operator>>(int& n)

Type Definition Name Description

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 821 of 1053
Nov 01, 2020

Stores the extracted characters in n.
Return value: *this

Stores the extracted characters in n.
Return value: *this

Stores the extracted characters in n.
Return value: *this

Stores the extracted characters in n.
Return value: *this

Stores the extracted characters in n.
Return value: *this

Stores the extracted characters in n.
Return value: *this

Stores the extracted characters in n.
Return value: *this

Stores the extracted characters in n.
Return value: *this

Converts the extracted characters to a void* type and stores them in the memory specified by p.
Return value: *this

Extracts characters and stores them in the memory area specified by sb.
If there are no extracted characters, setstate(failbit) is called.
Return value: *this

istream& istream::operator>>(unsigned int& n)

istream& istream::operator>>(long& n)

istream& istream::operator>>(unsigned long& n)

istream& istream::operator>>(long long& n)

istream& istream::operator>>(unsigned long long& n)

istream& istream::operator>>(float& n)

istream& istream::operator>>(double& n)

istream& istream::operator>>(long double& n)

istream& istream::operator>>(void*& p)

istream& istream::operator>>(streambuf* sb)

R20UT3248EJ0110 Rev.1.10 Page 822 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

References chcount (number of extracted characters).
Return value: chcount

Extracts characters.
Return value: If characters are extracted: Extracted characters.
 If no characters are extracted: Calls setstate(failbit) and becomes streambuf::eof.

Extracts characters and stores them in c. If the extracted character is streambuf::eof, failbit is set.
Return value: *this

Extracts characters and stores them in c. If the extracted character is streambuf::eof, failbit is set.
Return value: *this

Extracts characters and stores them in c. If the extracted character is streambuf::eof, failbit is set.
Return value: *this

Extracts a string with size n-1 and stores it in the memory area specified by s. If ok_==false or no character has
been extracted, failbit is set.
Return value: *this

Extracts a string with size n-1 and stores it in the memory area specified by s. If ok_==false or no character has
been extracted, failbit is set.
Return value: *this

Extracts a string with size n-1 and stores it in the memory area specified by s. If ok_==false or no character has
been extracted, failbit is set.
Return value: *this

Extracts a string with size n-1 and stores it in the memory area specified by s.
If delim is found in the string, input is stopped.
If ok_==false or no character has been extracted, failbit is set.
Return value: *this

streamsize istream::gcount() const

int_type istream::get()

istream& istream::get(char& c)

istream& istream::get(signed char& c)

istream& istream::get(unsigned char& c)

istream& istream::get(char* s, streamsize n)

istream& istream::get(signed char* s, streamsize n)

istream& istream::get(unsigned char* s, streamsize n)

istream& istream::get(char* s, streamsize n, char delim)

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 823 of 1053
Nov 01, 2020

Extracts a string with size n-1 and stores it in the memory area specified by s.
If delim is found in the string, input is stopped.
If ok_==false or no character has been extracted, failbit is set.
Return value: *this

Extracts a string with size n-1 and stores it in the memory area specified by s.
If delim is found in the string, input is stopped.
If ok_==false or no character has been extracted, failbit is set.
Return value: *this

Extracts a string and stores it in the memory area specified by sb.
If ok_==false or no character has been extracted, failbit is set.
Return value: *this

Extracts a string and stores it in the memory area specified by sb.
If delim is found in the string, input is stopped.
If ok_==false or no character has been extracted, failbit is set.
Return value: *this

Extracts a string with size n-1 and stores it in the memory area specified by s.
If ok_==false or no character has been extracted, failbit is set.
Return value: *this

Extracts a string with size n-1 and stores it in the memory area specified by s.
If ok_==false or no character has been extracted, failbit is set.
Return value: *this

Extracts a string with size n-1 and stores it in the memory area specified by s.
If ok_==false or no character has been extracted, failbit is set.
Return value: *this

Extracts a string with size n-1 and stores it in the memory area specified by s.
If character delim is found, input is stopped.
If ok_==false or no character has been extracted, failbit is set.
Return value: *this

istream& istream::get(signed char* s, streamsize n, char delim)

istream& istream::get(unsigned char* s, streamsize n, char delim)

istream& istream::get(streambuf& sb)

istream& istream::get(streambuf& sb, char delim)

istream& istream::getline(char* s, streamsize n)

istream& istream::getline(signed char* s, streamsize n)

istream& istream::getline(unsigned char* s, streamsize n)

istream& istream::getline(char* s, streamsize n, char delim)

R20UT3248EJ0110 Rev.1.10 Page 824 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Extracts a string with size n-1 and stores it in the memory area specified by s.
If character delim is found, input is stopped.
If ok_==false or no character has been extracted, failbit is set.
Return value: *this

Extracts a string with size n-1 and stores it in the memory area specified by s.
If character delim is found, input is stopped.
If ok_==false or no character has been extracted, failbit is set.
Return value: *this

Skips reading the number of characters specified by n.
If character delim is found, skipping is stopped.
Return value: *this

Seeks input characters that will be available next.
Return value: If ok_==false: streambuf::eof

 If ok_!=false: rdbuf()->sgetc()

If ok_!=false, extracts a string with size n and stores it in the memory area specified by s. If the number of
extracted characters does not match with the number of n, eofbit is set.
Return value: *this

If ok_!=false, extracts a string with size n and stores it in the memory area specified by s. If the number of
extracted characters does not match with the number of n, eofbit is set.
Return value: *this

If ok_!=false, extracts a string with size n and stores it in the memory area specified by s. If the number of
extracted characters does not match with the number of n, eofbit is set.
Return value: *this

Extracts a string with size n and stores it in the memory area specified by s.
If the number of characters exceeds the stream size, only the number of characters equal to the stream size is
stored.
Return value: The number of extracted characters.

istream& istream::getline(signed char* s, streamsize n, char delim)

istream& istream::getline(unsigned char* s, streamsize n, char delim)

istream& istream::ignore(streamsize n = 1, int_type delim = streambuf::eof)

int_type istream::peek()

istream& istream::read(char* s, streamsize n)

istream& istream::read(signed char* s, streamsize n)

istream& istream::read(unsigned char* s, streamsize n)

streamsize istream::readsome(char* s, streamsize n)

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 825 of 1053
Nov 01, 2020

Extracts a string with size n and stores it in the memory area specified by s.
If the number of characters exceeds the stream size, only the number of characters equal to the stream size is
stored.
Return value: The number of extracted characters.

Extracts a string with size n and stores it in the memory area specified by s.
If the number of characters exceeds the stream size, only the number of characters equal to the stream size is
stored.
Return value: The number of extracted characters.

Puts back character c to the input stream.
If the characters put back are streambuf::eof, badbit is set.
Return value: *this

Puts back the pointer of the input stream by one.
If the extracted characters are streambuf::eof, badbit is set.
Return value: *this

Checks for an input stream.
This function calls streambuf::pubsync().
Return value: If there is no input stream: streambuf::eof
 If there is an input stream: 0

Checks for the position of the input stream.
This function calls streambuf::pubseekoff(0,cur,in).
Return value: Offset from the beginning of the stream
 If an error occurs during the input processing, -1 is returned.

Moves the current stream pointer by the amount specified by pos.
This function calls streambuf::pubseekpos(pos).
Return value: *this

Moves the position to read the input stream using the method specified by dir.
This function calls streambuf::pubseekoff(off,dir). If an error occurs during the input processing, this process-
ing is not performed.
Return value: *this

streamsize istream::readsome(signed char* s, streamsize n)

streamsize istream::readsome(unsigned char* s, streamsize n)

istream& istream::putback(char c)

istream& istream::unget()

int istream::sync()

pos_type istream::tellg()

istream& istream::seekg(pos_type pos)

istream& istream::seekg(off_type off, ios_base::seekdir dir)

R20UT3248EJ0110 Rev.1.10 Page 826 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

(h) istream Class Manipulator

Skips reading white spaces.
Return value: is

(i) istream Non-Member Function

Extracts a string and stores it in the memory area specified by s.
Processing is stopped if
the number of characters stored is equal to field width – 1
streambuf::eof is found in the input stream
the next available character c satisfies isspace(c)==1
If no characters are stored, failbit is set.
Return value: in

Extracts a string and stores it in the memory area specified by s.
Processing is stopped if
the number of characters stored is equal to field width – 1
streambuf::eof is found in the input stream
the next available character c satisfies isspace(c)==1
If no characters are stored, failbit is set.
Return value: in

Extracts a string and stores it in the memory area specified by s.
Processing is stopped if
the number of characters stored is equal to field width – 1
streambuf::eof is found in the input stream
the next available character c satisfies isspace(c)==1
If no characters are stored, failbit is set.
Return value: in

Type Definition Name Description

Function istream& ws(istream& is) Skips reading the spaces.

istream& ws(istream& is)

Type Definition Name Description

Function istream& operator>>(istream& in, char* s) Extracts a string and stores it in the
memory area specified by s.

istream& operator>>(istream& in, signed char* s)

istream& operator>>(istream& in, unsigned char* s)

istream& operator>>(istream& in, char& c) Extracts a character and stores it in c.

istream& operator>>(istream& in, signed char& c)

istream& operator>>(istream& in, unsigned char& c)

istream& operator>>(istream& in, char* s)

istream& operator>>(istream& in, signed char* s)

istream& operator>>(istream& in, unsigned char* s)

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 827 of 1053
Nov 01, 2020

Extracts a character and stores it in c. If no character is stored, failbit is set.
Return value: in

Extracts a character and stores it in c. If no character is stored, failbit is set.
Return value: in

Extracts a character and stores it in c. If no character is stored, failbit is set.
Return value: in

(j) ostream::sentry Class

Constructor of the internal class sentry.
If good() is non-zero and tie() is non-zero, flush() is called.
Specifies os to _ _ec2p_os.

Destructor of internal class sentry.
If (_ _ec2p_os->flags() & ios_base::unitbuf) is true, flush() is called.

References ok_.
Return value: ok_

istream& operator>>(istream& in, char& c)

istream& operator>>(istream& in, signed char& c)

istream& operator>>(istream& in, unsigned char& c)

Type Definition Name Description

Variable ok_ Whether or not the current state allows output.

_ _ec2p_os Pointer to the ostream object.

Function sentry(ostream& os) Constructor.

~sentry() Destructor.

operator bool() References ok_.

ostream::sentry::sentry(ostream& os)

ostream::sentry::~sentry()

ostream::sentry::operator bool()

R20UT3248EJ0110 Rev.1.10 Page 828 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

(k) ostream Class

Type Definition Name Description

Function ostream(streambuf* sbptr) Constructor.

virtual ~ostream() Destructor.

ostream& operator<<(bool n) Inserts n in the output stream.

ostream& operator<<(short n)

ostream& operator<<(unsigned short n)

ostream& operator<<(int n)

ostream& operator<<(unsigned int n)

ostream& operator<<(long n)

ostream& operator<<(unsigned long n)

ostream& operator<<(long long n)

ostream& operator<<(unsigned long long n)

ostream& operator<<(float n)

ostream& operator<<(double n)

ostream& operator<<(long double n)

ostream& operator<<(void* n)

ostream& operator<<(streambuf* sbptr) Inserts the output string of sbptr into the output
stream.

ostream& put(char c) Inserts character c into the output stream.

ostream& write(
 const char* s,
 streamsize n)

Inserts n characters from s into the output
stream.

ostream& write(
 const signed char* s,
 streamsize n)

ostream& write(
 const unsigned char* s,
 streamsize n)

ostream& flush() Flushes the output stream.
This function calls streambuf::pubsync().

pos_type tellp() Calculates the current write position.
This function calls streambuf::pub-
seekoff(0,cur,out).

ostream& seekp(pos_type pos) Calculates the offset from the beginning of the
stream to the current position.
Moves the current stream pointer by the amount
specified by pos.
This function calls streambuf::pubseek-
pos(pos).

ostream& seekp(off_type off, seekdir dir) Moves the stream write position by the amount
specified by off, from dir.
This function calls streambuf::pub-
seekoff(off,dir).

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 829 of 1053
Nov 01, 2020

Constructor.
Calls ios(sbptr).

Destructor.

If sentry::ok_==true, n is inserted into the output stream.
If sentry::ok_==false, failbit is set.
Return value: *this

If sentry::ok_==true, n is inserted into the output stream.
If sentry::ok_==false, failbit is set.
Return value: *this

If sentry::ok_==true, n is inserted into the output stream.
If sentry::ok_==false, failbit is set.
Return value: *this

If sentry::ok_==true, n is inserted into the output stream.
If sentry::ok_==false, failbit is set.
Return value: *this

If sentry::ok_==true, n is inserted into the output stream.
If sentry::ok_==false, failbit is set.
Return value: *this

If sentry::ok_==true, n is inserted into the output stream.
If sentry::ok_==false, failbit is set.
Return value: *this

If sentry::ok_==true, n is inserted into the output stream.
If sentry::ok_==false, failbit is set.
Return value: *this

ostream::ostream(streambuf* sbptr)

virtual ostream::~ostream()

ostream& ostream::operator<<(bool n)

ostream& ostream::operator<<(short n)

ostream& ostream::operator<<(unsigned short n)

ostream& ostream::operator<<(int n)

ostream& ostream::operator<<(unsigned int n)

ostream& ostream::operator<<(long n)

ostream& ostream::operator<<(unsigned long n)

R20UT3248EJ0110 Rev.1.10 Page 830 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

If sentry::ok_==true, n is inserted into the output stream.
If sentry::ok_==false, failbit is set.
Return value: *this

If sentry::ok_==true, n is inserted into the output stream.
If sentry::ok_==false, failbit is set.
Return value: *this

If sentry::ok_==true, n is inserted into the output stream.
If sentry::ok_==false, failbit is set.
Return value: *this

If sentry::ok_==true, n is inserted into the output stream.
If sentry::ok_==false, failbit is set.
Return value: *this

If sentry::ok_==true, n is inserted into the output stream.
If sentry::ok_==false, failbit is set.
Return value: *this

If sentry::ok_==true, n is inserted into the output stream.
If sentry::ok_==false, failbit is set.
Return value: *this

If sentry::ok_==true, the output string of sbptr is inserted into the output stream.
If sentry::ok_==false, failbit is set.
Return value: *this

If (sentry::ok_==true) and (rdbuf()->sputc(c)!=streambuf::eof), c is inserted into the output stream.
Otherwise badbit is set.
Return value: *this

If (sentry::ok_==true) and (rdbuf()->sputn(s, n)==n), n characters specified by s are inserted into the output
stream.
Otherwise badbit is set.
Return value: *this

ostream& ostream::operator<<(long long n)

ostream& ostream::operator<<(unsigned long long n)

ostream& ostream::operator<<(float n)

ostream& ostream::operator<<(double n)

ostream& ostream::operator<<(long double n)

ostream& ostream::operator<<(void* n)

ostream& ostream::operator<<(streambuf* sbptr)

ostream& ostream::put(char c)

ostream& ostream::write(const char* s, streamsize n)

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 831 of 1053
Nov 01, 2020

If (sentry::ok_==true) and (rdbuf()->sputn(s, n)==n), n characters specified by s are inserted into the output
stream.
Otherwise badbit is set.
Return value: *this

If (sentry::ok_==true) and (rdbuf()->sputn(s, n)==n), n characters specified by s are inserted into the output
stream.
Otherwise badbit is set.
Return value: *this

Flushes the output stream.
This function calls streambuf::pubsync().
Return value: *this

Calculates the current write position.
This function calls streambuf::pubseekoff(0,cur,out).
Return value: The current stream position

 If an error occurs during processing, -1 is returned.

If no error occurs, the offset from the beginning of the stream to the current position is calculated.
Moves the current stream pointer by the amount specified by pos.
This function calls streambuf::pubseekpos(pos).
Return value: *this

If no error occurs, the stream write position is moved by the amount specified by off, from dir.
This function calls streambuf::pubseekoff(off,dir).
Return value: *this

(l) ostream Class Manipulator

Inserts a new line code and flushes the output stream.
This function calls flush().
Return value: os

ostream& ostream::write(const signed char* s, streamsize n)

ostream& ostream::write(const unsigned char* s, streamsize n)

ostream& ostream::flush()

pos_type ostream::tellp()

ostream& ostream::seekp(pos_type pos)

ostream& ostream::seekp(off_type off, seekdir dir)

Type Definition Name Description

Function ostream& endl(ostream& os) Inserts a new line and flushes the output stream.

ostream& ends(ostream& os) Inserts a NULL code.

ostream& flush(ostream& os) Flushes the output stream.

ostream& endl(ostream& os)

R20UT3248EJ0110 Rev.1.10 Page 832 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Inserts a NULL code into the output line.
Return value: os

Flushes the output stream.
This function calls streambuf::sync().
Return value: os

(m) ostream Non-Member Function

If (sentry::ok_==true) and an error does not occur, s is inserted into the output stream. Otherwise failbit is set.
Return value: os

If (sentry::ok_==true) and an error does not occur, s is inserted into the output stream. Otherwise failbit is set.
Return value: os

If (sentry::ok_==true) and an error does not occur, s is inserted into the output stream. Otherwise failbit is set.
Return value: os

If (sentry::ok_==true) and an error does not occur, s is inserted into the output stream. Otherwise failbit is set.
Return value: os

If (sentry::ok_==true) and an error does not occur, s is inserted into the output stream. Otherwise failbit is set.
Return value: os

If (sentry::ok_==true) and an error does not occur, s is inserted into the output stream. Otherwise failbit is set.
Return value: os

ostream& ends(ostream& os)

ostream& flush(ostream& os)

Type Definition Name Description

Function ostream& operator<<(ostream& os, char s) Inserts s into the output stream.

ostream& operator<<(ostream& os, signed char s)

ostream& operator<<(ostream& os, unsigned char s)

ostream& operator<<(ostream& os, const char* s)

ostream& operator<<(ostream& os, const signed char* s)

ostream& operator<<(ostream& os, const unsigned char* s)

ostream& operator<<(ostream& os, char s)

ostream& operator<<(ostream& os, signed char s)

ostream& operator<<(ostream& os, unsigned char s)

ostream& operator<<(ostream& os, const char* s)

ostream& operator<<(ostream& os, const signed char* s)

ostream& operator<<(ostream& os, const unsigned char* s)

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 833 of 1053
Nov 01, 2020

(n) smanip Class Manipulator

Clears the flag specified by the mask value.
Return value: Target object of input/output.

Specifies the format flag (fmtfl).
Return value: Target object of input/output.

Specifies the radix used at output.
Return value: Target object of input/output.

Specifies the fill character (fillch).
Return value: Target object of input/output.

Specifies the precision (prec).
Return value: Target object of input/output.

Specifies the field width (wide).
Return value: Target object of input/output.

Type Definition Name Description

Function smanip resetiosflags(ios_base::fmtflags mask) Clears the flag specified by the mask value.

smanip setiosflags(ios_base::fmtflags mask) Specifies the format flag (fmtfl).

smanip setbase(int base) Specifies the radix used at output.

smanip setfill(char c) Specifies the fill character (fillch).

smanip setprecision(int n) Specifies the precision (prec).

smanip setw(int n) Specifies the field width (wide).

smanip resetiosflags(ios_base::fmtflags mask)

smanip setiosflags(ios_base::fmtflags mask)

smanip setbase(int base)

smanip setfill(char c)

smanip setprecision(int n)

smanip setw(int n)

R20UT3248EJ0110 Rev.1.10 Page 834 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

(o) Example of Using EC++ Input/Output Libraries
The input/output stream can be used if a pointer to an object of the mystrbuf class is used instead of stream-
buf at the initialization of the istream and ostream objects.
The following shows the inheritance relationship of the above classes. An arrow (->) indicates that a derived
class references a base class.

Type Definition Name Description

Variable _file_Ptr File pointer.

Function mystrbuf() Constructor.
Initializes the streambuf buffer.

mystrbuf(void* ptr)

virtual ~mystrbuf() Destructor.

void* myfptr() const Returns a pointer to the FILE type structure.

mystrbuf* open(const char* filename,
 int mode)

Specifies the file name and mode, and opens the
file.

mystrbuf* close() Closes the file.

virtual streambuf* setbuf(char* s,
 streamsize n)

Allocates the stream input/output buffer.

virtual pos_type seekoff(
 off_type off,
 ios_base::seekdir way,
 ios_base::openmode =
(ios_base::openmode)
 (ios_base::in | ios_base::out))

Changes the position of the stream pointer.

virtual pos_type seekpos(
 pos_type sp,
 ios_base::openmode =
(ios_base::openmode)
 (ios_base::in | ios_base::out))

Changes the position of the stream pointer.

virtual int sync() Flushes the stream.

virtual int showmanyc() Returns the number of valid characters in the
input stream.

virtual int_type underflow() Reads one character without moving the stream
position.

virtual int_type pbackfail(int type c =
 streambuf::eof)

Puts back the character specified by c.

virtual int_type overflow(int type c =
 streambuf::eof)

Inserts the character specified by c.

void _Init(_f_type* fp) Initialization.

streambuf

mystrbuf

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 835 of 1053
Nov 01, 2020

7.5.2 Memory Management Library

The header file for the memory management library is as follows:

- <new>
Defines the memory allocation/deallocation function.

By setting an exception handling function address to the _ec2p_new_handler variable, exception handling can be exe-
cuted if memory allocation fails. The _ec2p_new_handler is a static variable and the initial value is NULL. If this handler
is used, reentrance will be lost.

Operations required for the exception handling function:

- Creates an allocatable area and returns the area.

- Operations are not prescribed for cases where an area cannot be created.

<Example>
#include <istream>
#include <ostream>
#include <mystrbuf>
#include <string>
#include <new>
#include <stdio.h>
void main(void)
{
 mystrbuf myfin(stdin);
 mystrbuf myfout(stdout);
 istream mycin(&myfin);
 ostream mycout(&myfout);

 int i;
 short s;
 long l;
 char c;
 string str;

 mycin >> i >> s >> l >> c >> str;
 mycout << "This is EC++ Library." << endl << i << s << l << c << str << endl;

 return;
}

Type Definition Name Description

Type new_handler Pointer type to the function that returns a void type.

Variable _ec2p_new_handler Pointer to an exception handling function.

R20UT3248EJ0110 Rev.1.10 Page 836 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Allocates a memory area with the size specified by size.
If memory allocation fails and when new_handler is set, new_handler is called.
Return value: If memory allocation succeeds: Pointer to void type
 If memory allocation fails: NULL

Allocates an array area with the size specified by size.
If memory allocation fails and when new_handler is set, new_handler is called.
Return value: If memory allocation succeeds: Pointer to void type
 If memory allocation fails: NULL

Allocates the area specified by ptr as the storage area.
Return value: ptr

Allocates the area specified by ptr as the array area.
Return value: ptr

Deallocates the storage area specified by ptr.
If ptr is NULL, no operation will be performed.

Deallocates the array area specified by ptr.
If ptr is NULL, no operation will be performed.

Sets new_P to _ec2p_new_handler.
Return value: _ec2p_new_handler.

Function void* operator new(size_t size) Allocates a memory area with a size specified by size.

void* operator new[](size_t size) Allocates an array area with a size specified by size.

void* operator new(
 size_t size, void* ptr)

Allocates the area specified by ptr as the memory area.

void* operator new[](
 size_t size, void* ptr)

Allocates the area specified by ptr as the array area.

void operator delete(void* ptr) Deallocates the memory area.

void operator delete[](void* ptr) Deallocates the array area.

new_handler set_new_handler(
 new_handler new_P)

Sets the exception handling function address (new_P)
in _ec2p_new_handler.

void* operator new(size_t size)

void* operator new[](size_t size)

void* operator new(size_t size, void* ptr)

void* operator new[](size_t size, void* ptr)

void operator delete(void* ptr)

void operator delete[](void* ptr)

new_handler set_new_handler(new_handler new_P)

Type Definition Name Description

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 837 of 1053
Nov 01, 2020

7.5.3 Complex Number Calculation Class Library

The header file for the complex number calculation class library is as follows:

- <complex>
Defines the float_complex and double_complex classes.

These classes have no derivation.

(a) float_complex Class

Constructor of class float_complex.
The initial settings are as follows:
_re = re;
_im = im;

Type Definition Name Description

Type value_type float type

Variable _re Defines the real part of float precision.

_im Defines the imaginary part of float precision.

Function float_complex(float re = 0.0f, float im = 0.0f) Constructor.

float_complex(const double_complex& rhs)

float real() const Acquires the real part (_re).

float imag() const Acquires the imaginary part (_im).

float_complex& operator=(float rhs) Copies rhs to the real part..
0.0f is assigned to the imaginary part.

float_complex& operator+=(float rhs) Adds rhs to the real part and stores the sum in
*this.

float_complex& operator-=(float rhs) Subtracts rhs from the real part and stores the
difference in *this.

float_complex& operator*=(float rhs) Multiplies *this by rhs and stores the product in
*this.

float_complex& operator/=(float rhs) Divides *this by rhs and stores the quotient in
*this.

float_complex& operator=(
 const float_complex& rhs)

Copies rhs.

float_complex& operator+=(
 const float_complex& rhs)

Adds rhs to *this and stores the sum in *this.

float_complex& operator-=(
 const float_complex& rhs)

Subtracts rhs from *this and stores the differ-
ence in *this.

float_complex& operator*=(
 const float_complex& rhs)

Multiplies *this by rhs and stores the product in
*this.

float_complex& operator/=(
 const float_complex& rhs)

Divides *this by rhs and stores the quotient in
*this.

float_complex::float_complex(float re = 0.0f, float im = 0.0f)

R20UT3248EJ0110 Rev.1.10 Page 838 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Constructor of class float_complex.
The initial settings are as follows:
_re = (float)rhs.real();
_im = (float)rhs.imag();

Acquires the real part.
Return value: this->_re

Acquires the imaginary part.
Return value: this->_im

Copies rhs to the real part (_re).
0.0f is assigned to the imaginary part (_im).
Return value: *this

Adds rhs to the real part (_re) and stores the result in the real part (_re).
The value of the imaginary part (_im) does not change.
Return value: *this

Subtracts rhs from the real part (_re) and stores the result in the real part (_re).
The value of the imaginary part (_im) does not change.
Return value: *this

Multiplies *this by rhs and stores the result in *this.
(_re=_re*rhs, _im=_im*rhs)
Return value: *this

Divides *this by rhs and stores the result in *this.
(_re=_re/rhs, _im=_im/rhs)
Return value: *this

Copies rhs to *this.
Return value: *this

float_ complex::float_complex(const double_complex& rhs)

float float_complex::real() const

float float_complex::imag() const

float_complex& float_complex::operator=(float rhs)

float_complex& float_complex::operator+=(float rhs)

float_complex& float_complex::operator-=(float rhs)

float_complex& float_complex::operator*=(float rhs)

float_complex& float_complex::operator/=(float rhs)

float_complex& float_complex::operator=(const float_complex& rhs)

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 839 of 1053
Nov 01, 2020

Adds rhs to *this and stores the result in *this
Return value: *this

Subtracts rhs from *this and stores the result in *this.
Return value: *this

Multiplies *this by rhs and stores the result in *this.
Return value: *this

Divides *this by rhs and stores the result in *this.
Return value: *this

(b) float_complex Non-Member Function

float_complex& float_complex::operator+=(const float_complex& rhs)

float_complex& float_complex::operator-=(const float_complex& rhs)

float_complex& float_complex::operator*=(const float_complex& rhs)

float_complex& float_complex::operator/=(const float_complex& rhs)

Type Definition Name Description

Function float_complex operator+(
 const float_complex& lhs)

Performs unary + operation of lhs.

float_complex operator+(
 const float_complex& lhs,
 const float_complex& rhs)

Returns the result of adding lhs to rhs.

float_complex operator+(
 const float_complex& lhs,
 const float& rhs)

float_complex operator+(
 const float& lhs,
 const float_complex& rhs)

float_complex operator-(
 const float_complex& lhs)

Performs unary - operation of lhs.

float_complex operator-(
 const float_complex& lhs,
 const float_complex& rhs)

Returns the result of subtracting rhs from lhs.

float_complex operator-(
 const float_complex& lhs,
 const float& rhs)

float_complex operator-(
 const float& lhs,
 const float_complex& rhs)

R20UT3248EJ0110 Rev.1.10 Page 840 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Function float_complex operator*(
 const float_complex& lhs,
 const float_complex& rhs)

Returns the result of multiplying lhs by rhs.

float_complex operator*(
 const float_complex& lhs,
 const float& rhs)

float_complex operator*(
 const float& lhs,
 const float_complex& rhs)

float_complex operator/(
 const float_complex& lhs,
 const float_complex& rhs)

Returns the result of dividing lhs by rhs.

float_complex operator/(
 const float_complex& lhs,
 const float& rhs)

float_complex operator/(
 const float& lhs,
 const float_complex& rhs)

Divides lhs by rhs and stores the quotient in
lhs.

bool operator==(
 const float_complex& lhs,
 const float_complex& rhs)

Compares the real parts of lhs and rhs, and
the imaginary parts of lhs and rhs.

bool operator==(
 const float_complex& lhs,
 const float& rhs)

bool operator== (
 const float& lhs,
 const float_complex& rhs)

bool operator!=(
 const float_complex& lhs,
 const float_complex& rhs)

Compares the real parts of lhs and rhs, and
the imaginary parts of lhs and rhs.

bool operator!=(
 const float_complex& lhs,
 const float& rhs)

bool operator!=(
 const float& lhs,
 const float_complex& rhs)

istream& operator>>(
 istream& is,
 float_complex& x)

Inputs x in a format of u, (u), or (u,v) (u: real
part, v: imaginary part).

ostream& operator<<(
 ostream& os,
 const float_complex& x)

Outputs x in a format of u, (u), or (u,v) (u: real
part, v: imaginary part).

float real(const float_complex& x) Acquires the real part.

float imag(const float_complex& x) Acquires the imaginary part.

float abs(const float_complex& x) Calculates the absolute value.

float arg(const float_complex& x) Calculates the phase angle.

float norm(const float_complex& x) Calculates the absolute value of the square.

Type Definition Name Description

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 841 of 1053
Nov 01, 2020

Performs unary + operation of lhs.
Return value: lhs

Returns the result of adding lhs to rhs.
Return value: float_complex(lhs)+=rhs

Returns the result of adding lhs to rhs.
Return value: float_complex(lhs)+=rhs

Function float_complex conj(const float_complex& x) Calculates the conjugate complex number.

float_complex polar(
 const float& rho,
 const float& theta)

Calculates the float_complex value for a com-
plex number with size rho and phase angle
theta.

float_complex cos(const float_complex& x) Calculates the complex cosine.

float_complex cosh(const float_complex& x) Calculates the complex hyperbolic cosine.

float_complex exp(const float_complex& x) Calculates the exponent function.

float_complex log(const float_complex& x) Calculates the natural logarithm.

float_complex log10(const float_complex& x) Calculates the common logarithm.

float_complex pow(
 const float_complex& x,
 int y)

Calculates x to the yth power.

float_complex pow(
 const float_complex& x,
 const float& y)

float_complex pow(
 const float_complex& x,
 const float_complex& y)

float_complex pow(
 const float& x,
 const float_complex& y)

float_complex sin(const float_complex& x) Calculates the complex sine.

float_complex sinh(const float_complex& x) Calculates the complex hyperbolic sine.

float_complex sqrt(const float_complex& x) Calculates the square root within the right half
space.

float_complex tan(const float_complex& x) Calculates the complex tangent.

float_complex tanh(const float_complex& x) Calculates the complex hyperbolic tangent.

float_complex operator+(const float_complex& lhs)

float_complex operator+(const float_complex& lhs, const float_complex& rhs)

float_complex operator+(const float_complex& lhs, const float& rhs)

Type Definition Name Description

R20UT3248EJ0110 Rev.1.10 Page 842 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Returns the result of adding lhs to rhs.
Return value: float_complex(lhs)+=rhs

Performs unary - operation of lhs.
Return value: float_complex(-lhs.real(), -lhs.imag())

Returns the result of subtracting rhs from lhs.
Return value: float_complex(lhs)-=rhs

Returns the result of subtracting rhs from lhs.
Return value: float_complex(lhs)-=rhs

Returns the result of subtracting rhs from lhs.
Return value: float_complex(lhs)-=rhs

Returns the result of multiplying lhs by rhs.
Return value: float_complex(lhs)*=rhs

Returns the result of multiplying lhs by rhs.
Return value: float_complex(lhs)*=rhs

Returns the result of multiplying lhs by rhs.
Return value: float_complex(lhs)*=rhs

Returns the result of dividing lhs by rhs.
Return value: float_complex(lhs)/=rhs

Returns the result of dividing lhs by rhs.
Return value: float_complex(lhs)/=rhs

float_complex operator+(const float& lhs, const float_complex& rhs)

float_complex operator-(const float_complex& lhs)

float_complex operator-(const float_complex& lhs, const float_complex& rhs)

float_complex operator-(const float_complex& lhs, const float& rhs)

float_complex operator-(const float& lhs, const float_complex& rhs)

float_complex operator*(const float_complex& lhs, const float_complex& rhs)

float_complex operator*(const float_complex& lhs, const float& rhs)

float_complex operator*(const float& lhs, const float_complex& rhs)

float_complex operator/(const float_complex& lhs, const float_complex& rhs)

float_complex operator/(const float_complex& lhs, const float& rhs)

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 843 of 1053
Nov 01, 2020

Returns the result of dividing lhs by rhs.
Return value: float_complex(lhs)/=rhs

Compares the real parts of lhs and rhs, and the imaginary parts of lhs and rhs.
For a float type parameter, the imaginary part is assumed to be 0.0f.
Return value: lhs.real()==rhs.real() && lhs.imag()==rhs.imag()

Compares the real parts of lhs and rhs, and the imaginary parts of lhs and rhs.
For a float type parameter, the imaginary part is assumed to be 0.0f.
Return value: lhs.real()==rhs.real() && lhs.imag()==rhs.imag()

Compares the real parts of lhs and rhs, and the imaginary parts of lhs and rhs.
For a float type parameter, the imaginary part is assumed to be 0.0f.
Return value: lhs.real()==rhs.real() && lhs.imag()==rhs.imag()

Compares the real parts of lhs and rhs, and the imaginary parts of lhs and rhs.
For a float type parameter, the imaginary part is assumed to be 0.0f.
Return value: lhs.real()!=rhs.real() || lhs.imag()!=rhs.imag()

Compares the real parts of lhs and rhs, and the imaginary parts of lhs and rhs.
For a float type parameter, the imaginary part is assumed to be 0.0f.
Return value: lhs.real()!=rhs.real() || lhs.imag()!=rhs.imag()

Compares the real parts of lhs and rhs, and the imaginary parts of lhs and rhs.
For a float type parameter, the imaginary part is assumed to be 0.0f.
Return value: lhs.real()!=rhs.real() || lhs.imag()!=rhs.imag()

Inputs x in a format of u, (u), or (u,v) (u: real part, v: imaginary part).
The input value is converted to float_complex.
If x is input in a format other than the u, (u), or (u,v) format, is.setstate(ios_base::failbit) is called.
Return value: is

Outputs x to os.
The output format is u, (u), or (u,v) (u: real part, v: imaginary part).
Return value: os

float_complex operator/(const float& lhs, const float_complex& rhs)

bool operator==(const float_complex& lhs, const float_complex& rhs)

bool operator==(const float_complex& lhs, const float& rhs)

bool operator==(const float& lhs, const float_complex& rhs)

bool operator!=(const float_complex& lhs, const float_complex& rhs)

bool operator!=(const float_complex& lhs, const float& rhs)

bool operator!=(const float& lhs, const float_complex& rhs)

istream& operator>>(istream& is, float_complex& x)

ostream& operator<<(ostream& os, const float_complex& x)

R20UT3248EJ0110 Rev.1.10 Page 844 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Acquires the real part.
Return value: x.real()

Acquires the imaginary part.
Return value: x.imag()

Calculates the absolute value.
Return value: (|x.real()|2 + |x.imag()|2)1/2

Calculates the phase angle.
Return value: atan2f(x.imag(), x.real())

Calculates the absolute value of the square.
Return value: |x.real()|2 + |x.imag()|2

Calculates the conjugate complex number.
Return value: float_complex(x.real(), (-1)*x.imag())

Calculates the float_complex value for a complex number with size rho and phase angle (argument) theta.
Return value: float_complex(rho*cosf(theta), rho*sinf(theta))

Calculates the complex cosine.
Return value: float_complex(cosf(x.real())*coshf(x.imag()),

 (-1)*sinf(x.real())*sinhf(x.imag()))

Calculates the complex hyperbolic cosine.
Return value: cos(float_complex((-1)*x.imag(), x.real()))

Calculates the exponent function.
Return value: expf(x.real())*cosf(x.imag()),expf(x.real())*sinf(x.imag())

float real(const float_complex& x)

float imag(const float_complex& x)

float abs(const float_complex& x)

float arg(const float_complex& x)

float norm(const float_complex& x)

float_complex conj(const float_complex& x)

float_complex polar(const float& rho, const float& theta)

float_complex cos(const float_complex& x)

float_complex cosh(const float_complex& x)

float_complex& float_complex::operator-=(const float_complex& rhs)

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 845 of 1053
Nov 01, 2020

Calculates the natural logarithm (base e).
Return value: float_complex(logf(abs(x)), arg(x))

Calculates the common logarithm (base 10).
Return value: float_complex(log10f(abs(x)), arg(x)/logf(10))

Calculates x to the yth power.
If pow(0,0), a domain error will occur.
Return value: If float_complex pow(const float_complex& x, const float_complex& y): exp(y*logf(x))
 Otherwise: exp(y*log(x))

Calculates x to the yth power.
If pow(0,0), a domain error will occur.
Return value: If float_complex pow(const float_complex& x, const float_complex& y): exp(y*logf(x))
 Otherwise: exp(y*log(x))

Calculates x to the yth power.
If pow(0,0), a domain error will occur.
Return value: If float_complex pow(const float_complex& x, const float_complex& y): exp(y*logf(x))
 Otherwise: exp(y*log(x))

Calculates x to the yth power.
If pow(0,0), a domain error will occur.
Return value: If float_complex pow(const float_complex& x, const float_complex& y): exp(y*logf(x))
 Otherwise: exp(y*log(x))

Calculates the complex sine.
Return value: float_complex(sinf(x.real())*coshf(x.imag()), cosf(x.real())*sinhf(x.imag()))

Calculates the complex hyperbolic sine.
Return value: float_complex(0,-1)*sin(float_complex((-1)*x.imag(),x.real()))

Calculates the square root within the right half space.
Return value: float_complex(sqrtf(abs(x))*cosf(arg(x)/2), sqrtf(abs(x))*sinf(arg(x)/2))

float_complex log(const float_complex& x)

float_complex log10(const float_complex& x)

float_complex pow(const float_complex& x, int y)

float_complex pow(const float_complex& x, const float& y)

float_complex pow(const float_complex& x, const float_complex& y)

float_complex pow(const float& x, const float_complex& y)

float_complex sin(const float_complex& x)

float_complex sinh(const float_complex& x)

float_complex sqrt(const float_complex& x)

R20UT3248EJ0110 Rev.1.10 Page 846 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the complex tangent.
Return value: sin(x)/cos(x)

Calculates the complex hyperbolic tangent.
Return value: sinh(x)/cosh(x)

(c) double_complex Class

float_complex tan(const float_complex& x)

float_complex tanh(const float_complex& x)

Type Definition Name Description

Type value_type double type.

Variable _re Defines the real part of double precision.

_im Defines the imaginary part of double precision.

Function double_complex(
 double re = 0.0,
 double im = 0.0)

Constructor.

double_complex(const float_complex&)

double real() const Acquires the real part.

double imag() const Acquires the imaginary part.

double_complex& operator=(double rhs) Copies rhs to the real part.
0.0 is assigned to the imaginary part.

double_complex& operator+=(double rhs) Adds rhs to the real part of *this and stores the
sum in *this.

double_complex& operator-=(double rhs) Subtracts rhs from the real part of *this and
stores the difference in *this.

double_complex& operator*=(double rhs) Multiplies *this by rhs and stores the product in
*this.

double_complex& operator/=(double rhs) Divides *this by rhs and stores the quotient in
*this.

double_complex& operator=(
 const double_complex& rhs)

Copies rhs.

double_complex& operator+=(
 const double_complex& rhs)

Adds rhs to *this and stores the sum in *this.

double_complex& operator-=(
 const double_complex& rhs)

Subtracts rhs from *this and stores the differ-
ence in *this.

double_complex& operator*=(
 const double_complex& rhs)

Multiplies *this by rhs and stores the product in
*this.

double_complex& operator/=(
 const double_complex& rhs)

Divides *this by rhs and stores the quotient in
*this.

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 847 of 1053
Nov 01, 2020

Constructor of class double_complex.
The initial settings are as follows:
_re = re;
_im = im;

Constructor of class double_complex.
The initial settings are as follows:
_re = (double)rhs.real();
_im = (double)rhs.imag();

Acquires the real part.
Return value: this->_re

Acquires the imaginary part.
Return value: this->_im

Copies rhs to the real part (_re).
0.0 is assigned to the imaginary part (_im).
Return value: *this

Adds rhs to the real part (_re) and stores the result in the real part (_re).
The value of the imaginary part (_im) does not change.
Return value: *this

Subtracts rhs from the real part (_re) and stores the result in the real part (_re).
The value of the imaginary part (_im) does not change.
Return value: *this

Multiplies *this by rhs and stores the result in *this.
(_re=_re*rhs, _im=_im*rhs)
Return value: *this

Divides *this by rhs and stores the result in *this.
(_re=_re/rhs, _im=_im/rhs)
Return value: *this

double_complex::double_complex(double re = 0.0, double im = 0.0)

double_complex::double_complex(const float_complex&)

double double_complex::real() const

double double_complex::imag() const

double_complex& double_complex::operator=(double rhs)

double_complex& double_complex::operator+=(double rhs)

double_complex& double_complex::operator-= (double rhs)

double_complex& double_complex::operator*=(double rhs)

double_complex& double_complex::operator/=(double rhs)

R20UT3248EJ0110 Rev.1.10 Page 848 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Copies rhs to *this.
Return value: *this

Adds rhs to *this and stores the result in *this.
Return value: *this

Subtracts rhs from *this and stores the result in *this.
Return value: *this

Multiplies *this by rhs and stores the result in *this.
Return value: *this

Divides *this by rhs and stores the result in *this.
Return value: *this

(d) double_complex Non-Member Function

double_complex& double_complex::operator=(const double_complex& rhs)

double_complex& double_complex::operator+=(const double_complex& rhs)

double_complex& double_complex::operator-=(const double_complex& rhs)

double_complex& double_complex::operator*=(const double_complex& rhs)

double_complex& double_complex::operator/=(const double_complex& rhs)

Type Definition Name Description

Function double_complex operator+(
 const double_complex& lhs)

Performs unary + operation of lhs.

double_complex operator+(
 const double_complex& lhs,
 const double_complex& rhs)

Returns the result of adding rhs to lhs.

double_complex operator+(
 const double_complex& lhs,
 const double& rhs)

double_complex operator+(
 const double& lhs,
 const double_complex& rhs)

double_complex operator-(
 const double_complex& lhs)

Performs unary - operation of lhs.

double_complex operator-(
 const double_complex& lhs,
 const double_complex& rhs)

Returns the result of subtracting rhs from lhs.

double_complex operator-(
 const double_complex& lhs,
 const double& rhs)

double_complex operator-(
 const double& lhs,
 const double_complex& rhs)

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 849 of 1053
Nov 01, 2020

Function double_complex operator*(
 const double_complex& lhs,
 const double_complex& rhs)

Returns the result of multiplying lhs by rhs.

double_complex operator*(
 const double_complex& lhs,
 const double& rhs)

double_complex operator*(
 const double& lhs,
 const double_complex& rhs)

double_complex operator/(
 const double_complex& lhs,
 const double_complex& rhs)

Returns the result of dividing lhs by rhs.

double_complex operator/(
 const double_complex& lhs,
 const double& rhs)

double_complex operator/(
 const double& lhs,
 const double_complex& rhs)

bool operator==(
 const double_complex& lhs,
 const double_complex& rhs)

Compares the real part of lhs and rhs, and the
imaginary parts of lhs and rhs.

bool operator==(
 const double_complex& lhs,
 const double& rhs)

bool operator==(
 const double& lhs,
 const double_complex& rhs)

bool operator!=(
 const double_complex& lhs,
 const double_complex& rhs)

Compares the real parts of lhs and rhs, and the
imaginary parts of lhs and rhs.

bool operator!=(
 const double_complex& lhs,
 const double& rhs)

bool operator!=(
 const double& lhs,
 const double_complex& rhs)

istream& operator>>(
 istream& is,
 double_complex& x)

Inputs x in a format of u, (u), or (u,v) (u: real part,
v: imaginary part).

ostream& operator<<(
 ostream& os,
 const double_complex& x)

Outputs x in a format of u, (u), or (u,v) (u: real
part, v: imaginary part).

double real(const double_complex& x) Acquires the real part.

double imag(const double_complex& x) Acquires the imaginary part.

double abs(const double_complex& x) Calculates the absolute value.

double arg(const double_complex& x) Calculates the phase angle.

double norm(const double_complex& x) Calculates the absolute value of the square.

Type Definition Name Description

R20UT3248EJ0110 Rev.1.10 Page 850 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Performs unary + operation of lhs.
Return value: lhs

Returns the result of adding lhs to rhs.
Return value: double_complex(lhs)+=rhs

Function double_complex conj(
 const double_complex& x)

Calculates the conjugate complex number.

double_complex polar(
 const double& rho,
 const double& theta)

Calculates the double_complex value for a com-
plex number with size rho and phase angle
theta.

double_complex cos(
 const double_complex& x)

Calculates the complex cosine.

double_complex cosh(
 const double_complex& x)

Calculates the complex hyperbolic cosine.

double_complex exp(
 const double_complex& x)

Calculates the exponent function.

double_complex log(
 const double_complex& x)

Calculates the natural logarithm.

double_complex log10(
 const double_complex& x)

Calculates the common logarithm.

double_complex pow(
 const double_complex& x,
 int y)

Calculates x to the yth power.

double_complex pow(
 const double_complex& x,
 const double& y)

double_complex pow(
 const double_complex& x,
 const double_complex& y)

double_complex pow(
 const double& x,
 const double_complex& y)

double_complex sin(
 const double_complex& x)

Calculates the complex sine.

double_complex sinh(
 const double_complex& x)

Calculates the complex hyperbolic sine.

double_complex sqrt(
 const double_complex& x)

Calculates the square root within the right half
space.

double_complex tan(
 const double_complex& x)

Calculates the complex tangent.

double_complex tanh(
 const double_complex& x)

Calculates the complex hyperbolic tangent.

double_complex operator+(const double_complex& lhs)

double_complex operator+(const double_complex& lhs, const double_complex& rhs)

Type Definition Name Description

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 851 of 1053
Nov 01, 2020

Returns the result of adding lhs to rhs.
Return value: double_complex(lhs)+=rhs

Returns the result of adding lhs to rhs.
Return value: double_complex(lhs)+=rhs

Performs unary - operation of lhs.
Return value: double_complex(-lhs.real(), -lhs.imag())

Returns the result of subtracting rhs from lhs.
Return value: double_complex(lhs)-=rhs

Returns the result of subtracting rhs from lhs.
Return value: double_complex(lhs)-=rhs

Returns the result of subtracting rhs from lhs.
Return value: double_complex(lhs)-=rhs

Returns the result of multiplying lhs by rhs.
Return value: double_complex(lhs)*=rhs

Returns the result of multiplying lhs by rhs.
Return value: double_complex(lhs)*=rhs

Returns the result of multiplying lhs by rhs.
Return value: double_complex(lhs)*=rhs

Returns the result of dividing lhs by rhs.
Return value: double_complex(lhs)/=rhs

double_complex operator+(const double_complex& lhs, const double& rhs)

double_complex operator+(const double& lhs, const double_complex& rhs)

double_complex operator-(const double_complex& lhs)

double_complex operator-(const double_complex& lhs, const double_complex& rhs)

double_complex operator-(const double_complex& lhs, const double& rhs)

double_complex operator-(const double& lhs, const double_complex& rhs)

double_complex operator*(const double_complex& lhs, const double_complex& rhs)

double_complex operator*(const double_complex& lhs, const double& rhs)

double_complex operator*(const double& lhs, const double_complex& rhs)

double_complex operator/(const double_complex& lhs, const double_complex& rhs)

R20UT3248EJ0110 Rev.1.10 Page 852 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Returns the result of dividing lhs by rhs.
Return value: double_complex(lhs)/=rhs

Returns the result of dividing lhs by rhs.
Return value: double_complex(lhs)/=rhs

Compares the real parts of lhs and rhs, and the imaginary parts of lhs and rhs.
For a double type parameter, the imaginary part is assumed to be 0.0.
Return value: lhs.real()==rhs.real() && lhs.imag()==rhs.imag()

Compares the real parts of lhs and rhs, and the imaginary parts of lhs and rhs.
For a double type parameter, the imaginary part is assumed to be 0.0.
Return value: lhs.real()==rhs.real() && lhs.imag()==rhs.imag()

Compares the real parts of lhs and rhs, and the imaginary parts of lhs and rhs.
For a double type parameter, the imaginary part is assumed to be 0.0.
Return value: lhs.real()==rhs.real() && lhs.imag()==rhs.imag()

Compares the real parts of lhs and rhs, and the imaginary parts of lhs and rhs.
For a double type parameter, the imaginary part is assumed to be 0.0.
Return value: lhs.real()!=rhs.real() || lhs.imag()!=rhs.imag()

Compares the real parts of lhs and rhs, and the imaginary parts of lhs and rhs.
For a double type parameter, the imaginary part is assumed to be 0.0.
Return value: lhs.real()!=rhs.real() || lhs.imag()!=rhs.imag()

Compares the real parts of lhs and rhs, and the imaginary parts of lhs and rhs.
For a double type parameter, the imaginary part is assumed to be 0.0.
Return value: lhs.real()!=rhs.real() || lhs.imag()!=rhs.imag()

Inputs complex number x in a format of u, (u), or (u,v) (u: real part, v: imaginary part).
The input value is converted to double_complex.
If x is input in a format other than the u, (u), or (u,v) format, is.setstate(ios_base::failbit) is called.
Return value: is

double_complex operator/(const double_complex& lhs, const double& rhs)

double_complex operator/(const double& lhs, const double_complex& rhs)

bool operator==(const double_complex& lhs, const double_complex& rhs)

bool operator==(const double_complex& lhs, const double& rhs)

bool operator==(const double& lhs, const double_complex& rhs)

bool operator!=(const double_complex& lhs, const double_complex& rhs)

bool operator!=(const double_complex& lhs, const double& rhs)

bool operator!=(const double& lhs, const double_complex& rhs)

istream& operator>>(istream& is, double_complex& x)

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 853 of 1053
Nov 01, 2020

Outputs x to os.
The output format is u, (u), or (u,v) (u: real part, v: imaginary part).
Return value: os

Acquires the real part.
Return value: x.real()

Acquires the imaginary part.
Return value: x.imag()

Calculates the absolute value.
Return value: (|x.real()|2 + |x.imag()|2)1/2

Calculates the phase angle.
Return value: atan2(x.imag(), x.real())

Calculates the absolute value of the square.
Return value: |x.real()|2 + |x.imag()|2

Calculates the conjugate complex number.
Return value: double_complex(x.real(), (-1)*x.imag())

Calculates the double_complex value for a complex number with size rho and phase angle (argument) theta.
Return value: double_complex(rho*cos(theta), rho*sin(theta))

Calculates the complex cosine.
Return value: double_complex(cos(x.real())*cosh(x.imag()),
 (-1)*sin(x.real())*sinh(x.imag()))

Calculates the complex hyperbolic cosine.
Return value: cos(double_complex((-1)*x.imag(), x.real()))

ostream& operator<<(ostream& os, const double_complex& x)

double real(const double_complex& x)

double imag(const double_complex& x)

double abs(const double_complex& x)

double arg(const double_complex& x)

double norm(const double_complex& x)

double_complex conj(const double_complex& x)

double_complex polar(const double& rho, const double& theta)

double_complex cos(const double_complex& x)

double_complex cosh(const double_complex& x)

R20UT3248EJ0110 Rev.1.10 Page 854 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the exponent function.
Return value: exp(x.real())*cos(x.imag()),exp(x.real())*sin(x.imag())

Calculates the natural logarithm (base e).
Return value: double_complex(log(abs(x)), arg(x))

Calculates the common logarithm (base 10).
Return value: double_complex(log10(abs(x)), arg(x)/log(10))

Calculates x to the yth power.
If pow(0,0), a domain error will occur.
Return value: exp(y*log(x))

Calculates x to the yth power.
If pow(0,0), a domain error will occur.
Return value: exp(y*log(x))

Calculates x to the yth power.
If pow(0,0), a domain error will occur.
Return value: exp(y*log(x))

Calculates x to the yth power.
If pow(0,0), a domain error will occur.
Return value: exp(y*log(x))

Calculates the complex sine
Return value: double_complex(sin(x.real())*cosh(x.imag()), cos(x.real())*sinh(x.imag()))

Calculates the complex hyperbolic sine
Return value: double_complex(0,-1)*sin(double_complex((-1)*x.imag(),x.real()))

Calculates the square root within the right half space
Return value: double_complex(sqrt(abs(x))*cos(arg(x)/2), sqrt(abs(x))*sin(arg(x)/2))

double_complex exp(const double_complex& x)

double_complex log(const double_complex& x)

double_complex log10(const double_complex& x)

double_complex pow(const double_complex& x, int y)

double_complex pow(const double_complex& x, const double& y)

double_complex pow(const double_complex& x, const double_complex& y)

double_complex pow(const double& x, const double_complex& y)

double_complex sin(const double_complex& x)

double_complex sinh(const double_complex& x)

double_complex sqrt(const double_complex& x)

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 855 of 1053
Nov 01, 2020

Calculates the complex tangent.
Return value: sin(x)/cos(x)

Calculates the complex hyperbolic tangent.
Return value: sinh(x)/cosh(x)

double_complex tan(const double_complex& x)

double_complex tanh(const double_complex& x)

R20UT3248EJ0110 Rev.1.10 Page 856 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

7.5.4 String Handling Class Library

The header file for the string handling class library is as follows:

- <string>
Defines class string.

This class has no derivation.

(a) string Class

Type Definition Name Description

Type iterator char* type.

const_iterator const char* type.

Constant npos Maximum string length (UNIT_MAX characters).

Variable s_ptr Pointer to the memory area where the string is
stored by the object.

s_len The length of the string stored by the object.

s_res Size of the allocated memory area to store string
by the object.

Function string(void) Constructor.

string(
 const string& str,
 size_t pos = 0,
 size_t n = npos)

string(const char* str, size_t n)

string(const char* str)

string(size_t n, char c)

~string() Destructor.

string& operator=(const string& str) Assigns str.

string& operator=(const char* str)

string& operator=(char c) Assigns c.

iterator begin() Calculates the start pointer of the string.

const_iterator begin() const

iterator end() Calculates the end pointer of the string.

const_iterator end() const

size_t size() const Calculates the length of the stored string.

size_t length() const

size_t max_size() const Calculates the size of the allocated memory area.

void resize(size_t n, char c) Changes the storable string length to n.

void resize(size_t n) Changes the storable string length to n.

size_t capacity() const Calculates the size of the allocated memory area.

void reserve(size_t res_arg = 0) Performs re-allocation of the memory area.

void clear() Clears the stored string.

bool empty() const Checks whether the stored string length is 0.

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 857 of 1053
Nov 01, 2020

Function const char& operator[](size_t pos) const References s_ptr[pos].

char& operator[](size_t pos)

const char& at(size_t pos) const

char& at(size_t pos)

tring& operator+=(const string& str) Adds string str.

string& operator+=(const char* str)

string& operator+=(char c) Adds character c.

string& append(const string& str) Adds string str.

string& append(const char* str)

string& append(
 const string& str,
 size_t pos,
 size_t n)

Adds n characters of string str at object position
pos.

string& append(const char* str, size_t n) Adds n characters to string str.

string& append(size_t n, char c) Adds n characters, each of which is c.

string& assign(const string& str) Assigns string str.

string& assign(const char* str)

string& assign(
 const string& str,
 size_t pos,
 size_t n)

Add n characters to string str at position pos.

string& assign(const char* str, size_t n) Assigns n characters of string str.

string& assign(size_t n, char c) Assigns n characters, each of which is c.

string& insert(size_t pos1, const string&
str)

Inserts string str to position pos1.

string& insert(
 size_t pos1,
 const string& str,
 size_t pos2,
 size_t n)

Inserts n characters starting from position pos2
of string str to position pos1.

string& insert(
 size_t pos,
 const char* str,
 size_t n)

Inserts n characters of string str to position pos.

string& insert(size_t pos, const char* str) Inserts string str to position pos.

string& insert(size_t pos, size_t n, char c) Inserts a string of n characters, each of which is
c, to position pos.

iterator insert(iterator p, char c = char()) Inserts character c before the string specified by
p.

void insert(iterator p, size_t n, char c) Inserts n characters, each of which is c, before
the character specified by p.

string& erase(size_t pos = 0, size_t n =
npos)

Deletes n characters from position pos.

Type Definition Name Description

R20UT3248EJ0110 Rev.1.10 Page 858 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Function iterator erase(iterator position) Deletes the character referenced by position.

iterator erase(iterator first, iterator last) Deletes the characters in range [first, last].

string& replace(
 size_t pos1,
 size_t n1,
 const string& str)

Replaces the string of n1 characters starting from
position pos1 with string str.

string& replace(
 size_t pos1,
 size_t n1,
 const char* str)

string& replace(
 size_t pos1,
 size_t n1,
 const string& str,
 size_t pos2,
 size_t n2)

Replaces the string of n1 characters starting from
position pos1 with string of n2 characters from
position pos2 of str.

string& replace(
 size_t pos,
 size_t n1,
 const char* str,
 size_t n2)

Replaces the string of n1 characters starting from
position pos with string str of n2 characters.

string& replace(
 size_t pos,
 size_t n1,
 size_t n2,
 char c)

Replaces the string of n1 characters starting from
position pos with n2 characters, each of which is
c.

string& replace(
 iterator i1,
 iterator i2,
 const string& str)

Replaces the string from position i1 to i2 with
string str.

string& replace(
 iterator i1,
 iterator i2,
 const char* str)

string& replace(
 iterator i1,
 iterator i2,
 const char* str,
 size_t n)

Replaces the string from position i1 to i2 with n
characters of string str.

string& replace(
 iterator i1,
 iterator i2,
 size_t n,
 char c)

Replaces the string from position i1 to i2 with n
characters, each of which is c.

size_t copy(
 char* str,
 size_t n,
 size_t pos = 0) const

Copies the first n characters of string str to posi-
tion pos.

void swap(string& str) Swaps *this with string str.

Type Definition Name Description

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 859 of 1053
Nov 01, 2020

Function const char* c_str() const References the pointer to the memory area
where the string is stored.

const char* data() const

size_t find(
 const string& str,
 size_t pos = 0) const

Finds the position where the string same as string
str first appears after position pos.

size_t find(
 const char* str,
 size_t pos = 0) const

size_t find(
 const char* str,
 size_t pos,
 size_t n) const

Finds the position where the string same as n
characters of str first appears after position pos.

size_t find(char c, size_t pos = 0) const Finds the position where character c first appears
after position pos.

size_t rfind(
 const string& str,
 size_t pos = npos) const

Finds the position where a string same as string
str appears most recently before position pos.

size_t rfind(
 const char* str,
 size_t pos = npos) const

size_t rfind(
 const char* str,
 size_t pos, size_t n) const

Finds the position where the string same as n
characters of str appears most recently before
position pos.

size_t rfind(char c, size_t pos = npos)
 const

Finds the position where character c appears
most recently before position pos.

size_t find_first_of(
 const string& str,
 size_t pos = 0) const

Finds the position where any character included
in string str first appears after position pos.

size_t find_first_of(
 const char* str,
 size_t pos = 0) const

size_t find_first_of(
 const char* str,
 size_t pos, size_t n) const

Finds the position where any character included
in n characters of string str first appears after
position pos.

size_t find_first_of(
 char c, size_t pos = 0) const

Finds the position where character c first appears
after position pos.

size_t find_last_of(
 const string& str,
 size_t pos = npos) const

Finds the position where any character included
in string str appears most recently before posi-
tion pos.

size_t find_last_of(
 const char* str,
 size_t pos = npos) const

size_t find_last_of(
 const char* str,
 size_t pos,
 size_t n) const

Finds the position where any character included
in n characters of string str appears most
recently before position pos.

Type Definition Name Description

R20UT3248EJ0110 Rev.1.10 Page 860 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Function size_t find_last_of(
 char c,
 size_t pos = npos) const

Finds the position where character c appears
most recently before position pos.

size_t find_first_not_of(
 const string& str,
 size_t pos = 0) const

Finds the position where a character different
from any character included in string str first
appears after position pos

size_t find_first_not_of(
 const char* str,
 size_t pos = 0) const

size_t find_first_not_of(
 const char* str,
 size_t pos, size_t n) const

Finds the position where a character different
from any character in the first n characters of
string str appears after position pos.

size_t find_first_not_of(
 char c,
 size_t pos = 0) const

Finds the position where a character different
from c first appears after position pos.

size_t find_last_not_of(
 const string& str,
 size_t pos = npos) const

Finds the position where a character different
from any character included in string str appears
most recently before position pos.

size_t find_last_not_of(
 const char* str,
 size_t pos = npos) const

size_t find_last_not_of(
 const char* str,
 size_t pos, size_t n) const

Finds the position where a character different
from any character in the first n characters of
string str appears most recently before position
pos.

size_t find_last_not_of(
 char c,
 size_t pos = npos) const

Finds the position where a character different
from c appears most recently before position
pos.

string substr(
 size_t pos = 0,
 size_t n = npos) const

Creates an object from a string in the range
[pos,n] of the stored string.

int compare(const string& str) const Compares the string with string str.

int compare(
 size_t pos1,
 size_t n1,
 const string& str) const

Compares n1 characters from position pos1 of
*this with str.

int compare(
 size_t pos1,
 size_t n1,
 const string& str,
 size_t pos2,
 size_t n2) const

Compares the string of n1 characters from posi-
tion pos1 with the string of n2 characters from
position pos2 of string str.

int compare(const char* str) const Compares *this with string str.

int compare(
 size_t pos1,
 size_t n1,
 const char* str,
 size_t n2 = npos) const

Compares the string of n1 characters from posi-
tion pos1 with n2 characters of string str.

Type Definition Name Description

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 861 of 1053
Nov 01, 2020

Sets as follows:
 s_ptr = 0;
 s_len = 0;
 s_res = 1;

Copies str. Note that s_len will be the smaller value of n and s_len.

Sets as follows:
 s_ptr = str;
 s_len = n;
 s_res = n + 1;

Sets as follows:
 s_ptr = str;
 s_len = length of string str;
 s_res = length of string str + 1;

Sets as follows:
 s_ptr = string of n characters, each of which is c
 s_len = n;
 s_res = n + 1;

Destructor of class string.
Deallocates the memory area where the string is stored.

Assigns the data of str.
Return value: *this

Creates a string object from str and assigns its data to the string object.
Return value: *this

Creates a string object from c and assigns its data to the string object.
Return value: *this

string::string(void)

string::string(const string& str, size_t pos = 0, size_t n = npos)

string::string(const char* str, size_t n)

string::string(const char* str)

string::string(size_t n, char c)

string::~string()

string& string::operator(const string& str)

string& string::operator=(const char* str)

string& string::operator=(char c)

R20UT3248EJ0110 Rev.1.10 Page 862 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Calculates the start pointer of the string.
Return value: Start pointer of the string.

Calculates the start pointer of the string.
Return value: Start pointer of the string.

Calculates the end pointer of the string.
Return value: End pointer of the string.

Calculates the end pointer of the string.
Return value: End pointer of the string.

Calculates the length of the stored string.
Return value: Length of the stored string.

Calculates the length of the stored string.
Return value: Length of the stored string.

Calculates the size of the allocated memory area.
Return value: Size of the allocated area.

Changes the number of characters in the string that can be stored by the object to n.
If n<=size(), replaces the string with the original string with length n.
If n>size(), replaces the string with a string that has c appended to the end so that the length will be equal to n.
The length must be n<=max_size().
If n>max_size(), the string length is n=max_size().

Changes the number of characters in the string that can be stored by the object to n.
If n<=size(), replaces the string with the original string with length n.
The length must be n<=max_size.

Calculates the size of the allocated memory area.
Return value: Size of the allocated memory area

string::iterator string::begin()

string::const_iterator string::begin() const

string::iterator string::end()

string::const_iterator string::end() const

size_t string::size() const

size_t string::length() const

size_t string::max_size() const

void string::resize(size_t n, char c)

void string::resize(size_t n)

size_t string::capacity() const

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 863 of 1053
Nov 01, 2020

Re-allocates the memory area.
After reserve(), capacity() will be equal to or larger than the reserve() parameter.
When the memory area is re-allocated, all references, pointers, and iterator that references the elements of the
numeric sequence become invalid.

Clears the stored string.

Checks whether the number of characters in the stored string is 0.
Return value: If the length of the stored string is 0: true
 If the length of the stored string is not zero: false

References s_ptr[pos].
Return value: If n< s_len: s_ptr [pos]
 If n>= s_len: '\0'

References s_ptr[pos].
Return value: If n< s_len: s_ptr [pos]
 If n>= s_len: '\0'

References s_ptr[pos].
Return value: If n< s_len: s_ptr [pos]
 If n>= s_len: '\0'

References s_ptr[pos].
Return value: If n< s_len: s_ptr [pos]
 If n>= s_len: '\0'

Appends the string stored in str to the object.
Return value: *this

Creates a string object from str and adds the string to the object.
Return value: *this

void string::reserve(size_t res_arg = 0)

void string::clear()

bool string::empty() const

const char& string::operator[](size_t pos) const

char& string::operator[](size_t pos)

const char& string::at(size_t pos) const

char& string::at(size_t pos)

string& string::operator+=(const string& str)

string& string::operator+=(const char* str)

R20UT3248EJ0110 Rev.1.10 Page 864 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Creates a string object from c and adds the string to the object.
Return value: *this

Appends string str to the object.
Return value: *this

Appends string str to the object.
Return value: *this

Appends n characters of string str to the object position pos.
Return value: *this

Appends n characters of string str to the object.
Return value: *this

Appends n characters, each of which is c, to the object.
Return value: *this

Assigns string str.
Return value: *this

Assigns string str.
Return value: *this

Assigns n characters of string str to position pos.
Return value: *this

Assigns n characters of string str.
Return value: *this

string& string::operator+=(char c)

string& string::append(const string& str)

string& string::append(const char* str)

string& string::append(const string& str, size_t pos, size_t n);

string& string::append(const char* str, size_t n)

string& string::append(size_t n, char c)

string& string::assign(const string& str)

string& string::assign(const char* str)

string& string::assign(const string& str, size_t pos, size_t n)

string& string::assign(const char* str, size_t n)

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 865 of 1053
Nov 01, 2020

Assigns n characters, each of which is c.
Return value: *this

Inserts string str to position pos1.
Return value: *this

Inserts n characters starting from position pos2 of string str to position pos1.
Return value: *this

Inserts n characters of string str to position pos.
Return value: *this

Inserts string str to position pos.
Return value: *this

Inserts a string of n characters, each of which is c, to position pos.
Return value: *this

Inserts character c before the string specified by p.
Return value: The inserted character

Inserts n characters, each of which is c, before the character specified by p.

Deletes n characters starting from position pos.
Return value: *this

Deletes the character referenced by position.
Return value: If the next iterator of the element to be deleted exists: The next iterator of the deleted element
 If the next iterator of the element to be deleted does not exist: end()

string& string::assign(size_t n, char c)

string& string::insert(size_t pos1, const string& str)

string& string::insert(size_t pos1, const string& str, size_t pos2, size_t n)

string& string::insert(size_t pos, const char* str, size_t n)

string& string::insert(size_t pos, const char* str)

string& string::insert(size_t pos, size_t n, char c)

string::iterator string::insert(iterator p, char c = char())

void string::insert(iterator p, size_t n, char c)

string& string::erase(size_t pos = 0, size_t n = npos)

iterator string::erase(iterator position)

R20UT3248EJ0110 Rev.1.10 Page 866 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Deletes the characters in range [first, last].
Return value: If the next iterator of last exists: The next iterator of last
 If the next iterator of last does not exist: end()

Replaces the string of n1 characters starting from position pos1 with string str.
Return value: *this

Replaces the string of n1 characters starting from position pos1 with string str.
Return value: *this

Replaces the string of n1 characters starting from position pos1 with the string of n2 characters starting from
position pos2 in string str.
Return value: *this

Replaces the string of n1 characters starting from position pos1 with n2 characters of string str.
Return value: *this

Replaces the string of n1 characters starting from position pos with n2 characters, each of which is c.
Return value: *this

Replaces the string from position i1 to i2 with string str.
Return value: *this

Replaces the string from position i1 to i2 with string str.
Return value: *this

Replaces the string from position i1 to i2 with n characters of string str
Return value: *this

Replaces the string from position i1 to i2 with n characters, each of which is c.
Return value: *this

iterator string::erase(iterator first, iterator last)

string& string::replace(size_t pos1, size_t n1, const string& str)

string& string::replace(size_t pos1, size_t n1, const char* str)

string& string::replace(size_t pos1, size_t n1, const string& str, size_t pos2, size_t n2)

string& string::replace(size_t pos, size_t n1, const char* str, size_t n2)

string& string::replace(size_t pos, size_t n1, size_t n2, char c)

string& string::replace(iterator i1, iterator i2, const string& str)

string& string::replace(iterator i1, iterator i2, const char* str)

string& string::replace(iterator i1, iterator i2, const char* str, size_t n)

string& string::replace(iterator i1, iterator i2, size_t n, char c)

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 867 of 1053
Nov 01, 2020

Copies n characters of string str to position pos.
Return value: rlen

Swaps *this with string str.

References the pointer to the memory area where the string is stored.
Return value: s_ptr

References the pointer to the memory area where the string is stored.
Return value: s_ptr

Finds the position where the string same as string str first appears after position pos.
Return value: Offset of string.

Finds the position where the string same as string str first appears after position pos.
Return value: Offset of string.

Finds the position where the string same as n characters of string str first appears after position pos.
Return value: Offset of string.

Finds the position where character c first appears after position pos.
Return value: Offset of string.

Finds the position where a string same as string str appears most recently before position pos.
Return value: Offset of string.

Finds the position where a string same as string str appears most recently before position pos.
Return value: Offset of string.

size_t string::copy(char* str, size_t n, size_t pos = 0) const

void string::swap(string& str)

const char* string::c_str() const

const char* string::data() const

size_t string::find(const string& str, size_t pos = 0) const

size_t string::find (const char* str, size_t pos = 0) const

size_t string::find(const char* str, size_t pos, size_t n) const

size_t string::find(char c, size_t pos = 0) const

size_t string::rfind(const string& str, size_t pos = npos) const

size_t string::rfind(const char* str, size_t pos = npos) const

R20UT3248EJ0110 Rev.1.10 Page 868 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Finds the position where the string same as n characters of string str appears most recently before position
pos.
Return value: Offset of string.

Finds the position where character c appears most recently before position pos.
Return value: Offset of string.

Finds the position where any character included in string str first appears after position pos.
Return value: Offset of string.

Finds the position where any character included in string str first appears after position pos.
Return value: Offset of string.

Finds the position where any character included in n characters of string str first appears after position pos.
Return value: Offset of string.

Finds the position where character c first appears after position pos.
Return value: Offset of string.

Finds the position where any character included in string str appears most recently before position pos.
Return value: Offset of string.

Finds the position where any character included in string str appears most recently before position pos.
Return value: Offset of string.

Finds the position where any character included in n characters of string str appears most recently before posi-
tion pos.
Return value: Offset of string.

Finds the position where character c appears most recently before position pos.
Return value: Offset of string.

size_t string::rfind(const char* str, size_t pos, size_t n) const

size_t string::rfind(char c, size_t pos = npos) const

size_t string::find_first_of(const string& str, size_t pos = 0) const

size_t string::find_first_of(const char* str, size_t pos = 0) const

size_t string::find_first_of(const char* str, size_t pos, size_t n) const

size_t string::find_first_of(char c, size_t pos = 0) const

size_t string::find_last_of(const string& str, size_t pos = npos) const

size_t string::find_last_of(const char* str, size_t pos = npos) const

size_t string::find_last_of(const char* str, size_t pos, size_t n) const

size_t string::find_last_of(char c, size_t pos = npos) const

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 869 of 1053
Nov 01, 2020

Finds the position where a character different from any character included in string str first appears after posi-
tion pos.
Return value: Offset of string.

Finds the position where a character different from any character included in string str first appears after posi-
tion pos.
Return value: Offset of string.

Finds the position where a character different from any character in the first n characters of string str first
appears after position pos.
Return value: Offset of string.

Finds the position where a character different from character c first appears after position pos.
Return value: Offset of string.

Finds the position where a character different from any character included in string str appears most recently
before position pos.
Return value: Offset of string.

Finds the position where a character different from any character included in string str appears most recently
before position pos.
Return value: Offset of string.

Finds the position where a character different from any character in the first n characters of string str appears
most recently before position pos.
Return value: Offset of string.

Finds the position where a character different from character c appears most recently before position pos.
Return value: Offset of string.

Creates an object from a string in the range [pos,n] of the stored string.
Return value: Object with a string in the range [pos,n].

size_t string::find_first_not_of(const string& str, size_t pos = 0) const

size_t string::find_first_not_of(const char* str, size_t pos = 0) const

size_t string::find_first_not_of(const char* str, size_t pos, size_t n) const

size_t string::find_first_not_of(char c, size_t pos = 0) const

size_t string::find_last_not_of(const string& str, size_t pos = npos) const

size_t string::find_last_not_of(const char* str, size_t pos = npos) const

size_t string::find_last_not_of(const char* str, size_t pos, size_t n) const

size_t string::find_last_not_of(char c, size_t pos = npos) const

string string::substr(size_t pos = 0, size_t n = npos) const

R20UT3248EJ0110 Rev.1.10 Page 870 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Compares the string with string str.
Return value: If the strings are the same: 0
 If the strings are different: 1 when this->s_len > str.s_len,
 -1 when this->s_len < str.s_len

Compares a string of n1 characters starting from position pos1 of *this with string str.
Return value: If the strings are the same: 0
 If the strings are different: 1 when this->s_len > str.s_len,
 -1 when this->s_len < str.s_len

Compares a string of n1 characters starting from position pos1 with the string of n2 characters from position
pos2 of string str.
Return value: If the strings are the same: 0
 If the strings are different: 1 when this->s_len > str.s_len,
 -1 when this->s_len < str.s_len

Compares *this with string str.
Return value: If the strings are the same: 0
 If the strings are different: 1 when this->s_len > str.s_len,
 -1 when this->s_len < str.s_len

Compares the string of n1 characters from position pos1 with n2 characters of string str.
Return value: If the strings are the same: 0
 If the strings are different: 1 when this->s_len > str.s_len,
 -1 when this->s_len < str.s_len

(b) string Class Manipulators

int string::compare(const string& str) const

int string::compare(size_t pos1, size_t n1, const string& str) const

int string::compare(size_t pos1, size_t n1, const string& str, size_t pos2, size_t n2) const

int string::compare(const char* str) const

int string::compare(size_t pos1, size_t n1, const char* str, size_t n2 = npos) const

Type Definition Name Description

Function string operator +(
 const string& lhs,
 const string& rhs)

Appends the string (or characters) of
rhs to the string (or characters) of lhs,
creates an object and stores the string
in the object.

string operator+(const char* lhs, const string& rhs)

string operator+(char lhs, const string& rhs)

string operator+(const string& lhs, const char* rhs)

string operator+(const string& lhs, char rhs)

bool operator==(
 const string& lhs,
 const string& rhs)

Compares the string of lhs with the
string of rhs.

bool operator==(const char* lhs, const string& rhs)

bool operator==(const string& lhs, const char* rhs)

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 871 of 1053
Nov 01, 2020

Appends the string (characters) of lhs with the strings (characters) of rhs, creates an object and stores the
string in the object.
Return value: Object where the linked strings are stored.

Appends the string (characters) of lhs with the strings (characters) of rhs, creates an object and stores the
string in the object.
Return value: Object where the linked strings are stored.

Function bool operator!=(const string& lhs, const string& rhs) Compares the string of lhs with the
string of rhs.

bool operator!=(const char* lhs, const string& rhs)

bool operator!=(const string& lhs, const char* rhs)

bool operator<(const string& lhs, const string& rhs) Compares the string length of lhs with
the string length of rhs.

bool operator<(const char* lhs, const string& rhs) Compares the string length of lhs with
the string length of rhs.

bool operator<(const string& lhs, const char* rhs)

bool operator>(const string& lhs, const string& rhs) Compares the string length of lhs with
the string length of rhs.

bool operator>(const char* lhs, const string& rhs)

bool operator>(const string& lhs, const char* rhs)

bool operator<=(
 const string& lhs,
 const string& rhs)

Compares the string length of lhs with
the string length of rhs.

bool operator<=(const char* lhs, const string& rhs)

bool operator<=(const string& lhs, const char* rhs)

bool operator>=(const string& lhs, const string& rhs) Compares the string length of lhs with
the string length of rhs.

bool operator>=(const char* lhs, const string& rhs)

bool operator>=(const string& lhs, const char* rhs)

void swap(string& lhs, string& rhs) Swaps the string of lhs with the string
of rhs.

istream& operator>>(istream& is, string& str) Extracts the string to str.

ostream& operator<<(
 ostream& os,
 const string& str)

Inserts string str.

istream& getline(
 istream& is,
 string& str,
 char delim)

Extracts a string from is and appends it
to str. If delim is found in the string,
input is stopped.

istream& getline(istream& is, string& str) Extracts a string from is and appends it
to str. If a new-line character is
detected, input is stopped.

string operator+(const string& lhs, const string& rhs)

string operator+(const char* lhs, const string& rhs)

Type Definition Name Description

R20UT3248EJ0110 Rev.1.10 Page 872 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Appends the string (characters) of lhs with the strings (characters) of rhs, creates an object and stores the
string in the object.
Return value: Object where the linked strings are stored.

Appends the string (characters) of lhs with the strings (characters) of rhs, creates an object and stores the
string in the object.
Return value: Object where the linked strings are stored.

Appends the string (characters) of lhs with the strings (characters) of rhs, creates an object and stores the
string in the object.
Return value: Object where the linked strings are stored.

Compares the string of lhs with the string of rhs.
Return value: If the strings are the same: true
 If the strings are different: false

Compares the string of lhs with the string of rhs.
Return value: If the strings are the same: true
 If the strings are different: false

Compares the string of lhs with the string of rhs.
Return value: If the strings are the same: true
 If the strings are different: false

Compares the string of lhs with the string of rhs.
Return value: If the strings are the same: false

Compares the string of lhs with the string of rhs.
Return value: If the strings are the same: false

Compares the string of lhs with the string of rhs.
Return value: If the strings are the same: false
 If the strings are different: true

string operator+(char lhs, const string& rhs)

string operator+(const string& lhs, const char* rhs)

string operator+(const string& lhs, char rhs)

bool operator==(const string& lhs, const string& rhs)

bool operator==(const char* lhs, const string& rhs)

bool operator==(const string& lhs, const char* rhs)

bool operator!=(const string& lhs, const string& rhs)

bool operator!=(const char* lhs, const string& rhs)

bool operator!=(const string& lhs, const char* rhs)

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 873 of 1053
Nov 01, 2020

Compares the string length of lhs with the string length of rhs.
Return value: If lhs.s_len < rhs.s_len: true
 If lhs.s_len >= rhs.s_len: false

Compares the string length of lhs with the string length of rhs.
Return value: If lhs.s_len < rhs.s_len: true
 If lhs.s_len >= rhs.s_len: false

Compares the string length of lhs with the string length of rhs.
Return value: If lhs.s_len < rhs.s_len: true
 If lhs.s_len >= rhs.s_len: false

Compares the string length of lhs with the string length of rhs.
Return value: If lhs.s_len > rhs.s_len: true

Compares the string length of lhs with the string length of rhs.
Return value: If lhs.s_len > rhs.s_len: true

Compares the string length of lhs with the string length of rhs.
Return value: If lhs.s_len > rhs.s_len: true
 If lhs.s_len <= rhs.s_len: false

Compares the string length of lhs with the string length of rhs.
Return value: If lhs.s_len <= rhs.s_len: true
 If lhs.s_len > rhs.s_len: false

Compares the string length of lhs with the string length of rhs.
Return value: If lhs.s_len <= rhs.s_len: true
 If lhs.s_len > rhs.s_len: false

Compares the string length of lhs with the string length of rhs.
Return value: If lhs.s_len <= rhs.s_len: true
 If lhs.s_len > rhs.s_len: false

bool operator<(const string& lhs, const string& rhs)

bool operator<(const char* lhs, const string& rhs)

bool operator<(const string& lhs, const char* rhs)

bool operator>(const string& lhs, const string& rhs)

bool operator>(const char* lhs, const string& rhs)

bool operator>(const string& lhs, const char* rhs)

bool operator<=(const string& lhs, const string& rhs)

bool operator<=(const char* lhs, const string& rhs)

bool operator<=(const string& lhs, const char* rhs)

R20UT3248EJ0110 Rev.1.10 Page 874 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

Compares the string length of lhs with the string length of rhs.
Return value: If lhs.s_len >= rhs.s_len: true
 If lhs.s_len < rhs.s_len: false

Compares the string length of lhs with the string length of rhs.
Return value: If lhs.s_len >= rhs.s_len: true
 If lhs.s_len < rhs.s_len: false

Compares the string length of lhs with the string length of rhs.
Return value: If lhs.s_len >= rhs.s_len: true
 If lhs.s_len < rhs.s_len: false

Swaps the string of lhs with the string of rhs.

Extracts a string to str.
Return value: is

Inserts string str.
Return value: os

Extracts a string from is and appends it to str.
If delim is found in the string, the input is stopped.
Return value: is

Extracts a string from is and appends it to str.
If a new-line character is found, the input is stopped.
Return value: is

bool operator>=(const string& lhs, const string& rhs)

bool operator>=(const char* lhs, const string& rhs)

bool operator>=(const string& lhs, const char* rhs)

void swap(string& lhs,string& rhs)

istream& operator>>(istream& is, string& str)

ostream& operator<<(ostream& os, const string& str)

istream& getline(istream& is, string& str, char delim)

istream& getline(istream& is, string& str)

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

R20UT3248EJ0110 Rev.1.10 Page 875 of 1053
Nov 01, 2020

7.6 Unsupported Libraries

Table 6.15 lists the libraries which are specified in the C language specifications but not supported by this compiler.

Table 7.16 Unsupported Libraries

Note The header file is not supported.

No. Header File Library Names

1 locale.h*1 setlocale, localeconv

2 signal.h*1 signal, raise

3 stdio.h remove, rename, tmpfile, tmpnam, fgetpos, fsetpos

4 stdlib.h abort, atexit, exit, _Exit, getenv, system, mblen, mbtowc, wctomb, mbstowcs, wcs-
tombs

5 string.h strcoll, strxfrm

6 time.h clock, difftime, mktime, time, asctime, ctime, gmtime, localtime, strftime

7 wctype.h iswalnum, iswalpha, iswblank, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct,
iswspace, iswupper, iswxdigit, iswctype, wctype, towlower, towupper, towctrans,
wctrans

8 wchar.h wcsftime, wcscoll, wcsxfrm, wctob, mbrtowc, wcrtomb, mbsrtowcs, wcsrtombs

R20UT3248EJ0110 Rev.1.10 Page 876 of 1053
Nov 01, 2020

CC-RX 7.　LIBRARY FUNCTIONAL SPECIFICATION

CC-RX 8.　STARTUP

R20UT3248EJ0110 Rev.1.10 Page 877 of 1053
Nov 01, 2020

8. STARTUP

This chapter describes the startup routine.

8.1 Overview

Running a user program that was written in C/C++ requires a separate program to handle copying of initialized data for
inclusion in the target system and to start the user program (main function). This program is called the startup routine.

The user must create the startup routines for user programs. Renesas provides the source code for a startup routine
with its integrated development environment (IDE) for the RX Family so that the user has a startup routine that can be
adjusted to suit the target system.

8.2 File Contents

Startup routine that The Renesas integrated development environment (IDE) for RX Family supplies is as follows:

Table 8.1 List of Programs Created in Integrated Development Environment

Notes 1. This is for the RXv1 instruction-set architecture.
For an RX instruction-set architecture other than the RXv1 instruction-set architecture, this becomes the
"exception vector table".

8.3 Startup Program Creation

Here, processing to prepare the environment for program execution is described. However, the environment for pro-
gram execution will differ among user systems, and so a program to set the execution environment must be created
according to the specifications of the user system.

This section describes the standard startup program. The startup program for an application that uses the PIC/PID func-
tion needs special processing; refer also to section 8.5.7 Application Startup.

A summary of the necessary procedures is given below.

- Fixed vector table setting
Sets the fixed vector table to initiate the initial setting routine (PowerOn_Reset_PC) at a power-on reset. In addition
to the reset vector, processing routines, such as, privileged instruction exception, access exception, undefined
instruction exception, floating-point exception, and nonmaskable interrupt, can be registered to the fixed vector table.

- Initial setting
Performs the procedures required to reach the main function. Registers and sections are initialized and various initial
setting routines are called.

File Name Description

(a) resetprg.c Initial setting routine (reset vector function)

(b) intprg.c Vector function definitions

(c) vecttbl.c Fixed vector table*1

(d) dbsct.c Section initialization processing (table)

(e) lowsrc.c Low-level interface routine (C language part)

(f) lowlvl.src Low-level interface routine (assembly language part)

(g) sbrk.c Low-level interface routine (sbrk function)

(h) typedefine.h Type definition header

(i) vect.h Vector function header

(j) stacksct.h Stack size settings

(k) lowsrc.h Low-level interface routine (C language header)

(l) sbrk.h Low-level interface routine (sbrk function header)

R20UT3248EJ0110 Rev.1.10 Page 878 of 1053
Nov 01, 2020

CC-RX 8.　STARTUP

- Low-level interface routine creation
Routines providing an interface between the user system and library functions which are necessary when standard I/
O (stdio.h, ios, streambuf, istream, and ostream) and memory management libraries (stdlib.h and new) are used.

- Termination processing routine (exit, atexit, and abort)* creation
Processing for terminating the program is performed.

Note * When using the C library function exit, atexit, or abort to terminate a program, these functions must
be created as appropriate to the user system.
When using the C++ program or C library macro assert, the abort function must always be created.

8.3.1 Fixed Vector Table Setting

To call the initial setting routine (PowerOn_Reset_PC) at a power-on reset, set the address of PowerOn_Reset_PC to
the reset vector of the fixed vector table. A coding example is shown below.

In addition to the reset vector, processing routines, such as, privileged instruction exception, access exception, unde-
fined instruction exception, floating-point exception, and nonmaskable interrupt, can be registered to the fixed vector table.

For details on the fixed vector table, refer to the hardware manual.
Example:

8.3.2 Initial Setting

The initial setting routine (PowerOn_Reset_PC) is a function that contains the procedures required before and after
executing the main function. Processings required in the initial setting routine are described below in order.

(1) Initialization of PSW for Initial Setting Processing
The PSW register necessary for performing the initial setting processing is initialized. For example, disabling inter-
rupts is set in PSW during the initial setting processing to prevent from accepting interrupts.
All bits in PSW are initialized to 0 at a reset, and the interrupt enable bit (I bit) is also initialized to 0 (interrupt dis-
abled state).

(2) Initialization of Stack Pointer
The stack pointer (USP register and ISP register) is initialized. The #pragma entry declaration for the
PowerOn_Reset_PC function makes the compiler automatically create the ISP/USP initialization code at the
beginning of the function.
This procedure does not have to be written because the PowerOn_Reset_PC function is declared by #pragma
entry.

(3) Initialization of General Registers Used as Base Registers
When the base option is used in the compiler, general registers used as base addresses in the entire program
need to be initialized. The #pragma entry declaration for the PowerOn_Reset_PC function makes the compiler
automatically create the initialization code for each register at the beginning of the function.
This procedure does not have to be written because the PowerOn_Reset_PC function is declared by #pragma
entry.

(4) Initialization of Control Registers
The address of the variable vector table is written to INTB. FINTV, FPSW, BPC, BPSW, EXTB, and DPSW are
also initialized as required. These registers can be initialized using the intrinsic functions of the compiler.
Note however that only PSW is not initialized because it holds the interrupt mask setting.

(5) Initializing the Trigonometric Function Unit
When the -tfu option is specified, also call the __init_tfu() intrinsic function to initialize the trigonometric func-tion
unit.

extern void PowerOn_Reset_PC(void);

#pragma section C FIXEDVECT /* Outputs RESET_Vectors to the FIXEDVECT */
 /* section by #pragma section declaration. */
 /* Allocates the FIXEDVECT section to reset */
 /* vector by the start option at linkage. */
void (*const RESET_Vectors[])(void)={
 PowerOn_Reset_PC,
};

CC-RX 8.　STARTUP

R20UT3248EJ0110 Rev.1.10 Page 879 of 1053
Nov 01, 2020

(6) Initialization Processing of Sections
The initialization routine for RAM area sections (_INITSCT) is called. Uninitialized data sections are initialized to
zero. For initialized data sections, the initial values of the ROM area are copied to the RAM area. _INITSCT is pro-
vided as a standard library.
The user needs to write the sections to be initialized to the tables for section initialization (DTBL and BTBL). The
section address operator is used to set the start and end addresses of the sections used by the _INITSCT func-
tion.
Section names in the section initialization tables are declared, using C$BSEC for uninitialized data areas, and
C$DSEC for initialized data areas.
A coding example is shown below.
Example:

(7) Initialization Processing of Libraries
The routine for performing necessary initialization processing (_INITLIB) is called when the C/C++ library func-
tions are used.
In order to set only those values which are necessary for the functions that are actually to be used, please refer to
the following guidelines.

- When an initial setting is required in the prepared low-level interface routines, the initial setting
(_INIT_LOWLEVEL) in accordance with the specifications of the low-level interface routines is necessary.

- When using the rand function or strtok function, initial settings other than those for standard I/O
(_INIT_OTHERLIB) are necessary.

An example of a program to perform initial library settings is shown below.

#pragma section C C$DSEC //Section name must be C$DSEC
extern const struct {
 void *rom_s; //Start address member of the initialized data
 //section in ROM
 void *rom_e; //End address member of the initialized data
 //section in ROM
 void *ram_s; //Start address member of the initialized data
 //section in RAM
} DTBL[] = {__sectop("D"), __secend("D"), __sectop("R")};

#pragma section C C$BSEC //Section name must be C$BSEC
extern const struct {
 void *b_s; //Start address member of the uninitialized data section
 void *b_e; //End address member of the uninitialized data section
} BTBL[] = {__sectop("B"), __secend("B")};

R20UT3248EJ0110 Rev.1.10 Page 880 of 1053
Nov 01, 2020

CC-RX 8.　STARTUP

Notes 1. Specify the filename for the standard I/O file. This name is used in the low-level interface routine
"open".

Notes 2. In the case of a console or other interactive device, a flag is set to prevent the use of buffering.

(8) Initialization of Global Class Objects
When developing a C++ program, the routine (_CALL_INIT) for calling the constructor of a class object that is
declared as global is called. _CALL_INIT is provided as a standard library.

(9) Initialization of PSW for main Function Execution
The PSW register is initialized. The interrupt mask setting is canceled here.

(10) Changing of PM Bit in PSW
After a reset, operation is in privileged mode (PM bit in PSW is 0). To switch to user mode, intrinsic function
chg_pmusr is executed.
When using the chg_pmusr function, some care should be taken. Refer to the description of chg_pmusr in 4.2.6
Intrinsic Functions.

(11) User Program Execution
The main function is executed.

(12) Global Class Object Postprocessing
When developing a C++ program, the routine (_CALL_END) for calling the destructor of a class object that is
declared as global is called. _CALL_END is provided as a standard library.

#include <stdio.h>
#include <stdlib.h>
#define IOSTREAM 3
const size_t _sbrk_size = 520; // Specifies the minimum unit of the size to
 // define for the heap area (default: 1024)
extern char *_s1ptr;

#ifdef __cplusplus
extern "C" {
#endif
void _INITLIB (void)
{
 _INIT_LOWLEVEL(); // Set initial setting for low-level
 // interface routines
 _INIT_OTHERLIB(); // Set initial setting for rand function and
 // strtok function
}

void _INIT_LOWLEVEL (void)
{ // Set necessary initial setting for low-level
 // library
}

void _INIT_OTHERLIB(void)
{
 srand(1); // Set initial setting if using rand function
 _s1ptr=NULL; // Set initial setting if using strtok function
}
#ifdef __cplusplus
}
#endif

CC-RX 8.　STARTUP

R20UT3248EJ0110 Rev.1.10 Page 881 of 1053
Nov 01, 2020

8.3.3 Coding Example of Initial Setting Routine

A coding example of the PowerOn_Reset_PC function is shown here.
For the actual initial setting routine created in the integrated development environment, refer to 8.4 Coding Example.

#include <machine.h>
#include <_h_c_lib.h>
#include "typedefine.h"
#include "stacksct.h"

#ifdef __cplusplus
extern "C" {
#endif
void PowerOn_Reset_PC(void);
void main(void);
#ifdef __cplusplus
}
#endif

#ifdef __cplusplus // Use SIM I/O
extern "C" {
#endif
extern void _INITLIB(void);
#ifdef __cplusplus
}
#endif

#define PSW_init 0x00010000
#define FPSW_DPSW_init 0x00000100

#pragma section ResetPRG
#pragma entry PowerOn_Reset_PC
void PowerOn_Reset_PC(void)
{
#if (__RX_ISA_VERSION__ >= 2) || defined(__RXV2)
 set_extb(__sectop("EXCEPTVECT"));
#endif
 set_intb(__sectop("C$VECT"));
#ifdef __FPU
 set_fpsw(FPSW_DPSW_init);
#ifdef __DPFPU
 __set_dpsw(FPSW_DPSW_init);
#endif
#endif
#ifdef __TFU
 __init_tfu();
#endif

 _INITSCT();
 _INITLIB();
 set_psw(PSW_init);
 main();
 brk();
}

R20UT3248EJ0110 Rev.1.10 Page 882 of 1053
Nov 01, 2020

CC-RX 8.　STARTUP

8.3.4 Low-Level Interface Routines

Low-level interface routines are user-defined functions which are called from library functions in order to implement
library functions in accordance with the specifications of the user system. They need to be created in any of the following
cases.

(1) When using library functions related to standard I/O or memory management
(2) When a library function has to be a reentrant library

Table 8.2 lists the low-level interface routines used by C library functions.

Table 8.2 List of Low-Level Interface Routines

Notes 1. The function names open, close, read, write, lseek, sbrk, error_addr, wait_sem, and signal_sem are
reserved for low-level interface routines. They should not be used in user programs.

Notes 2. These routines are necessary when the reentrant library is used.

Initialization necessary for low-level interface routines must be performed on program startup. This initialization should
be performed using the _INIT_LOWLEVEL function in library initial setting processing (_INITLIB).

Below, after explaining the basic approach to low-level I/O, the specifications for each interface routine are described.

(1) Approach to I/O
In the standard I/O library, files are managed by means of FILE-type data; but in low-level interface routines, posi-
tive integers are assigned in a one-to-one correspondence with actual files for management. These integers are
called file numbers.
In the open routine, a file number is provided for a specified filename. The open routine must set the following
information such that this number can be used for file input and output.

- The device type of the file (console, printer, disk file, etc.) (In the cases of special devices such as consoles or
printers, special filenames must be set by the system and identified in the open routine.)

- When using file buffering, information such as the buffer position and size

- In the case of a disk file, the byte offset from the start of the file to the position for reading or writing
Based on the information set using the open routine, all subsequent I/O (read and write routines) and read/write
positioning (lseek routine) is performed.
When output buffering is being used, the close routine should be executed to write the contents of the buffer to the
actual file, so that the data area set by the open routine can be reused.

(2) Specifications of Low-Level Interface Routines
In this section, specifications for low-level interface routines are described. For each routine, the interface for call-
ing the routine, its operation, and information for using the routine are described.
The interface for the routines is indicated using the following format. Low-level interface routines should always be
given a prototype declaration. Add "extern C" to declare in the C++ program.

Name *1 Description

open Opens file.

close Closes file.

read Reads from file.

write Writes to file.

lseek Sets the read/write position in a file.

sbrk Allocates area in memory.

errno_addr *2 Acquires errno address.

wait_sem *2 Defines semaphore.

signal_sem *2 Releases semaphore.

CC-RX 8.　STARTUP

R20UT3248EJ0110 Rev.1.10 Page 883 of 1053
Nov 01, 2020

(Routine name)

[Description]

- (A summary of the routine operations is given)

[Return value]

Normal: (The return value on normal termination is explained)
Error: (The return value when an error occurs is given)

[Parameters]

(Name) (Meaning)
(The name of the parameter (The value passed as a parameter)
appearing in the interface)

R20UT3248EJ0110 Rev.1.10 Page 884 of 1053
Nov 01, 2020

CC-RX 8.　STARTUP

long open (const char *name, long mode, long flg)

[Description]

- Prepares for operations on the file corresponding to the filename of the first parameter. In the open routine, the file
type (console, printer, disk file, etc.) must be determined in order to enable writing or reading at a later time. The file
type must be referenced using the file number returned by the open routine each time reading or writing is to be per-
formed.

- The second parameter mode specifies processing to be performed when the file is opened. The meanings of each of
the bits of this parameter are as follows.

Table 8.3 Explanation of Bits in Parameter "mode" of open Routine

- When there is a contradiction between the file processing specified by mode and the properties of the actual file, error
processing should be performed. When the file is opened normally, the file number (a positive integer) should be
returned which should be used in subsequent read, write, lseek, and close routines. The correspondence between file
numbers and the actual files must be managed by low-level interface routines. If the open operation fails, -1 should be
returned.

[Return value]

Normal: The file number for the successfully opened file
Error: -1

[Parameters]

name Name of the file
mode Specifies the type of processing when the file is opened
flg Specifies processing when the file is opened (always 0777)

mode Bit Description

O_RDONLY (bit 0) When this bit is 1, the file is opened in read-only mode

O_WRONLY (bit 1) When this bit is 1, the file is opened in write-only mode

O_RDWR (bit 2) When this bit is 1, the file is opened for both reading and writing

O_CREAT (bit 3) When this bit is 1, if a file with the filename given does not exist, it is created

O_TRUNC (bit 4) When this bit is 1, if a file with the filename given exists, the file contents are deleted
and the file size is set to 0

O_APPEND (bit 5) Sets the position within the file for the next read/write operation
 When 0: Set to read/write from the beginning of file
 When 1: Set to read/write from file end

mode

O_RDONLY
O_WRONLY
O_RDWR
O_CREAT
O_TRUNC
O_APPEND

15 45 3 2 1 0

CC-RX 8.　STARTUP

R20UT3248EJ0110 Rev.1.10 Page 885 of 1053
Nov 01, 2020

long close (long fileno)

[Description]

- The file number obtained using the open routine is passed as a parameter.

- The file management information area set using the open routine should be released to enable reuse. Also, when out-
put file buffering is performed in low-level interface routines, the buffer contents should be written to the actual file.

- When the file is closed successfully, 0 is returned; if the close operation fails, -1 is returned.

[Return value]

Normal: 0
Error: -1

[Parameters]

fileno Number of the file to be closed

R20UT3248EJ0110 Rev.1.10 Page 886 of 1053
Nov 01, 2020

CC-RX 8.　STARTUP

long read (long fileno, unsigned char *buf, long count)

[Description]

- Data is read from the file specified by the first parameter (fileno) to the area in memory specified by the second
parameter (buf). The number of bytes of data to be read is specified by the third parameter (count).

- When the end of the file is reached, only a number of bytes fewer than or equal to count bytes can be read.

- The position for file reading/writing advances by the number of bytes read.

- When reading is performed successfully, the actual number of bytes read is returned; if the read operation fails, -1 is
returned.

[Return value]

Normal: Actual number of bytes read
Error: -1

[Parameters]

fileno Number of the file to be read
buf Memory area to store read data
count Number of bytes to read

CC-RX 8.　STARTUP

R20UT3248EJ0110 Rev.1.10 Page 887 of 1053
Nov 01, 2020

long write (long fileno, const unsigned char *buf, long count)

[Description]

- Writes data to the file indicated by the first parameter (fileno) from the memory area indicated by the second parame-
ter (buf). The number of bytes to be written is indicated by the third parameter (count).

- If the device (disk, etc.) of the file to be written is full, only a number of bytes fewer than or equal to count bytes can be
written. It is recommended that, if the number of bytes actually written is zero a certain number of times in succession,
the disk should be judged to be full and an error (-1) should be returned.

- The position for file reading/writing advances by the number of bytes written. If writing is successful, the actual num-
ber of bytes written should be returned; if the write operation fails, -1 should be returned.

[Return value]

Normal: Actual number of bytes written
Error: -1

[Parameters]

fileno Number of the file to which data is to be written
buf Memory area containing data for writing
count Number of bytes to write

R20UT3248EJ0110 Rev.1.10 Page 888 of 1053
Nov 01, 2020

CC-RX 8.　STARTUP

long lseek (long fileno, long offset, long base)

[Description]

- Sets the position within the file, in byte units, for reading from and writing to the file.

- The position within a new file should be calculated and set using the following methods, depending on the third
parameter (base).
(1) When base is 0: Set the position at offset bytes from the file beginning
(2) When base is 1: Set the position at the current position plus offset bytes
(3) When base is 2: Set the position at the file size plus offset bytes

- When the file is a console, printer, or other interactive device, when the new offset is negative, or when in cases (1)
and (2) the file size is exceeded, an error occurs.

- When the file position is set correctly, the new position for reading/writing should be returned as an offset from the file
beginning; when the operation is not successful, -1 should be returned.

[Return value]

Normal: The new position for file reading/writing, as an offset in bytes
 from the file beginning
Error: -1

[Parameters]

fileno File number
offset Position for reading/writing, as an offset (in bytes)
base Starting-point of the offset

CC-RX 8.　STARTUP

R20UT3248EJ0110 Rev.1.10 Page 889 of 1053
Nov 01, 2020

char *sbrk (size_t size)

[Description]

- The size of the memory area to be allocated is passed as a parameter.

- When calling the sbrk routine several times, memory areas should be allocated in succession starting from lower
addresses. If the memory area for allocation is insufficient, an error should occur. When allocation is successful, the
address of the beginning of the allocated memory area should be returned; if unsuccessful, "(char *) -1" should be
returned.

- If you wish to use the standard library function malloc, calloc, or realloc, or the C++ function new, allocate at least 16
bytes of memory.

[Return value]

Normal: Start address of allocated memory
Error: (char *) -1

[Parameters]

size Size of data to be allocated

R20UT3248EJ0110 Rev.1.10 Page 890 of 1053
Nov 01, 2020

CC-RX 8.　STARTUP

long *errno_addr (void)

[Description]

- Returns the address of the error number of the current task.

- This routine is necessary when using a standard library, which was created by the standard library generator with the
reent option specified.

[Return value]

Address of the error number of the current task

CC-RX 8.　STARTUP

R20UT3248EJ0110 Rev.1.10 Page 891 of 1053
Nov 01, 2020

long wait_sem (long semnum)

[Description]

- Defines the semaphore specified by semnum.

- When the semaphore has been defined normally, 1 must be returned. Otherwise, 0 must be returned.

- This routine is necessary when using a standard library, which was created by the standard library generator with the
reent option specified.

[Return value]

Normal: 1
Error: 0

[Parameters]

semnum Semaphore ID

R20UT3248EJ0110 Rev.1.10 Page 892 of 1053
Nov 01, 2020

CC-RX 8.　STARTUP

long signal_sem (long semnum)

[Description]

- Releases the semaphore specified by semnum.

- When the semaphore has been released normally, 1 must be returned. Otherwise, 0 must be returned.

- This routine is necessary when using a standard library, which was created by the standard library generator with the
reent option specified.

[Return value]

Normal: 1
Error: 0

[Parameters]

semnum Semaphore ID

CC-RX 8.　STARTUP

R20UT3248EJ0110 Rev.1.10 Page 893 of 1053
Nov 01, 2020

(3) Example of Coding Low-Level Interface Routines

/**/
/* lowsrc.c: */
/*--*/
/* RX Family Simulator Debugger Interface Routine */
/* - Supports only the standard input/output(stdin,stdout,stderr) - */
/**/
#include <string.h>

/* File Numbers */
#define STDIN 0 /* Standard Input (Console) */
#define STDOUT 1 /* Standard Output (Console) */
#define STDERR 2 /* Standard Error Output (Console) */

#define FLMIN 0 /* Minimum value of the File Number */
#define FLMAX 3 /* Maximum value of the Number of Files */

/* File Flags */
#define O_RDONLY 0x0001 /* Read Only */
#define O_WRONLY 0x0002 /* Write Only */
#define O_RDWR 0x0004 /* Read and Write */

/* Special Character Codes */
#define CR 0x0d /* Carriage Return */
#define LF 0x0a /* Line Feed */

/* Heap Size of the sbrk */
#define HEAPSIZE 1024

/**/
/* Declaration of Using Functions */
/* - Outputs and Inputs to a Console on a Simulator Debugger - */
/**/
extern void charput(char); /* Inputs a Byte */
extern char charget(void); /* Outputs a Byte */

/**/
/* Definition of Static Variables */
/* - Used by the Low-Level Interface Routine - */
/**/
char flmod[FLMAX]; /* Open File Modes */

union HEAP_TYPE{
 long dummy; /* (Dummy: for 4-bytes alignment) */
 char heap[HEAPSIZE]; /* Heap Area of the sbrk */
};

static union HEAP_TYPE heap_area;

static char *brk=(char*)&heap_area; /* Latest Address of sbrk Assigned */

R20UT3248EJ0110 Rev.1.10 Page 894 of 1053
Nov 01, 2020

CC-RX 8.　STARTUP

/**/
/* open --- Open A File */
/* Return Value: File Number (Success) */
/* -1 (Fail) */
/**/
long open(const char *name, /* File Name */
 long mode, /* File Open Mode */
 long flg) /* Open Flag (Not Used) */
{
 /* Checks mode of the file, and Returns file number */

 if (strcmp(name,"stdin")==0) { /* Standard Input File */
 if ((mode&O_RDONLY)==0) {
 return (-1);
 }
 flmod[STDIN]=mode;
 return (STDIN);
 }

 else if (strcmp(name,"stdout")==0) { /* Standard Output File */
 if ((mode&O_WRONLY)==0) {
 return (-1);
 }
 flmod[STDOUT]=mode;
 return (STDOUT);
 }

 else if (strcmp(name,"stderr")==0){ /* Standard Error Output File */
 if ((mode&O_WRONLY)==0) {
 return (-1);
 }
 flmod[STDERR]=mode;
 return (STDERR);
 }

 else {
 return (-1); /* Error */
 }
}

/**/
/* close --- Close A File */
/* Return Value: 0 (Success) */
/* -1 (Fail) */
/**/
long close(long fileno) /* File Number */
{
 if (fileno<FLMIN || FLMAX<fileno) { /* Checks the File Number */
 return -1;
 }

 flmod[fileno]=0; /* Resets the File Mode */

 return 0;
}

CC-RX 8.　STARTUP

R20UT3248EJ0110 Rev.1.10 Page 895 of 1053
Nov 01, 2020

/**/
/* read --- Input Data */
/* Return Value: Bytes Number of Read (Success) */
/* -1 (Fail) */
/**/
long read(long fileno, /* File Number */
 unsigned char *buf, /* Write Buffer Address */
 long count) /* Bytes Number of Read */
{
 unsigned long i;

 /* Checks mode of the file, and Sets the Write Buffer each bytes */

 if (flmod[fileno]&O_RDONLY || flmod[fileno]&O_RDWR) {
 for (i=count;i>0;i--) {
 *buf=charget();
 if (*buf==CR) { /* Replaces CR into LF */
 *buf=LF;
 }
 buf++;
 }
 return count;
 }

 else {
 return -1;
 }
}

/**/
/* write --- Output Data */
/* Return Value: Bytes Number of Write (Success) */
/* -1 (Fail) */
/**/
long write(long fileno, /* File Number */
 const unsigned char *buf, /* Read Buffer Address */
 long count) /* Bytes Number of Write */
{
 unsigned long i;
 unsigned char c;

 /* Checks mode of the file, and Output from the Rrite Buffer each bytes */

 if (flmod[fileno]&O_WRONLY || flmod[fileno]&O_RDWR) {
 for (i=count; i>0; i--) {
 c=*buf++;
 charput(c);
 }
 return count;
 }

 else {
 return -1;
 }
}

R20UT3248EJ0110 Rev.1.10 Page 896 of 1053
Nov 01, 2020

CC-RX 8.　STARTUP

/**/
/* lseek --- Sets Position of Reading and Writing */
/* Return Value: Offset of the File Position (Success) */
/* -1 (Fail) */
/* (lseek doesn't support Console Input/Output) */
/**/
long lseek(long fileno, /* File Number */
 long offset, /* Position of Reading and Writing */
 long base) /* Start of Offset */
{
 return -1;
}

/**/
/* sbrk --- Allocate Heap Memory */
/* Return Value: Top address of Allocated Area (Success) */
/* -1 (Fail) */
/**/
char *sbrk(size_t size) /* Allcation Memory Size */
{
 char *p;

 /* Checks Free Area */

 if (brk+size>heap_area.heap+HEAPSIZE) {
 return (char *)-1;
 }

 p=brk; /* Allocate an Area */
 brk+=size; /* Updates the Latest Address */
 return p;
}

CC-RX 8.　STARTUP

R20UT3248EJ0110 Rev.1.10 Page 897 of 1053
Nov 01, 2020

;;;
; lowlvl.src ;
;;;
; RX Family Simulator/Debugger Interface Routine ;
; - Inputs and outputs one character - ;
;;;
 .GLB _charput
 .GLB _charget

SIM_IO .EQU 0h

 .SECTION P,CODE
;---
; _charput:
;---
_charput:
 MOV.L #IO_BUF,R2
 MOV.B R1,[R2]
 MOV.L #1220000h,R1
 MOV.L #PARM,R3
 MOV.L R2,[R3]
 MOV.L R3,R2
 MOV.L #SIM_IO,R3
 JSR R3
 RTS

;---
; _charget:
;---
_charget:
 MOV.L #1210000h,R1
 MOV.L #IO_BUF,R2
 MOV.L #PARM,R3
 MOV.L R2,[R3]
 MOV.L R3,R2
 MOV.L #SIM_IO,R3
 JSR R3
 MOV.L #IO_BUF,R2
 MOVU.B [R2],R1
 RTS

;---
; I/O Buffer
;---
 .SECTION B,DATA,ALIGN=4
PARM: .BLKL 1
 .SECTION B_1,DATA
IO_BUF: .BLKB 1
 .END

R20UT3248EJ0110 Rev.1.10 Page 898 of 1053
Nov 01, 2020

CC-RX 8.　STARTUP

(4) Example of Low-Level Interface Routine for Reentrant Library
The following shows an example of low-level interface routines for a reentrant library. These routines are neces-
sary when using a library, which was created by the library generator with the reent option specified.
When failing to allocate semaphores with the wait_sem function or signal_sem function, set errno as follows to
return from the library function.

Table 8.4 Error number list of the reentrant library sets to errno variable

When an interrupt with a priority level higher than the current level is generated after semaphores have been
defined, dead locks will occur if semaphores are defined again. Therefore, be careful for processes that share
resources because they might be nested by interrupts.

Function Name errno Description

wait_sem EMALRESM Failed to allocate semaphore resources for malloc.

ETOKRESM Failed to allocate semaphore resources for strtok.

EFLSRESM Failed to allocate semaphore resources for _Files.

EMBLNRESM Failed to allocate semaphore resources for mbrlen.

signal_sem EMALFRSM Failed to release semaphore resources for malloc.

ETOKFRSM Failed to release semaphore resources for strtok.

EFLSFRSM Failed to release semaphore resources for _Files.

EMBLNFRSM Failed to release semaphore resources for mbrlen.

CC-RX 8.　STARTUP

R20UT3248EJ0110 Rev.1.10 Page 899 of 1053
Nov 01, 2020

#define MALLOC_SEM 1 /* Semaphore No. for malloc */
#define STRTOK_SEM 2 /* Semaphore No. for strtok */
#define FILE_TBL_SEM 3 /* Semaphore No. for fopen */
#define MBRLEN_SEM 4 /* Semaphore No. for mbrlen */
#define FPSWREG_SEM 5 /* Semaphore No. for FPSW register */
#define FILES_SEM 6 /* Semaphore No. for _Files */
#define SEMSIZE 26 /* FILES_SEM + _nfiles (assumed _nfiles=20) */

#define TRUE 1
#define FALSE 0
#define OK 1
#define NG 0
extern long *errno_addr(void);
extern long wait_sem(long);
extern long signal_sem(long);
static long sem_errno;
static int force_fail_signal_sem = FALSE;
static int semaphore[SEMSIZE];

/**/
/* errno_addr: Acquisition of errno address */
/* Return value: errno address */
/**/
long *errno_addr(void)
{
 /* Return the errno address of the current task */
 return (&sem_errno);
}

/**/
/* wait_sem: Defines the specified numbers of semaphores */
/* Return value: OK(=1) (Normal) */
/* NG(=0) (Error) */
/**/
long wait_sem(long semnum) /* Semaphore ID */
{
 if((0 < semnum) && (semnum < SEMSIZE)) {
 if(semaphore[semnum] == FALSE) {
 semaphore[semnum] = TRUE;
 return(OK);
 }
 }
 return(NG);
}

/**/
/* signal_sem: Releases the specified numbers of semaphores */
/* Return value: OK(=1) (Normal) */
/* NG(=0) (Error) */
/**/
long signal_sem(long semnum) /* Semaphore ID */
{
 if(!force_fail_signal_sem) {
 if((0 <= semnum) && (semnum < SEMSIZE)) {
 if(semaphore[semnum] == TRUE) {
 semaphore[semnum] = FALSE;
 return(OK);
 }
 }
 }
 return(NG);
}

R20UT3248EJ0110 Rev.1.10 Page 900 of 1053
Nov 01, 2020

CC-RX 8.　STARTUP

8.3.5 Termination Processing Routine

(1) Example of Preparation of a Routine for Termination Processing Registration and Execution (atexit)
The method for preparation of the library function atexit to register termination processing is described.
The atexit function registers, in a table for termination processing, a function address passed as a parameter. If
the number of functions registered exceeds the limit (in this case, the number that can be registered is assumed to
be 32), or if an attempt is made to register the same function twice, NULL is returned. Otherwise, a value other
than NULL (in this case, the address of the registered function) is returned.
A program example is shown below.
Example:

(2) Example of Preparation of a Routine for Program Termination (exit)
The method for preparation of an exit library function for program termination is described. Program termination
processing will differ among user systems; refer to the program example below when preparing a termination pro-
cedure according to the specifications of the user system.
The exit function performs termination processing for a program according to the termination code for the program
passed as a parameter, and returns to the environment in which the program was started. Here, the termination
code is set to an external variable, and execution returned to the environment saved by the setjmp function imme-
diately before the main function was called. In order to return to the environment prior to program execution, the
following callmain function should be created, and instead of calling the function main from the
PowerOn_Reset_PC initial setting function, the callmain function should be called.
A program example is shown below.

#include <stdlib.h>

long _atexit_count=0 ;

void (*_atexit_buf[32])(void) ;

#ifdef __cplusplus
extern "C"
#endif
long atexit(void (*f)(void))
{
 int i;

 for(i=0; i<_atexit_count ; i++) // Check whether it is already registered
 if(_atexit_buf[i]==f)
 return 1;
 if(_atexit_count==32) // Check the limit value of number of registration
 return 1;
 else {
 atexit_buf[_atexit_count++]=f; // Register the function address
 return 0;
 }
}

CC-RX 8.　STARTUP

R20UT3248EJ0110 Rev.1.10 Page 901 of 1053
Nov 01, 2020

(3) Example of Creation of an Abnormal Termination (abort) Routine
On abnormal termination, processing for abnormal termination must be executed in accordance with the specifica-
tions of the user system.
In a C++ program, the abort function will also be called in the following cases:

- When exception processing was unable to operate correctly.

- When a pure virtual function is called.

- When dynamic_cast has failed.

- When typeid has failed.

- When information could not be acquired when a class array was deleted.

- When the definition of the destructor call for objects of a given class causes a contradiction.
Below is shown an example of a program which outputs a message to the standard output device, then closes all
files and begins an infinite loop to wait for reset.

#include <setjmp.h>
#include <stddef.h>

extern long _atexit_count ;
extern void_t (*_atexit_buf[32])(void) ;
#ifdef __cplusplus
extern "C"
#endif
void _CLOSEALL(void);
int main(void);
extern jmp_buf _init_env ;
int _exit_code ;

#ifdef __cplusplus
extern "C"
#endif
void exit(int code)
{
 int i;
 _exit_code=code ; // Set the return code in _exit_code
 for(i=_atexit_count-1; i>=0; i--)// Execute in sequence the functions
 (*_atexit_buf[i])(); // registered by the atexit function
 _CLOSEALL(); // Close all open functions
 longjmp(_init_env, 1) ; // Return to the environment saved by
 // setjmp
}
#ifdef __cplusplus
extern "C"
#endif
void callmain(void)
{
 // Save the current environment using setjmp and call the main function
 if(!setjmp(_init_env))
 _exit_code=main(); // On returning from the exit function,
 // terminate processing
}

R20UT3248EJ0110 Rev.1.10 Page 902 of 1053
Nov 01, 2020

CC-RX 8.　STARTUP

8.4 Coding Example

This section shows an example of an actual startup program created for the simulator in the integrated development
environment when the RX610 is selected as the CPU type.

(1) Source Files
The startup program consists of the files shown in table 7.4.

Table 8.5 List of Programs Created in Integrated Development Environment

Notes 1. This is for the RXv1 instruction-set architecture.
For an RX instruction-set architecture other than the RXv1 instruction-set architecture, this
becomes the "exception vector table".

The following shows the contents of files (a) to (l).

#include <stdio.h>
#ifdef __cplusplus
extern "C"
#endif
void _CLOSEALL(void);
#ifdef __cplusplus
extern "C"
#endif
void abort(void)
{
 printf("program is abort !!\n"); //Output message
 _CLOSEALL(); //Close all files
 while(1) ; //Begin infinite loop
}

File Name Description

(a) resetprg.c Initial setting routine (reset vector function)

(b) intprg.c Vector function definitions

(c) vecttbl.c Fixed vector table *1

(d) dbsct.c Section initialization processing (table)

(e) lowsrc.c Low-level interface routine (C language part)

(f) lowlvl.src Low-level interface routine (assembly language part)

(g) sbrk.c Low-level interface routine (sbrk function)

(h) typedefine.h Type definition header

(i) vect.h Vector function header

(j) stacksct.h Stack size settings

(k) lowsrc.h Low-level interface routine (C language header)

(l) sbrk.h Low-level interface routine (sbrk function header)

CC-RX 8.　STARTUP

R20UT3248EJ0110 Rev.1.10 Page 903 of 1053
Nov 01, 2020

(a) resetprg.c: Initial Setting Routine (Reset Vector Function)

#include machine.h>
#include <_h_c_lib.h>
//#include <stddef.h> // Remove the comment when you use errno
//#include <stdlib.h> // Remove the comment when you use rand()
#include "typedefine.h" // Define Types
#include "stacksct.h" // Stack Sizes (Interrupt and User)

#ifdef __cplusplus // For Use Reset vector
extern "C" {
#endif
void PowerOn_Reset_PC(void);
void main(void);
#ifdef __cplusplus
}
#endif

#ifdef __cplusplus // For Use SIM I/O
extern "C" {
#endif
extern void _INIT_IOLIB(void);
extern void _CLOSEALL(void);
#ifdef __cplusplus
}
#endif

#define PSW_init 0x00010000 // PSW bit pattern
#define FPSW_DPSW_init 0x00000000 // FPSW/DPSW bit base pattern

//extern void srand(_UINT); // Remove the comment when you use rand()
//extern _SBYTE *_s1ptr; // Remove the comment when you use strtok()

//#ifdef __cplusplus // Use Hardware Setup
//extern "C" {
//#endif
//extern void HardwareSetup(void);
//#ifdef __cplusplus
//}
//#endif

//#ifdef __cplusplus // Remove the comment when you use global class
object
//extern "C" { // Sections C$INIT and C$END will be generated
//#endif
//extern void _CALL_INIT(void);
//extern void _CALL_END(void);
//#ifdef __cplusplus
//}
//#endif

#pragma section ResetPRG // output PowerOn_Reset_PC to PResetPRG section

#pragma entry PowerOn_Reset_PC

void PowerOn_Reset_PC(void)
{
#if (__RX_ISA_VERSION__ >= 2) || defined(__RXV2)
 set_extb(__sectop(”EXCEPTVECT”)); // Remove the comment when you want to set
an address
 // into the Exception Vector Table Register
of RXv2 or later

R20UT3248EJ0110 Rev.1.10 Page 904 of 1053
Nov 01, 2020

CC-RX 8.　STARTUP

#endif
 set_intb(__sectop("C$VECT"));
#ifdef __FPU
#ifdef __ROZ // Initialize FPSW/DPSW
#define _ROUND 0x00000001 // Let FPSW/DPSW RM/DRM bits=01 (round to zero)
#else
#define _ROUND 0x00000000 // Let FPSW/DPSW RM/DRM bits=00 (round to nearest)
#endif
#ifdef __DOFF
#define _DENOM 0x00000100 // Let FPSW/DPSW DN/DDN bit=1 (denormal as zero)
#else
#define _DENOM 0x00000000 // Let FPSW/DPSW DN/DDN bit=0 (denormal as is)
#endif
 set_fpsw(FPSW_DPSW_init | _ROUND | _DENOM);
#ifdef __DPFPU
 __set_dpsw(FPSW_DPSW_init | _ROUND | _DENOM);
#endif
#endif

_INITSCT(); // Initialize Sections

_INIT_IOLIB(); // Use SIM I/O

//errno=0; // Remove the comment when you use errno
//srand((_UINT)1); // Remove the comment when you use rand()
//_s1ptr=NULL; // Remove the comment when you use strtok()

//HardwareSetup(); // Use Hardware Setup

//_CALL_INIT(); // Remove the comment when you use global class object

set_psw(PSW_init); // Set Ubit & Ibit for PSW
//chg_pmusr(); // Remove the comment when you need to change PSW
// PMbit (SuperVisor->User)

main();

_CLOSEALL(); // Use SIM I/O

//_CALL_END(); // Remove the comment when you use global class
// object

brk();
}

CC-RX 8.　STARTUP

R20UT3248EJ0110 Rev.1.10 Page 905 of 1053
Nov 01, 2020

(b) intprg.c: Vector Function Definitions

(c) vecttbl.c: Fixed Vector Table

[Reference]
Case when an RX instruction-set architecture other than the RXv1 instruction-set architecture is selected
(exception vector table)

#include <machine.h>
#include "vect.h"
#pragma section IntPRG

// Exception (Supervisor Instruction)
void Excep_SuperVisorInst(void){/* brk(); */}

// Exception (Undefined Instruction)
void Excep_UndefinedInst(void){/* brk(); */}

// Exception (Floating Point)
void Excep_FloatingPoint(void){/* brk(); */}

// NMI
void NonMaskableInterrupt(void){/* brk(); */}

// Dummy
void Dummy(void){/* brk(); */}

// BRK
void Excep_BRK(void){ wait(); }

#include "vect.h"

#pragma section C FIXEDVECT

void (*const Fixed_Vectors[])(void) = {
//;0xffffffd0 Exception (Supervisor Instruction)
 Excep_SuperVisorInst,
//;0xffffffd4 Reserved
 Dummy,
//;0xffffffd8 Reserved
 Dummy,
//;0xffffffdc Exception (Undefined Instruction)
 Excep_UndefinedInst,
//;0xffffffe0 Reserved
 Dummy,
//;0xffffffe4 Exception (Floating Point)
 Excep_FloatingPoint,
//;0xffffffe8 Reserved
 Dummy,
//;0xffffffec Reserved
 Dummy,
//;0xfffffff0 Reserved
 Dummy,
//;0xfffffff4 Reserved
 Dummy,
//;0xfffffff8 NMI
 NonMaskableInterrupt,
//;0xfffffffc RESET
//;<<VECTOR DATA START (POWER ON RESET)>>
//;Power On Reset PC
PowerOn_Reset_PC
//;<<VECTOR DATA END (POWER ON RESET)>>
};

R20UT3248EJ0110 Rev.1.10 Page 906 of 1053
Nov 01, 2020

CC-RX 8.　STARTUP

#include "vect.h"

#pragma section C EXCEPTVECT

void (*const Excep_Vectors[])(void) = {
//;0xffffff80 Reserved
 Dummy,
//;0xffffff84 Reserved
 Dummy,
//;0xffffff88 Reserved
 Dummy,
//;0xffffff8c Reserved
 Dummy,
//;0xffffff90 Reserved
 Dummy,
//;0xffffff94 Reserved
 Dummy,
//;0xffffff98 Reserved
 Dummy,
//;0xffffff9c Reserved
 Dummy,
//;0xffffffa0 Reserved
 Dummy,
//;0xffffffa4 Reserved
 Dummy,
//;0xffffffa8 Reserved
 Dummy,
//;0xffffffac Reserved
 Dummy,
//;0xffffffb0 Reserved
 Dummy,
//;0xffffffb4 Reserved
 Dummy,
//;0xffffffb8 Reserved
 Dummy,
//;0xffffffbc Reserved
 Dummy,
//;0xffffffc0 Reserved
 Dummy,
//;0xffffffc4 Reserved
 Dummy,
//;0xffffffc8 Reserved
 Dummy,
//;0xffffffcc Reserved
 Dummy,
//;0xffffffd0 Exception(Supervisor Instruction)
 Excep_SuperVisorInst,
//;0xffffffd4 Exception(Access Instruction)
 Excep_AccessInst,
//;0xffffffd8 Reserved
 Dummy,
//;0xffffffdc Exception(Undefined Instruction)
 Excep_UndefinedInst,
//;0xffffffe0 Reserved
 Dummy,
//;0xffffffe4 Exception(Floating Point)
 Excep_FloatingPoint,

CC-RX 8.　STARTUP

R20UT3248EJ0110 Rev.1.10 Page 907 of 1053
Nov 01, 2020

(d) dbsct.c: Section Initialization Processing (table)

//;0xffffffe8 Reserved
 Dummy,
//;0xffffffec Reserved
 Dummy,
//;0xfffffff0 Reserved
 Dummy,
//;0xfffffff4 Reserved
 Dummy,
//;0xfffffff8 NMI
 NonMaskableInterrupt,
};

#pragma section C RESETVECT

void (*const Reset_Vectors[])(void) = {
//;0xfffffffc RESET
 PowerON_Reset_PC
};

#include "typedefine.h"

#pragma unpack

#pragma section C C$DSEC
extern const struct {
 _UBYTE *rom_s; /* Start address of the initialized data section in ROM */
 _UBYTE *rom_e; /* End address of the initialized data section in ROM */
 _UBYTE *ram_s; /* Start address of the initialized data section in RAM */
} _DTBL[] = {
 { __sectop("D"), __secend("D"), __sectop("R") },
 { __sectop("D_2"), __secend("D_2"), __sectop("R_2") },
 { __sectop("D_1"), __secend("D_1"), __sectop("R_1") }
};
#pragma section C C$BSEC
extern const struct {
 _UBYTE *b_s; /* Start address of non-initialized data section */
 _UBYTE *b_e; /* End address of non-initialized data section */
} _BTBL[] = {
 { __sectop("B"), __secend("B") },
 { __sectop("B_2"), __secend("B_2") },
 { __sectop("B_1"), __secend("B_1") }
};

#pragma section

/*
** CTBL prevents excessive output of W0561100 messages when linking.
** Even if CTBL is deleted, the operation of the program does not change.
*/
_UBYTE * const _CTBL[] = {
 __sectop("C_1"), __sectop("C_2"), __sectop("C"),
 __sectop("W_1"), __sectop("W_2"), __sectop("W")
};

#pragma packoption

R20UT3248EJ0110 Rev.1.10 Page 908 of 1053
Nov 01, 2020

CC-RX 8.　STARTUP

(e) lowsrc.c : Low-Level Interface Routine (C Language Part)

#include <string.h>
#include <stdio.h>
#include <stddef.h>
#include "lowsrc.h"

#define STDIN 0
#define STDOUT 1
#define STDERR 2

#define FLMIN 0
#define _MOPENR0x1
#define _MOPENW0x2
#define _MOPENA0x4
#define _MTRUNC0x8
#define _MCREAT0x10
#define _MBIN0x20
#define _MEXCL0x40
#define _MALBUF0x40
#define _MALFIL0x80
#define _MEOF0x100
#define _MERR0x200
#define _MLBF0x400
#define _MNBF0x800
#define _MREAD0x1000
#define _MWRITE0x2000
#define _MBYTE0x4000
#define _MWIDE0x8000

#define O_RDONLY0x0001
#define O_WRONLY0x0002
#define O_RDWR0x0004
#define O_CREAT0x0008
#define O_TRUNC0x0010
#define O_APPEND0x0020

#define CR 0x0d
#define LF 0x0a

extern const long _nfiles;
char flmod[IOSTREAM];

unsigned char sml_buf[IOSTREAM];

#define FPATH_STDIN "C:\\stdin"
#define FPATH_STDOUT "C:\\stdout"
#define FPATH_STDERR "C:\\stderr"

extern void charput(unsigned char);
extern unsigned char charget(void);

#include <stdio.h>
FILE *_Files[IOSTREAM];
char *env_list[] = {
 "ENV1=temp01",
 "ENV2=temp02",
 "ENV9=end",
 '\0'
};

CC-RX 8.　STARTUP

R20UT3248EJ0110 Rev.1.10 Page 909 of 1053
Nov 01, 2020

char **environ = env_list;

void _INIT_IOLIB(void)
{
 _Files[0] = stdin;
 _Files[1] = stdout;
 _Files[2] = stderr;

 if(freopen(FPATH_STDIN, "r", stdin) == NULL)
 stdin->_Mode = 0xffff;
 stdin->_Mode = _MOPENR;
 stdin->_Mode |= _MNBF;
 stdin->_Bend = stdin->_Buf + 1;

 if(freopen(FPATH_STDOUT, "w", stdout) == NULL)
 stdout->_Mode = 0xffff;
 stdout->_Mode |= _MNBF;
 stdout->_Bend = stdout->_Buf + 1;

 if(freopen(FPATH_STDERR, "w", stderr) == NULL)
 stderr->_Mode = 0xffff;
 stderr->_Mode |= _MNBF;
 stderr->_Bend = stderr->_Buf + 1;
}

void _CLOSEALL(void)
{
 long i;
 for(i=0; i < _nfiles; i++)
 {
 if(_Files[i]->_Mode & (_MOPENR | _MOPENW | _MOPENA))
 fclose(_Files[i]);
 }
}

long open(const char *name,
 long mode,
 long flg)
{

 if(strcmp(name, FPATH_STDIN) == 0)
 {
 if((mode & O_RDONLY) == 0) return -1;
 flmod[STDIN] = mode;
 return STDIN;
 }
 else if(strcmp(name, FPATH_STDOUT) == 0)
 {
 if((mode & O_WRONLY) == 0) return -1;
 flmod[STDOUT] = mode;
 return STDOUT;
 }
 else if(strcmp(name, FPATH_STDERR) == 0)
 {
 if((mode & O_WRONLY) == 0) return -1;
 flmod[STDERR] = mode;
 return STDERR;
 }
 else return -1;
}

R20UT3248EJ0110 Rev.1.10 Page 910 of 1053
Nov 01, 2020

CC-RX 8.　STARTUP

long close(long fileno)
{
 return 1;
}

long write(long fileno,
 const unsigned char *buf,
 long count)
{
 long i;
 unsigned char c;

 if(flmod[fileno]&O_WRONLY || flmod[fileno]&O_RDWR)
 {
 if(fileno == STDIN) return -1;
 else if((fileno == STDOUT) || (fileno == STDERR))
 {
 for(i = count; i > 0; --i)
 {
 c = *buf++;
 charput(c);
 }
 return count;
 }
 else return -1;
 }
 else return -1;
}

long read(long fileno, unsigned char *buf, long count)
{
 long i;
 if((flmod[fileno]&_MOPENR) || (flmod[fileno]&O_RDWR)){
 for(i = count; i > 0; i--){
 *buf = charget();
 if(*buf==CR){
 *buf = LF;
 }
 buf++;
 }
 return count;
 }
 else {
 return -1;
 }
}

long lseek(long fileno, long offset, long base)
{
 return -1L;
}

CC-RX 8.　STARTUP

R20UT3248EJ0110 Rev.1.10 Page 911 of 1053
Nov 01, 2020

(f) lowlvl.src: Low-Level Interface Routine (Assembly Language Part)

 .GLB _charput
 .GLB _charget

SIM_IO .EQU 0h

 .SECTION P,CODE
;---
; _charput:
;---
_charput:
 MOV.L #IO_BUF,R2
 MOV.B R1,[R2]
 MOV.L #1220000h,R1
 MOV.L #PARM,R3
 MOV.L R2,[R3]
 MOV.L R3,R2
 MOV.L #SIM_IO,R3
 JSR R3
 RTS

;---
; _charget:
;---
_charget:
 MOV.L #1210000h,R1
 MOV.L #IO_BUF,R2
 MOV.L #PARM,R3
 MOV.L R2,[R3]
 MOV.L R3,R2
 MOV.L #SIM_IO,R3
 JSR R3
 MOV.L #IO_BUF,R2
 MOVU.B [R2],R1
 RTS

;---
; I/O Buffer
;---
 .SECTION B,DATA,ALIGN=4
PARM: .BLKL 1
 .SECTION B_1,DATA
IO_BUF: .BLKB 1
 .END

R20UT3248EJ0110 Rev.1.10 Page 912 of 1053
Nov 01, 2020

CC-RX 8.　STARTUP

(g) sbrk.c: Low-Level Interface Routine (sbrk Function)

(h) typedefine.h: Type Definition Header

#include <stddef.h>
#include <stdio.h>
#include "typedefine.h"
#include "sbrk.h"

_SBYTE *sbrk(size_t size);

//const size_t _sbrk_size= /* Specifies the minimum unit of */
 /* the defined heap area*/

extern _SBYTE *_s1ptr;

union HEAP_TYPE {
 _SDWORD dummy ; /* Dummy for 4-byte boundary */
 _SBYTE heap[HEAPSIZE]; /* Declaration of the area managed by sbrk */
};

static union HEAP_TYPE heap_area ;

/* End address allocated by sbrk */
static _SBYTE *brk=(_SBYTE *)&heap_area;

/**/
/* sbrk:Memory area allocation */
/* Return value:Start address of allocated area (Pass) */
/* -1 (Failure) */
/**/
_SBYTE *sbrk(size_t size) /* Assigned area size */
{
 _SBYTE *p;

 if(brk+size > heap_area.heap+HEAPSIZE){ /* Empty area size */
 p = (_SBYTE *)-1;
 }
 else {
 p = brk; /* Area assignment */
 brk += size; /* End address update */
 }
 return p;
}

typedef signed char _SBYTE;
typedef unsigned char _UBYTE;
typedef signed short _SWORD;
typedef unsigned short _UWORD;
typedef signed int _SINT;
typedef unsigned int _UINT;
typedef signed long _SDWORD;
typedef unsigned long _UDWORD;
typedef signed long long _SQWORD;
typedef unsigned long long _UQWORD;

CC-RX 8.　STARTUP

R20UT3248EJ0110 Rev.1.10 Page 913 of 1053
Nov 01, 2020

(i) vect.h: Vector Function Header

(j) stacksct.h: Stack Size Settings

(k) lowsrc.h: Low-Level Interface Routine (C Language Header)

(l) sbrk.h: Low-Level Interface Routine (sbrk Function Header)

(2) Execution Commands
The following shows an example of commands for building these files.
In this example, the name of the user program file (containing the main function) is UserProgram.c, and the body
of the file names (names excluding extensions) for the load module or library to be created is LoadModule.

// Exception (Supervisor Instruction)
#pragma interrupt (Excep_SuperVisorInst)
void Excep_SuperVisorInst(void);

// Exception (Undefined Instruction)
#pragma interrupt (Excep_UndefinedInst)
void Excep_UndefinedInst(void);

// Exception (Floating Point)
#pragma interrupt (Excep_FloatingPoint)
void Excep_FloatingPoint(void);

// NMI
#pragma interrupt (NonMaskableInterrupt)
void NonMaskableInterrupt(void);

// Dummy
#pragma interrupt (Dummy)
void Dummy(void);

// BRK
#pragma interrupt (Excep_BRK(vect=0))
void Excep_BRK(void);

//;<<VECTOR DATA START (POWER ON RESET)>>
//;Power On Reset PC
extern void PowerOn_Reset_PC(void);
//;<<VECTOR DATA END (POWER ON RESET)>>

// #pragma stacksize su=0x100 // Remove the comment when you use user stack
#pragma stacksize si=0x300

/*Number of I/O Streams*/
#define IOSTREAM 20

/* Size of area managed by sbrk */
#define HEAPSIZE 0x400

R20UT3248EJ0110 Rev.1.10 Page 914 of 1053
Nov 01, 2020

CC-RX 8.　STARTUP

[Reference]
An example of a command string for which the RXv2 instruction-set architecture was selected is shown.

8.5 Usage of PIC/PID Function

This section gives an overview of the PIC/PID function and describes how to create startup programs when using the
PIC/PID function.

The PIC/PID function enables the code and data in the ROM to be reallocated to desired addresses without re-linkage
even when the allocation addresses have been determined through previously completed linkage.

PIC stands for position independent code, and PID stands for position independent data. The PIC function generates
PIC and the PID function generates PID; here, these functions are collectively called the PIC/PID function.

8.5.1 Terms Used in this Section

(1) Master and Application
In the PIC/PID function, a program whose code or data in the ROM has been converted into PIC or PID is called
an application, and the program necessary to execute an application is called the master.
The master executes the application initiation processing, and also provides the shared libraries called from appli-
cations and RAM areas for applications. PIC and PID are included only in applications; the master does not have
them.

(2) Shared Library
A group of functions in the master, which can be called from multiple applications.

(3) Jump Table
A program through which applications can call shared libraries.

lbgrx -isa=rxv1 -output=LoadModule.lib
ccrx -isa=rxv1 -output=obj UserProgram.c
ccrx -isa=rxv1 -output=obj resetprg.c
ccrx -isa=rxv1 -output=obj intprg.c
ccrx -isa=rxv1 -output=obj vecttbl.c
ccrx -isa=rxv1 -output=obj dbsct.c
ccrx -isa=rxv1 -output=obj lowsrc.c
asrx -isa=rxv1 lowlvl.src
ccrx -isa=rxv1 -output=obj sbrk.c
rlink -rom=D=R,D_1=R_1,D_2=R_2 -list=LoadModule.map
-start=B_1,R_1,B_2,R_2,B,R,SI/01000,PResetPRG/
0FFFF8000,C_1,C_2,C,C$*,D_1,D_2,D,P,PIntPRG,W*,L/0FFFF8100,FIXEDVECT/0FFFFFFD0
-library=LoadModule.lib -output=LoadModule.abs UserProgram.obj resetprg.obj
intprg.obj vecttbl.obj dbsct.obj lowsrc.obj lowlvl.obj sbrk.obj
rlink -output=LoadModule.sty -form=stype -output=LoadModule.mot LoadModule.abs

lbgrx -isa=rxv2 -output=LoadModule.lib
ccrx -isa=rxv2 -output=obj UserProgram.c
ccrx -isa=rxv2 -output=obj resetprg.c
ccrx -isa=rxv2 -output=obj intprg.c
ccrx -isa=rxv2 -output=obj vecttbl.c
ccrx -isa=rxv2 -output=obj dbsct.c
ccrx -isa=rxv2 -output=obj lowsrc.c
asrx -isa=rxv2 lowlvl.src
ccrx -isa=rxv2 -output=obj sbrk.c
rlink -rom=D=R,D_1=R_1,D_2=R_2 -list=LoadModule.map
-start=B_1,R_1,B_2,R_2,B,R,SU,SI/04,PResetPRG/
0FFFF8000,C_1,C_2,C,C$DSEC,C$BSEC,C$INIT,C$VTBL,C$VECT,D_1,D_2,D,P,PInt-
PRG,W_1,W_2,W,L/0FFFF8100,EXCEPTVECT/0FFFFFF80,RESETVECT/0FFFFFFFC -=LoadMod-
ule.lib -output=LoadModule.abs UserProgram.obj resetprg.obj intprg.obj vecttbl.obj
dbsct.obj lowsrc.obj lowlvl.obj sbrk.obj
rlink -output=LoadModule.sty -form=stype -output=LoadModule.mot LoadModule.abs

CC-RX 8.　STARTUP

R20UT3248EJ0110 Rev.1.10 Page 915 of 1053
Nov 01, 2020

8.5.2 Function of Each Option

The following describes the options related to the PIC/PID function.
For details of each option function, refer to the respective option description of the COMMAND REFERENCE chapter.

(1) Application Code Generation (pic and pid Options)
When the pic option is specified for compilation, the PIC function is enabled and the code in the code area (P sec-
tion) becomes PIC. The PIC always uses PC relative mode to acquire branch destination addresses or function
addresses, so it can be reallocated to any desired addresses even after linkage.
When the pid option is specified for compilation, the PID function is enabled and the data in ROM data areas
(C_8, C, C_2, C_1, W, W_2, W_1, and L sections) becomes PID. A program executes relative access to the PID
by using the register (PID register) that indicates the start address of the PID. The user can move the PID to any
desired addresses by modifying the PID register value even after linkage.
Note that the PIC function (pic option) and PID function (pid option) are designed to operate independently. How-
ever, it is recommended to enable both functions and allocate the PIC and PID to adjacent areas. Support for inde-
pendently using either the PIC or PID function and for debugging of applications where the distance between the
PIC and PID is variable may or may not be available, depending on the version of the debugger. The examples
described later assume that both PIC and PID functions are enabled together.

(2) Shared Library Support (jump_entries_for_pic and nouse_pid_register Options)
These options provide a function for calling the libraries of the master from an application.
The nouse_pid_register option should be used for master compilation to generate a code that does not use the
PID register.
When the jump_entries_for_pic option is specified in the optimizing linkage editor at master linkage, a jump table
is created to be used to call library functions at fixed addresses from an application.

(3) Sharing of RAM Area (Fsymbol Option)
This option enables variables in the master to be read or written from an application whose linkage unit differs
from that of the master.
When the Fsymbol option is specified in the optimizing linkage editor at master linkage, a symbol table is created
to be used to refer to variables at fixed addresses from an application.

8.5.3 Restrictions on Applications

(1) RAM Areas
The PID function cannot be applied to the RAM area.

(2) Simultaneous Execution of Applications
When the PIC/PID function is used, multiple copies of a single application can be stored in the ROM and each
copy can be executed. However, copies of a single application cannot be executed at the same time because the
RAM areas for them overlap each other.

(3) Startup
The standard startup program (created by the integrated development environment as described in section 8.3
Startup Program Creation) cannot be used to start up an application without change. Create a startup program as
described in 8.5.7 Application Startup.

8.5.4 System Dependent Processing Necessary for PIC/PID Function

The following processing should be prepared by the user depending on the system specifications.

(1) Initialization of Master
Execute the same processing as that for a usual program which does not use the PIC/PID function.

(2) Initiation of Application from the Master
Set the PID register to the start address of the application PID and branch to the PIC start address to initiate the
application.

(3) Initialization of Application
Initialize the section and execute the main function of the application.

(4) Termination of Application
After execution of the main function, return execution to the master.

R20UT3248EJ0110 Rev.1.10 Page 916 of 1053
Nov 01, 2020

CC-RX 8.　STARTUP

8.5.5 Combinations of Code Generating Options

When the master and application are built, the option settings related to the PIC/PID function should be matched
between the objects that compose the master and application.

The following shows the rules for specifying options for each object compilation and the conditions of option settings in
other objects that can be linked.

(1) Master
When building the master, specify the PIC/PID function options as shown in Table 8.6.

Table 8.6 Rules for Specifying PIC/PID Function Options in Master

(2) Application
When building an application, specify the PIC/PID function options as shown in Table 8.7.

Table 8.7 Rules for Specifying PIC/PID Function Options in Application

Note * When pid is specified, base=rom=<register> is not allowed.

(3) Between Master and Application
In the master and application, the PIC/PID function options should be specified as shown in tTable 8.8.

Table 8.8 Rules for Combinations of PIC/PID Function Options between Master and Application

Note * When pid is specified, base=rom=<register> is not allowed.

Option Name For Compilation Conditions on Setting the Option for Linkable
Objects

pic Not allowed pic is not specified

pid Not allowed pid is not specified

nouse_pid_register O Can be specified except
the standard library and set-
ting PID register of the
startup program

No conditions

fint_register O Can be specified fint_register with the same parameters must be
specified

base O Can be specified base with the same parameters must be specified

Option Name For Compilation Conditions on Setting the Option for Linkable
Objects

pic O Can be specified pic is necessary

pid O Can be specified pid is necessary

nouse_pid_register Not allowed nouse_pid_register is not specified

fint_register O Can be specified fint_register with the same parameters must be
specified

base O : Can be specified base* with the same parameters must be specified

Options in Application Options in Master

pic No conditions

pid nouse_pid_register is necessary if application calls functions
of master

fint_register fint_register with the same parameters is necessary

base base* with the same parameters is necessary

CC-RX 8.　STARTUP

R20UT3248EJ0110 Rev.1.10 Page 917 of 1053
Nov 01, 2020

8.5.6 Master Startup

The processing necessary to start up the master is the same as that for a usual program that does not use the PIC/PID
function except for the two processes described below. Add these two processes to the startup processing created
according to section 7.3, Startup Program Creation.

(1) Initiation of and Return from Application
Set up the PID register in the main function and branch to the PIC entry address to initiate the application. In addi-
tion, a means for returning from the application to the master should be provided.

(2) Reference to Shared Library Functions to be Used
The shared libraries to be used by the application should be referred to also by the master in advance.
The following shows an example for calling a PIC/PID application from the main function.
This example assumes the following conditions:

- After application execution, control can be returned to the master through the RTS instruction.

- The application does not pass a return value.

- The PID initiation address (PIC_entry) and PID start address (PID_address) for the application are known and
fixed when the master is built.

- R13 is used as the PID register.

- Initialization of the section areas on the application side is not done on the master side.

- The application uses only the printf function as the shared library.
Example:

8.5.7 Application Startup

Specify the following in the application.
The items marked with [Optional] may be unnecessary in some cases.

(1) Preparation of Entry Point (PIC Initiation Address)
This is the address from which the application is initiated.

(2) Initialization of Stack Pointer [Optional]
This processing is not necessary when the application shares the stack with the master.
When necessary, add appropriate settings by referring to section 7.3.2 (2).

/* Master-Side Program */
/* Initiates the PIC/PID application. */
/* (For the system that the application does not pass */
/* a return value and execution returns through RTS) */
#include <stdio.h>
#pragma inline_asm Launch_PICPID_Application
void Launch_PICPID_Application(void *pic_entry, void *pid_address)
{
 MOV.L R2,__PID_R13
 JSR R1
}
int main()
{
 void *PIC_entry = (void*)0x500000; /* PIC initiation address */
 void *PID_address = (void*)0x120000; /* PID start address */

 /* (1) Initiation of and Return from Application */
 Launch_PICPID_Application(PIC_entry, PID_address);

 return 0;
}

/* (2) Reference to Shared Library Functions to be Used */
void *_dummy_ptr = (void*)printf; /* printf function */

R20UT3248EJ0110 Rev.1.10 Page 918 of 1053
Nov 01, 2020

CC-RX 8.　STARTUP

(3) Initialization of General Registers Used as Base Registers [Optional]
This processing is not necessary when no base register is used.
When necessary, add appropriate settings by referring to section 7.3.2 (3).

(4) Initialization Processing of Sections [Optional]
This processing is not necessary when the master initializes them.
When necessary, add appropriate settings by referring to the example shown later.
Note that the processing described in section 7.3.2 (5) cannot be used without change.

(5) Initialization Processing of Libraries [Optional]
This processing is not necessary when no standard library is used.
When necessary, add appropriate settings by referring to section 7.3.2 (6).
Initialization of PSW for main Function Execution [Optional]
Specify interrupt masks or move to the user mode as necessary.
Add appropriate settings by referring to sections 7.3.2 (8) and 7.3.2 (9).

(6) User Program Execution
Execute the main function.
Specify the processing by referring to section 7.3.2 (10).

The following shows an example of application startup.
The processing is divided into three files.

- startup_picpid.c: Body of the startup processing.

- initsct_pid.src: Section initialization for PID; _INITSCT_PID.
This is created by modifying the _INITSCT function described in section 7.3.2 (5) to support the PID function.
"__PID_REG" in the program will be converted into PID register when the assembling.

- initiolib.c; Contains _INITLIB, which initializes the standard libraries.
This is created by modifying the code described in section 7.3.2 (6) to be used for the application.
[startup_picpid.c]

// Initialization Processing Described in Section 7.3.2(5)
#pragma section C C$DSEC //Section name is set to C$DSEC
const struct {
 void *rom_s; //Start address member of the initialized data section in ROM
 void *rom_e; //End address member of the initialized data section in ROM
 void *ram_s; //Start address member of the initialized data section in RAM
} DTBL[] = {__sectop("D"), __secend("D"), __sectop("R")};
#pragma section C C$BSEC //Section name is set to C$BSEC
const struct {
 void *b_s; //Start address member of the uninitialized data section
 void *b_e; //End address member of the uninitialized data section
} BTBL[] = {__sectop("B"), __secend("B")};

extern void main(void);
extern void _INITLIB(void); // Library initialization processing described
 //in section 7.3.2 (6)
#pragma entry application_pic_entry
void application_pic_entry(void)
{
 _INITSCT_PICPID();
 _INITLIB();
 main();
}

CC-RX 8.　STARTUP

R20UT3248EJ0110 Rev.1.10 Page 919 of 1053
Nov 01, 2020

[initsct_pid.src]

; Section Initialization Routine for PID Support
; ** Note ** Check the PID register.
; This code assumes that R13 is used as the PID register. If another
; register is used as the PID register, modify the description related to R13
; in the following code to the register assigned as the PID register
; in your system.
 .glb __INITSCT_PICPID
 .glb __PID_TOP
 .section C$BSEC,ROMDATA,ALIGN=4
 .section C$DSEC,ROMDATA,ALIGN=4
 .section P,CODE

__INITSCT_PICPID: ; function: _INITSCT
 .STACK __INITSCT_PICPID=28
 PUSHM R1-R6
 ADD #-__PID_TOP,__PID_REG,R6 ; How long distance PID moves
;;;
;;; clear BBS(B)
;;;
 ADD #TOPOF C$BSEC, R6, R4
 ADD #SIZEOF C$BSEC, R4, R5
 MOV.L #0, R2
 BRA next_loop1

loop1:
 MOV.L [R4+], R1
 MOV.L [R4+], R3
 CMP R1, R3
 BLEU next_loop1
 SUB R1, R3
 SSTR.B
next_loop1:
 CMP R4,R5
 BGTU loop1

;;;
;;; copy DATA from ROM(D) to RAM(R)
;;;
 ADD #TOPOF C$DSEC, R6, R4
 ADD #SIZEOF C$DSEC, R4, R5
 BRA next_loop3

loop3:
 MOV.L [R4+], R2
 MOV.L [R4+], R3
 MOV.L [R4+], R1
 CMP R2, R3
 BLEU next_loop3
 SUB R2, R3
 ADD R6, R2 ; Adjust for real address of PID
 SMOVF
next_loop3:
 CMP R4, R5
 BGTU loop3
 POPM R1-R6
 RTS

 .end

R20UT3248EJ0110 Rev.1.10 Page 920 of 1053
Nov 01, 2020

CC-RX 8.　STARTUP

[initiolib.c]

#include <stdio.h>
#include <stdlib.h>
#define IOSTREAM 3
const size_t _sbrk_size = 520; // Specifies the minimum unit of the heap area
 // allocation size. (Default: 1024)

void _INIT_LOWLEVEL(void);
void _INIT_OTHERLIB(void);

void _INITLIB (void)
{
 _INIT_LOWLEVEL(); // Initial settings for low-level interface routines
 _INIT_IOLIB(); // Initial settings for I/O library
 _INIT_OTHERLIB(); // Initial settings for rand and strtok functions
}
void _INIT_LOWLEVEL(void)
{ // Make necessary settings for low-level library
}
void _INIT_OTHERLIB(void)
{
 srand(1); // Initial settings necessary when the rand function is used
}

CC-RX 9.　FUNCTION CALL INTERFACE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 921 of 1053
Nov 01, 2020

9. FUNCTION CALL INTERFACE SPECIFICATIONS

9.1 Function Calling Interface

This chapter describes how to handle, for example, arguments when calling functions written in the C or C++ language
from a program when using the CC-RX compiler.

The compiler generates code in accord with the following descriptions.
Follow the rules described in this chapter when creating functions which interface the C/C++ language with assembler

code.
With regard to interrupt functions, also refer to section 4.2.4 Using Extended Specifications (3) Interrupt Function Cre-

ation.

9.1.1 Rules Concerning the Stack

(1) Stack Pointer
Valid data must not be stored in a stack area with an address lower than the stack pointer (in the direction of
address H'0), since the data may be destroyed by an interrupt process.

(2) Allocating and Deallocating Stack Frames
In a function call (immediately after the JSR or the BSR instruction has been executed), the stack pointer indicates
the lowest address of the stack used by the calling function. Allocating and setting data at addresses greater than
this address must be done by the caller.
After the callee deallocates the area it has set with data, control returns to the caller usually with the RTS instruc-
tion. The caller then deallocates the area having a higher address (the return value address and the parameter
area).
Figure 3.2 illustrates the stack frame status immediately after a function call.

Figure 9.1 Allocation and Deallocation of a Stack Frame

9.1.2 Rules Concerning Registers

Registers having the same value before and after a function call is not guaranteed for some registers; some registers
may change during a function call. Some registers are used for specific purposes according to the option settings. Table
3.27 shows the rules for using registers.

Table 9.1 Rules to Use Registers

Register Register Value
Does Not Change

During Function Call

Function Entry Function Exit High-Speed
Interrupt

Register*1

Base Reg-
ister*2

PID Regis-
ter*3

R0 Guaranteed Stack pointer Stack pointer

R1 Not guaranteed Parameter 1 Return value 1

R2 Not guaranteed Parameter 2 Return value 2

R3 Not guaranteed Parameter 3 Return value 3

R4 Not guaranteed Parameter 4 Return value 4

SP

At a function call and immediately
after control returns from a function

Lower address

: Area allocated and deallocated by the callee

Upper address

: Area deallocated by the callee

: Area deallocated by the caller

Return PC

Parameter area

R20UT3248EJ0110 Rev.1.10 Page 922 of 1053
Nov 01, 2020

CC-RX 9.　FUNCTION CALL INTERFACE SPECIFICATIONS

R5 Not guaranteed (Undefined)

R6 Guaranteed (Value at func-
tion entry is held)

R7 Guaranteed (Value at func-
tion entry is held)

R8 Guaranteed (Value at func-
tion entry is held)

 O

R9 Guaranteed (Value at func-
tion entry is held)

 O O

R10 Guaranteed (Value at func-
tion entry is held)

O O O

R11 Guaranteed (Value at func-
tion entry is held)

O O O

R12 Guaranteed (Value at func-
tion entry is held)

O O O

R13 Guaranteed (Value at func-
tion entry is held)

O O O

R14 Not guaranteed (Undefined)

R15 Not guaranteed Pointer to return
value
of structure

(Undefined)

DR0 to
DR15
[V3.01.00
or later]

Guaranteed (Value at func-
tion entry is held)

DCMR
[V3.01.00
or later]

Guaranteed (Value at func-
tion entry is held)

DPSW
DECNT
DEPC
[V3.01.00
or later]

Not guaranteed (Undefined)

ISP
USP

Same as R0 when used as the stack pointer.
In other cases, the values do not change. *4

PC Program counter*5

PSW Not guaranteed (Undefined)

FPSW Not guaranteed (Undefined)

ACC Not guaranteed*6 (Undefined) *6

INTB
BPC
BPSW
FINTV

 No change*4

Register Register Value
Does Not Change

During Function Call

Function Entry Function Exit High-Speed
Interrupt

Register*1

Base Reg-
ister*2

PID Regis-
ter*3

CC-RX 9.　FUNCTION CALL INTERFACE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 923 of 1053
Nov 01, 2020

Notes 1. The high-speed interrupt function may use some or all four registers among R10 to R13, depending on
the fint_register option. Registers assigned to the high-speed interrupt function cannot be used for other
purposes. For details on the function, refer to the description on the option.

Notes 2. The base register function may use some or all six registers among R8 to R13, depending on the base
option. Registers assigned to the base register function cannot be used for other purposes. For details on
the function, refer to the description on the option.

Notes 3. The PID function may use one of R9 to R13, depending on the pid option. The register assigned to the
PID function cannot be used for other purposes. For details on the function, refer to the description on the
option.

Notes 4. This does not apply in the case when the registers are set or modified through an intrinsic function or
#pragma inline_asm.

Notes 5. This depends on the specifications of the instruction used for function calls. To call a function, use BSR,
JSR, BRA, or JMP.

Notes 6. For the instructions that modify the ACC (accumulator), refer to the software manual for the target RX
series product.

9.1.3 Rules Concerning Setting and Referencing Parameters

General rules concerning parameters and the method for allocating parameters are described.
Refer to section 8.2.5, Examples of Parameter Allocation, for details on how to actually allocate parameters.

(1) Passing Parameters
A function is called after parameters have been copied to a parameter area in registers or on the stack. Since the
caller does not reference the parameter area after control returns to it, the caller is not affected even if the callee
modifies the parameters.

(2) Rules on Type Conversion

(a) Parameters whose types are declared by a prototype declaration are converted to the declared types.

(b) Parameters whose types are not declared by a prototype declaration are converted according to the following
rules.

- int type of 2 bytes or less is converted to a 4-byte int type.

- float type parameters are converted to double type parameters.

- Types other than the above are not converted.

Example

(3) Parameter Area Allocation
Parameters are allocated to registers or to a parameter area on the stack. Figure 3.3 shows the parameter-allo-
cated areas.
Following the order of their declaration in the source program, parameters are normally allocated to the registers
starting with the smallest numbered register. After parameters have been allocated to all registers, parameters are
allocated to the stack. However, in some cases, such as a function with variable-number parameters, parameters
are allocated to the stack even though there are empty registers left. The this pointer to a nonstatic function mem-
ber in a C++ program is always assigned to R1.
Table 3.28 lists general rules on parameter area allocation.

 void p(int,...);

 void f()

 {

 char c ;

 p(1.0, c);

 } c is converted to a 4-byte int type because a type is not
declared for the parameter.

1.0 is converted to a 4-byte int type because the type of
the parameter is int.

R20UT3248EJ0110 Rev.1.10 Page 924 of 1053
Nov 01, 2020

CC-RX 9.　FUNCTION CALL INTERFACE SPECIFICATIONS

Figure 9.2 Parameter Area Allocation

Table 9.2 General Rules on Parameter Area Allocation

Notes 1. When dbl_size=8 is not specified.

Notes 2. When dbl_size=8 is specified.

Notes 3. If a function has been declared to have variable parameters by a prototype declaration, parameters
which do not have a corresponding type in the declaration and the immediately preceding parame-
ter are allocated to the stack. For parameters which do not have a corresponding type, an integer of
2 bytes or less is converted to long type and float type is converted to double type so that all
parameters will be handled with a boundary alignment number of 4.

Example

(4) Allocation Method for Parameters Allocated to the Stack
The address and allocation method to the stack for the parameters that are shown in table 3.28 as parameters
allocated to the stack are as follows:

- Each parameter is placed at an address matching its boundary alignment number.

Parameters Allocated to Registers Parameters Allocated to
Stack

Target Type Parameter Storage
Registers

Allocation Method

signed char, (unsigned)
char, bool, _Bool, (signed)
short, unsigned short,
(signed) int, unsigned int,
(signed) long, unsigned
long, float, double*1, long
double*1, pointer, pointer to
a data member, and refer-
ence

One register among
R1 to R4

Sign extension is per-
formed for signed char or
(signed) short type, and
zero extension is per-
formed for (unsigned)
char type, and the results
are allocated.
All other types are allo-
cated without any exten-
sion performed.

(1) Parameters whose
types are other than target
types for register passing
(2) Parameters of a func-
tion which has been
declared by a prototype
declaration to have vari-
able-number parameters*3

(3) When the number of
registers not yet allocated
with parameters among R1
to R4 is smaller than the
number of registers
needed to allocate param-
eters

(signed) long long, unsigned
long long, double*2, and
long double*2

Two registers
among R1 to R4

The lower four bytes are
allocated to the smaller
numbered register and the
upper four bytes are allo-
cated to the larger num-
bered register.

Structure, union, or class
whose size is a multiple of 4
not greater than 16 bytes

Among R1 to R4, a
number of registers
obtained by dividing
the size by 4

From the beginning of the
memory image, parame-
ters are allocated in 4-byte
units to the registers start-
ing with the smallest num-
bered register.

int f2(int,int,int,int,...);
:
f2(a,b,c,x,y,z); ? x, y, and z are allocated to the stack.

SP

R1

R2

R3

R4

Stack

Lower
address

Return PC

Parameter area

Parameter storage registers

: Parameter-allocated areas

CC-RX 9.　FUNCTION CALL INTERFACE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 925 of 1053
Nov 01, 2020

- Parameters are stored in the parameter area on the stack in a manner so that the leftmost parameter in the
parameter sequence will be located at the deep end of the stack. To be more specific, when parameter A and its
right-hand parameter B are both allocated to the stack, the address of parameter B is calculated by adding the
occupation size of parameter A to the address of parameter A and then aligning the address to the boundary
alignment number of parameter B.

9.1.4 Rules Concerning Setting and Referencing Return Values

General rules concerning return values and the areas for setting return values are described.

(1) Type Conversion of a Return Value
A return value is converted to the data type returned by the function.

Example

(2) Return Value Setting Area
The return value of a function is written to either a register or memory depending on its type. Refer to table 3.29 for
the relationship between the type and the setting area of the return value.

Table 9.3 Return Value Type and Setting Area

Notes 1. When a function return value is to be written to memory, the return value is written to the area indi-
cated by the return value address. The caller must allocate the return value setting area in addition
to the parameter area, and must set the address of the return value setting area in R15 before call-
ing the function.

Notes 2. When dbl_size=8 is not specified.

Notes 3. When dbl_size=8 is specified.

9.1.5 Examples of Parameter Allocation

Examples of parameter allocation are shown in the following. Note that addresses increase from the right side to the left
side in all figures (upper address is on the left side).

Examples 1. Parameters matching the type to be passed to registers are allocated, in the order in which they are
declared, to registers R1 to R4.
If there is a parameter that will not be allocated to registers midway, parameters after that will be allo-
cated to registers. The parameter will be placed on the stack at an address corrected to match the
boundary alignment number of that parameter.

Return Value Type Return Value Setting Area

signed char, (unsigned) char, (signed) short,
unsigned short, (signed) int, unsigned int,
(signed) long, unsigned long, float, double*2, long
double*2, pointer, bool, _Bool, reference, and
pointer to a data member

R1
Note however that the result of sign extension is set for
signed char or (signed) short type, and the result of zero
extension is set for (unsigned) char or unsigned short
type.

double*3, long double*3, (signed) long long, and
unsigned long long

R1, R2
The lower four bytes are set to R1 and the upper four bytes
are set to R2.

Structure, union, or class whose size is 16 bytes
or less and is also a multiple of 4

They are set from the beginning of the memory image in 4-
byte units in the order of R1, R2, R3, and R4.

Structure, union, or class other than those above Return value setting area (memory)*1

 long f();

 long f ()

 {

 float x ;

 return x ;

 }

The return value is converted to long type
by a prototype declaration.

R20UT3248EJ0110 Rev.1.10 Page 926 of 1053
Nov 01, 2020

CC-RX 9.　FUNCTION CALL INTERFACE SPECIFICATIONS

Examples 2. Parameters of a structure or union whose size is 16 bytes or less and is also a multiple of 4 are allocated
to registers. Parameters of all other structures and unions are allocated to the stack.

Examples 3. When declared in a prototype declaration as a function with a variable-number of parameters, the param-
eters without corresponding types and the immediately preceding parameter are allocated to the stack in
the order in which they are declared.

Examples 4. When the type returned by a function is more than 16 bytes, or for a structure or union that is not the size
of a multiple of 4, the return value address is set to R15.

0x01

0x00000002

0x00000000

0x0004

R1

R2

R3

R4

0x00000003

0x08

0x00000000

0x00000005

0x0007 0x06

*(R0+0)

*(R0+4)

*(R0+8)

*(R0+12)

*(R0+16) 0x000A 0x09

int f(

unsigned char ,

long long,

long long,

short,

int,

char,

short,

char,

char,

short);

 :

f(1,2,3,4,5,6,7,8,9,10);

/*
** 1, 2, and 4 are allocated to registers
*/

0x000000 (Zero extension)

<Registers>

0x0000
(Sign extension)

<Stack>

Empty
area

0x00000000

0x3F800000

R1

R2

*(R0+0)

*(R0+4)

int f(int, float, int, int, ...)

:

f(0, 1.0, 2, 3, 4)

0x00000002R3

0x00000003

0x00000004

<Registers>

<Stack>

CC-RX 9.　FUNCTION CALL INTERFACE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 927 of 1053
Nov 01, 2020

Examples 5. When setting the return value to memory, normally a stack is allocated, as shown in example 4. In the
case of setting the return value to a variable, however, no stack is allocated and it is directly set to the
memory area for that variable. In this case, the address for the variable is set to R15.

9.2 Method for Mutual Referencing of External Names between Compiler and Assembler

This section describes mutual referencing between the compiler and assembler.
External names which have been declared in a C/C++ program can be referenced and updated in both directions

between the C/C++ program and an assembly-language program. The compiler treats the following items as external
names.

- Global variables which are not declared as static storage classes (C/C++ programs)

- Variable names declared as extern storage classes (C/C++ programs)

- Function names not specified as static storage classes (C programs)

- Non-member, non-inline function names not specified as static storage classes (C++ programs)

- Non-inline member function names (C++ programs)

- Static data member names (C++ programs)

0x00000001

0x00000002

R1

R2

*(R0+0)

*(R0+4)

0x00000003R3

0x00000005

0x00000004R4

Return value address (= R0 + 4)R15

*(R0+8)

struct S{char a[7];};

struct S f(

int a1,

int a2,

int a3,

int a4,

int a5);

:

f(1,2,3,4,5);

<Registers>

Return value setting area

<Stack>

Empty
area

0x00000001

0x00000002

R1

R2

*(R0+0)

*(&t)

0x00000003R3

0x00000005

0x00000004R4

R15

*(&t+4)

struct S{char a[7];}t;

struct S f(

int a1,

int a2,

int a3,

int a4,

int a5);

:

t=f(1,2,3,4,5);

Return value address (= &t)

<Registers>

Return value setting area

<Stack>

Empty
area

<Memory>

R20UT3248EJ0110 Rev.1.10 Page 928 of 1053
Nov 01, 2020

CC-RX 9.　FUNCTION CALL INTERFACE SPECIFICATIONS

9.2.1 Referencing Assembly-Language Program External Names in C/C++ Programs

In assembly-language programs, .GLB is used to declare external symbol names (preceded by an underscore (_)).
In C/C++ programs, symbol names (not preceded by an underscore) are declared using the extern keyword.
[Example of assembly-language source]

[Example of C source]

9.2.2 Referencing C/C++ Program External Names (Variables and C Functions) from
Assembly-Language Programs

A C/C++ program can define external variable names (without an underscore (_)).
In an assembly-language program, .GLB is used to declare an external name (preceded by an underscore).
[Example of C source]

[Example of assembly-language source]

 .glb _a, _b
 .SECTION D,ROMDATA,ALIGN=4
_a: .LWORD 1
_b: .LWORD 1
 .END

extern int a,b;
void f()
{
 a+=b;
}

int a;

 .GLB _a
 .SECTION P,CODE
 MOV.L #A_a,R1
 MOV.L [R1],R2
 ADD #1,R2
 MOV.L R2,[R1]
 RTS
 .SECTION D,ROMDATA,ALIGN=4
A_a: .LWORD _a
 .END

CC-RX 9.　FUNCTION CALL INTERFACE SPECIFICATIONS

R20UT3248EJ0110 Rev.1.10 Page 929 of 1053
Nov 01, 2020

9.2.3 Referencing C++ Program External Names (Functions) from Assembly-Language
Programs

By declaring functions to be referenced from an assembly-language program using the extern "C" keyword, the func-
tion can be referenced using the same rules as in (2) above. However, functions declared using extern "C" cannot be
overloaded.

[Example of C++ source]

[Example of assembly-language source]

extern "C"
void sub()
{
 :
}

 .GLB _sub
 .SECTION P,CODE
 :
 PUSH.L R13
 MOV.L 4[R0],R1
 MOV.L R3,R12
 MOV.L #_sub,R14
 JSR R14
 POP R13
 RTS
 :
 .END

R20UT3248EJ0110 Rev.1.10 Page 930 of 1053
Nov 01, 2020

CC-RX 10.　MESSAGES

10. MESSAGES

10.1 GENERAL

This document describes internal error message, error message, fatal error message, information message, warning
message and MISRA-C detection message that Renesas Tool outputs.

10.2 MESSAGE FORMATS

(1) When the file name and line number are included

(2) When the file name and line number aren't included

Remark Following contents are output as the continued character string.
MESSAGE TYPES : 1 alphabetic character
COMPONENT NUMBERS : 05
MESSAGE NUMBERS : 5 digits

10.3 MESSAGE TYPES

Table 10.1 Message Type (CC-RX (V2.00.00 or higher))

10.4 MESSAGE NUMBERS

The message numbers of the CC-RX (V2.00.00 or higher) are 5 digits number output following component number (05).

10.5 MESSAGES

This chapter describes the messages displayed by Renesas Tool.

file-name (line-number) : message-type component-number message-number : message

message-type component-number message-number : message

Message Type Description

C Internal error : Processing is aborted.
No output objects are generated.

E Error : Processingn is aborted if a set number of errors occur.
No output objects are generated.

F Fatal error : Processing is aaborted.
No output objects are generated.

M Information : Informational message.
Check the message and continue the process.

W Warning : Processing continues.
Output objects are generated (They might not be what the user intended).

CC-RX 10.　MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 931 of 1053
Nov 01, 2020

10.5.1 Internal Errors

Table 10.2 Internal Errors

C0510000 [Message] Internal error.

[Action by User] Please contact your vendor or your Renesas Electronics overseas representative.

C0511200 [Message] Internal error(error-information).

[Action by User] Please contact your vendor or your Renesas Electronics overseas representative.

C0519996 [Message] Out of memory.

[Explanation] The amount of data input (source file name, specified options) to ccrx.exe is too
large.

[Action by User] Divide the data input to ccrx.exe and perform startup in several times.

C0519997 [Message] Internal error.

[Action by User] Please contact your vendor or your Renesas Electronics overseas representative.

C0530001 [Message] Internal Error.

[Action by User] Please contact your vendor or your Renesas Electronics overseas representative.

C0530002 [Message] Internal Error.

[Action by User] Please contact your vendor or your Renesas Electronics overseas representative.

C0530003 [Message] Internal Error.

[Action by User] Please contact your vendor or your Renesas Electronics overseas representative.

C0530004 [Message] Internal Error.

[Action by User] Please contact your vendor or your Renesas Electronics overseas representative.

C0530005 [Message] Internal Error.

[Action by User] Please contact your vendor or your Renesas Electronics overseas representative.

C0530006 [Message] Internal Error.

[Action by User] Please contact your vendor or your Renesas Electronics overseas representative.

C0554098 [Message] Internal Error.

[Explanation] An internal error occurred during processing by the assembler.

[Action by User] Make a note of the internal error number, file name, line number, and comment in
the message, and contact the support department of the vendor.

C0564000 [Message] Internal error : ("internal error number") "file line number" / "comment"

[Explanation] An internal error occurred during processing by the linker.

[Action by User] Make a note of the internal error number, file name, line number, and comment in
the message, and contact the support department of the vendor.

C0564001 [Message] Internal Error.

[Action by User] Please contact your vendor or your Renesas Electronics overseas representative.

R20UT3248EJ0110 Rev.1.10 Page 932 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

10.5.2 Errors

Table 10.3 Errors

E0511101 [Message] "path" specified by the "character string" option is a folder. Specify an input file.

E0511102 [Message] The file "file" specified by the "character string" option is not found.

E0511103 [Message] "path" specified by the "character string" option is a folder. Specify an output file.

E0511104 [Message] The output folder "folder" specified by the "character string" option is not found.

E0511107 [Message] "path" specified by the "character string" option is not found.

[Explanation] "path" (file-name or folder) specified in the "character string" option was not found.

E0511108 [Message] The "character string" option is not recognized.

E0511109 [Message] The "character string" option can not have an argument.

E0511110 [Message] The "character string" option requires an argument.

[Explanation] The "character string" option requires an argument. Specify the argument.

E0511111 [Message] The "character string" option can not have a parameter.

E0511112 [Message] The "character string" option requires a parameter.

[Explanation] The "character string" option requires a parameter. Specify the parameter.

E0511113 [Message] Invalid argument for the "character string" option.

E0511117 [Message] Invalid parameter for the "character string" option.

E0511118 [Message] Symbol is required for the "character string" option.

E0511120 [Message] Specify a value (value1 - value2) for the "character string" option.

[Explanation] The value of the specified size option is outside the range of minimum value to
maximum value.

[Action by User] Specify a size option value between the minimum and maximum values.

E0511122 [Message] The argument for the "character string" option must be an object file.

E0511127 [Message] The specified device is not supported.

E0511129 [Message] Command file "file" is read more than once.

E0511130 [Message] Command file "file" cannot be read.

E0511131 [Message] Syntax error in command file "file".

E0511132 [Message] Failed to create temporary folder.

E0511133 [Message] The parameter for the "character string" option must be a folder when multiple
source files are specified.

E0511134 [Message] Input file "file" is not found.

E0511135 [Message] "path" specified as an input file is a folder.

E0511136 [Message] Failed to delete a temporary file "file".

E0511137 [Message] Failed to delete a temporary folder "folder".

E0511138 [Message] Failed to open an input file "file".

E0511139 [Message] Failed to open an output file "file".

E0511140 [Message] Failed to close an input file "file".

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 933 of 1053
Nov 01, 2020

E0511141 [Message] Failed to write an output file "file".

E0511142 [Message] Multiple source files are not allowed when the "character string" option is specified.

E0511145 [Message] "character string2" specified in the "character string1" option is not available.

E0511148 [Message] "file name" is specified as an output file for the different options.

[Action by User] "file name" is specified as an output file for the different options. Specify a different
file name.

E0511150 [Message] The "character string1" option and the "character string2" option are inconsistent.

E0511152 [Message] The "character string1" option needs the "character string2" option.

E0511154 [Message] Component file "file name" for the CC-RX is not found. Reinstall the CC-RX.

[Explanation] The component file "file name" for the CC-RX is not found. Reinstall the CC-RX.

E0511155 [Message] The "character string" option needs other option(s).

E0511157 [Message] The "character string1" option or the "character string2" option must be specified
for this device.

E0511158 [Message] The "character string" option is not supported for this device.

E0511159 [Message] When the "character string" option is specified, source files cannot be input.

E0511160 [Message] The "character string" option must be specified for this device.

E0511161 [Message] Failed to delete a file "file".

E0511165 [Message] Lacking cpu specification.

[Action by User] Use the cpu option or environment variable CPU_RX to specify the CPU.

E0511167 [Message] Illegal section naming.

[Explanation] There is an error in section naming. The same section name is specified for differ-
ent use of the section.

E0511173 [Message] Failed to access a temporary file

E0511175 [Message] Neither isa nor cpu is specified.

E0511176 [Message] Both "-isa" option and "-cpu" option are specified.

E0511178 [Message] "character string" option has no effect in this licence.

[Explanation] The "character string" option is invalid with this license.

E0511200 [Message] Internal error(error-information).

E0512001 [Message] Failed to delete a temporary file "file".

E0520001 [Message] Last line of file ends without a newline.

[Action by User] The last line in the file does not end with a line break. Add a line break.

E0520002 [Message] Last line of file ends with a backslash.

[Explanation] There is a backslash at the end of the last line of the file. Delete it.

E0520005 [Message] Could not open source file "file name".

E0520006 [Message] Comment unclosed at end of file.

[Action by User] There is an unclosed comment at the end of the file. Make sure that there are no
unclosed comments.

R20UT3248EJ0110 Rev.1.10 Page 934 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

E0520007 [Message] Unrecognized token.

[Action by User] Unknown token. Check the indicated location.

E0520008 [Message] Missing closing quote.

[Action by User] The string is missing a closing quotation mark. Make sure that there are no
unclosed quotation mark.

E0520010 [Message] "#" not expected here.

[Explanation] There is a "#" character in an invalid location.

E0520011 [Message] Unrecognized preprocessing directive.

E0520012 [Message] Parsing restarts here after previous syntax error.

E0520013 [Message] Expected a file name.

E0520014 [Message] Extra text after expected end of preprocessing directive.

E0520017 [Message] Expected a "]".

E0520018 [Message] Expected a ")".

E0520019 [Message] Extra text after expected end of number.

E0520020 [Message] Identifier "character string" is undefined.

E0520022 [Message] Invalid hexadecimal number.

E0520023 [Message] Integer constant is too large.

E0520024 [Message] Invalid octal digit.

[Explanation] Invalid hexadecimal number. Hexadecimal numbers cannot contain '8' or '9'.

E0520025 [Message] Quoted string should contain at least one character.

E0520026 [Message] Too many characters in character constant.

E0520027 [Message] Character value is out of range.

E0520028 [Message] Expression must have a constant value.

E0520029 [Message] Expected an expression.

E0520030 [Message] Floating constant is out of range.

E0520031 [Message] Expression must have integral type.

E0520032 [Message] Expression must have arithmetic type.

E0520033 [Message] Expected a line number

[Explanation] The line number after the "#line" statement does not exist.

E0520034 [Message] Invalid line number

[Explanation] The line number after the "#line" statement is invalid.

E0520036 [Message] The #if for this directive is missing.

E0520037 [Message] The #endif for this directive is missing.

E0520038 [Message] Directive is not allowed -- an #else has already appeared.

[Explanation] This directive is invalid because there is already an "#else" statement.

E0520039 [Message] Division by zero.

E0520040 [Message] Expected an identifier.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 935 of 1053
Nov 01, 2020

E0520041 [Message] Expression must have arithmetic or pointer type.

E0520042 [Message] Operand types are incompatible ("type1" and "type2").

E0520044 [Message] Expression must have pointer type.

E0520045 [Message] #undef may not be used on this predefined name.

E0520046 [Message] "macro" is predefined; attempted redefinition ignored.

[Explanation] The macro "macro" is predefined. It cannot be redefined.

E0520047 [Message] Incompatible redefinition of macro "macro" (declared at line number).

[Explanation] The redefinition of macro "macro" is not compatible with the definition at line num-
ber.

E0520049 [Message] Duplicate macro parameter name.

E0520050 [Message] "##" may not be first in a macro definition.

E0520051 [Message] "##" may not be last in a macro definition.

E0520052 [Message] Expected a macro parameter name.

E0520053 [Message] Expected a ":".

E0520054 [Message] Too few arguments in macro invocation.

E0520055 [Message] Too many arguments in macro invocation.

E0520056 [Message] Operand of sizeof may not be a function.

E0520057 [Message] This operator is not allowed in a constant expression.

E0520058 [Message] This operator is not allowed in a preprocessing expression.

E0520059 [Message] Function call is not allowed in a constant expression.

E0520060 [Message] This operator is not allowed in an integral constant expression.

E0520061 [Message] Integer operation result is out of range.

E0520062 [Message] Shift count is negative.

E0520063 [Message] Shift count is too large.

E0520064 [Message] Declaration does not declare anything.

E0520065 [Message] Expected a ";".

E0520066 [Message] Enumeration value is out of "int" range.

E0520067 [Message] Expected a "}".

E0520069 [Message] Integer conversion resulted in truncation

[Explanation] The conversion result of the integer type was truncated.

E0520070 [Message] Incomplete type is not allowed.

E0520071 [Message] Operand of sizeof may not be a bit field.

E0520075 [Message] Operand of "*" must be a pointer.

E0520077 [Message] This declaration has no storage class or type specifier.

E0520078 [Message] A parameter declaration may not have an initializer.

E0520079 [Message] Expected a type specifier.

E0520080 [Message] A storage class may not be specified here.

R20UT3248EJ0110 Rev.1.10 Page 936 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

E0520081 [Message] More than one storage class may not be specified.

[Explanation] Multiple storage class areas have been specified. Only one storage class area can
be specified.

E0520083 [Message] Type qualifier specified more than once.

[Explanation] Multiple type qualifiers have been specified. It is not possible to specify more than
one type qualifier.

E0520084 [Message] Invalid combination of type specifiers.

E0520085 [Message] Invalid storage class for a parameter.

E0520086 [Message] Invalid storage class for a function.

E0520087 [Message] A type specifier may not be used here.

E0520088 [Message] Array of functions is not allowed.

E0520089 [Message] Array of void is not allowed.

E0520090 [Message] Function returning function is not allowed.

E0520091 [Message] Function returning array is not allowed.

E0520092 [Message] Identifier-list parameters may only be used in a function definition.

E0520093 [Message] Function type may not come from a typedef.

E0520094 [Message] The size of an array must be greater than zero.

E0520095 [Message] Array is too large.

E0520096 [Message] A translation unit must contain at least one declaration.

E0520097 [Message] A function may not return a value of this type.

E0520098 [Message] An array may not have elements of this type.

E0520099 [Message] A declaration here must declare a parameter.

E0520100 [Message] Duplicate parameter name.

E0520101 [Message] "symbol" has already been declared in the current scope.

E0520102 [Message] Forward declaration of enum type is nonstandard.

E0520103 [Message] Class is too large.

E0520104 [Message] Struct or union is too large.

E0520105 [Message] Invalid size for bit field.

E0520106 [Message] Invalid type for a bit field.

E0520107 [Message] Zero-length bit field must be unnamed.

E0520109 [Message] Expression must have (pointer-to-) function type.

E0520110 [Message] Expected either a definition or a tag name.

E0520112 [Message] Expected "while".

E0520114 [Message] Type "symbol" was referenced but not defined.

E0520115 [Message] A continue statement may only be used within a loop.

E0520116 [Message] A break statement may only be used within a loop or switch.

E0520118 [Message] A void function may not return a value.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 937 of 1053
Nov 01, 2020

E0520119 [Message] Cast to type "type" is not allowed.

E0520120 [Message] Return value type does not match the function type.

E0520121 [Message] A case label may only be used within a switch.

E0520122 [Message] A default label may only be used within a switch.

E0520123 [Message] case label value has already appeared in this switch.

E0520124 [Message] default label has already appeared in this switch.

E0520125 [Message] Expected a "(".

E0520126 [Message] Expression must be an lvalue.

E0520127 [Message] Expected a statement.

E0520129 [Message] A block-scope function may only have extern storage class.

E0520130 [Message] Expected a "{".

E0520131 [Message] Expression must have pointer-to-class type.

E0520132 [Message] Expression must have pointer-to-struct-or-union type.

E0520133 [Message] Expected a member name.

E0520134 [Message] Expected a field name.

E0520135 [Message] symbol has no member member.

E0520136 [Message] Type "symbol" has no field "field".

E0520137 [Message] Expression must be a modifiable value.

E0520138 [Message] Taking the address of a register variable is not allowed.

E0520139 [Message] Taking the address of a bit field is not allowed.

E0520140 [Message] Too many arguments in function call.

E0520141 [Message] Unnamed prototyped parameters not allowed when body is present.

E0520142 [Message] Expression must have pointer-to-object type.

E0520144 [Message] A value of type "type1" cannot be used to initialize an entity of type "type2".

E0520145 [Message] Type "symbol" may not be initialized.

E0520146 [Message] Too many initializer values.

E0520147 [Message] Declaration is incompatible with "declaration" (declared at line number).

E0520148 [Message] Tyep "symbol" has already been initialized.

E0520149 [Message] A global-scope declaration may not have this storage class.

E0520150 [Message] A type name may not be redeclared as a parameter.

E0520151 [Message] A typedef name may not be redeclared as a parameter.

E0520153 [Message] Expression must have class type.

E0520154 [Message] Expression must have struct or union type.

E0520157 [Message] Expression must be an integral constant expression.

E0520158 [Message] Expression must be an lvalue or a function designator.

E0520159 [Message] Declaration is incompatible with previous "declaration" (declared at line number).

R20UT3248EJ0110 Rev.1.10 Page 938 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

E0520160 [Message] External name conflicts with external name of "symbol".

E0520165 [Message] Too few arguments in function call.

E0520166 [Message] Invalid floating constant.

E0520167 [Message] Argument of type "type1" is incompatible with parameter of type "type2".

E0520168 [Message] A function type is not allowed here.

E0520169 [Message] Expected a declaration.

E0520170 [Message] Pointer points outside of underlying object.

E0520171 [Message] Invalid type conversion.

E0520172 [Message] External/internal linkage conflict with previous declaration.

E0520173 [Message] Floating-point value does not fit in required integral type.

E0520179 [Message] Right operand of "%" is zero.

E0520183 [Message] Type of cast must be integral.

E0520184 [Message] Type of cast must be arithmetic or pointer.

E0520194 [Message] Expected an asm string.

[Explanation] There is no assembler string in an "__asm()" statement.

E0520195 [Message] An asm function must be prototyped.

E0520196 [Message] An asm function may not have an ellipsis

E0520220 [Message] Integral value does not fit in required floating-point type.

E0520221 [Message] Floating-point value does not fit in required floating-point type.

E0520222 [Message] Floating-point operation result is out of range.

E0520227 [Message] Macro recursion.

E0520228 [Message] Trailing comma is nonstandard.

[Explanation] A trailing comma is not standard.

E0520230 [Message] Nonstandard type for a bit field.

E0520235 [Message] Variable any-string was declared with a never-completed type.

E0520238 [Message] Invalid specifier on a parameter.

E0520239 [Message] Invalid specifier outside a class declaration.

E0520240 [Message] Duplicate specifier in declaration.

E0520241 [Message] A union is not allowed to have a base class.

E0520242 [Message] Multiple access control specifiers are not allowed.

E0520243 [Message] class or struct definition is missing.

E0520244 [Message] Qualified name is not a member of class type or its base classes.

E0520245 [Message] A nonstatic member reference must be relative to a specific object.

E0520246 [Message] A nonstatic data member may not be defined outside its class.

E0520247 [Message] Type "symbol" has already been defined.

E0520248 [Message] Pointer to reference is not allowed.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 939 of 1053
Nov 01, 2020

E0520249 [Message] Reference to reference is not allowed.

E0520250 [Message] Reference to void is not allowed.

E0520251 [Message] Array of reference is not allowed.

E0520252 [Message] Reference "name" requires an initializer.

E0520253 [Message] Expected a ",".

E0520254 [Message] Type name is not allowed.

E0520255 [Message] Type definition is not allowed.

E0520256 [Message] Invalid redeclaration of type name "type".

[Explanation] Type name "type" was redeclared illegally.

E0520257 [Message] const type "symbol" requires an initializer.

E0520258 [Message] "this" may only be used inside a nonstatic member function

E0520259 [Message] Constant value is not known.

E0520260 [Message] Explicit type is missing ("int" assumed).

E0520262 [Message] Not a class or struct name.

E0520263 [Message] Duplicate base class name.

E0520264 [Message] Invalid base class.

E0520265 [Message] "name" is inaccessible.

E0520266 [Message] "name" is ambiguous.

E0520267 [Message] Old-style parameter list (anachronism).

E0520268 [Message] Declaration may not appear after executable statement in block.

E0520269 [Message] Conversion to inaccessible base class "type" is not allowed.

E0520274 [Message] Improperly terminated macro invocation.

E0520276 [Message] Name followed by "::" must be a class or namespace name.

E0520277 [Message] Invalid friend declaration.

E0520278 [Message] A constructor or destructor may not return a value.

E0520279 [Message] Invalid destructor declaration.

E0520280 [Message] Declaration of a member with the same name as its class.

E0520281 [Message] Global-scope qualifier (leading "::") is not allowed.

E0520282 [Message] The global scope has no xxx.

E0520283 [Message] Qualified name is not allowed.

E0520284 [Message] NULL reference is not allowed.

E0520285 [Message] Initialization with "{...}" is not allowed for object of type "type".

E0520286 [Message] Base class "type" is ambiguous.

E0520287 [Message] Derived class type1 contains more than one instance of class type2.

E0520288 [Message] Cannot convert pointer to base class type2 to pointer to derived class type1 -- base
class is virtual.

E0520289 [Message] No instance of constructor name matches the argument list.

R20UT3248EJ0110 Rev.1.10 Page 940 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

E0520290 [Message] Copy constructor for class type is ambiguous.

E0520291 [Message] No default constructor exists for class type.

E0520292 [Message] name is not a nonstatic data member or base class of class type.

E0520293 [Message] Indirect nonvirtual base class is not allowed.

E0520294 [Message] Invalid union member -- class type has a disallowed member function.

E0520296 [Message] Invalid use of non-lvalue array.

E0520297 [Message] Expected an operator.

E0520298 [Message] Inherited member is not allowed.

E0520299 [Message] Cannot determine which instance of name is intended.

E0520300 [Message] A pointer to a bound function may only be used to call the function.

E0520301 [Message] typedef name has already been declared (with same type).

E0520302 [Message] Symbol has already been defined.

E0520304 [Message] No instance of name matches the argument list.

E0520305 [Message] Type definition is not allowed in function return type declaration.

E0520306 [Message] Default argument not at end of parameter list.

E0520307 [Message] Redefinition of default argument.

E0520308 [Message] More than one instance of name matches the argument list:

E0520309 [Message] More than one instance of constructor name matches the argument list:

E0520310 [Message] Default argument of type type1 is incompatible with parameter of type type2.

E0520311 [Message] Cannot overload functions distinguished by return type alone.

E0520312 [Message] No suitable user-defined conversion from type1 to type2 exists.

E0520313 [Message] Type qualifier is not allowed on this function.

E0520314 [Message] Only nonstatic member functions may be virtual.

E0520315 [Message] The object has cv-qualifiers that are not compatible with the member function.

E0520316 [Message] Program too large to compile (too many virtual functions).

E0520317 [Message] Return type is not identical to nor covariant with return type type of overridden vir-
tual function name.

E0520318 [Message] Override of virtual name is ambiguous.

E0520319 [Message] Pure specifier ("= 0") allowed only on virtual functions.

E0520320 [Message] Badly-formed pure specifier (only "= 0" is allowed).

E0520321 [Message] Data member initializer is not allowed.

E0520322 [Message] Object of abstract class type type is not allowed:

E0520323 [Message] function returning abstract class type is not allowed:

E0520325 [Message] inline specifier allowed on function declarations only.

E0520326 [Message] inline is not allowed.

E0520327 [Message] Invalid storage class for an inline function.

E0520328 [Message] Invalid storage class for a class member.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 941 of 1053
Nov 01, 2020

E0520329 [Message] Local class member name requires a definition.

E0520330 [Message] name is inaccessible.

E0520332 [Message] class type has no copy constructor to copy a const object.

E0520333 [Message] Defining an implicitly declared member function is not allowed.

E0520334 [Message] class type has no suitable copy constructor.

E0520335 [Message] Linkage specification is not allowed.

E0520336 [Message] Unknown external linkage specification.

E0520337 [Message] Linkage specification is incompatible with previous "symbol".

E0520338 [Message] More than one instance of overloaded function name has "C" linkage.

E0520339 [Message] class type has more than one default constructor.

E0520340 [Message] Value copied to temporary, reference to temporary used.

E0520341 [Message] "operator operator" must be a member function.

E0520342 [Message] Operator may not be a static member function.

E0520343 [Message] No arguments allowed on user-defined conversion.

E0520344 [Message] Too many parameters for this operator function.

E0520345 [Message] Too few parameters for this operator function.

E0520346 [Message] Nonmember operator requires a parameter with class type.

E0520347 [Message] Default argument is not allowed.

E0520348 [Message] More than one user-defined conversion from type1 to type2 applies:

E0520349 [Message] No operator operator matches these operands.

E0520350 [Message] More than one operator operator matches these operands:

E0520351 [Message] First parameter of allocation function must be of type "size_t".

E0520352 [Message] Allocation function requires "void *" return type.

E0520353 [Message] Deallocation function requires "void" return type.

E0520354 [Message] First parameter of deallocation function must be of type "void *".

E0520356 [Message] Type must be an object type.

E0520357 [Message] Base class xxx has already been initialized.

E0520358 [Message] Base class name required -- xxx assumed (anachronism).

E0520359 [Message] Symbol has already been initialized.

E0520360 [Message] Name of member or base class is missing.

E0520363 [Message] Invalid anonymous union -- nonpublic member is not allowed.

E0520364 [Message] Invalid anonymous union -- member function is not allowed.

E0520365 [Message] Anonymous union at global or namespace scope must be declared static.

E0520366 [Message] Symbol provides no initializer for:

E0520367 [Message] Implicitly generated constructor for class type cannot initialize:

E0520369 [Message] name has an uninitialized const or reference member.

R20UT3248EJ0110 Rev.1.10 Page 942 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

E0520371 [Message] class type has no assignment operator to copy a const object.

E0520372 [Message] class type has no suitable assignment operator.

E0520373 [Message] Ambiguous assignment operator for class type.

E0520375 [Message] Declaration requires a typedef name.

E0520378 [Message] static is not allowed.

E0520380 [Message] Expression must have pointer-to-member type.

E0520384 [Message] No instance of overloaded name matches the argument list.

E0520386 [Message] No instance of name matches the required type.

E0520389 [Message] A cast to abstract class type is not allowed:

E0520390 [Message] Function "main" may not be called or have its address taken.

E0520391 [Message] A new-initializer may not be specified for an array.

E0520392 [Message] Member function name may not be redeclared outside its class.

E0520393 [Message] Pointer to incomplete class type is not allowed.

E0520394 [Message] Reference to local variable of enclosing function is not allowed.

E0520397 [Message] Implicitly generated assignment operator cannot copy:

E0520401 [Message] Destructor for base class type is not virtual.

E0520403 [Message] Invalid redeclaration of member "symbol".

E0520404 [Message] Function "main" may not be declared inline.

E0520405 [Message] Member function with the same name as its class must be a constructor.

E0520407 [Message] A destructor may not have parameters.

E0520408 [Message] Copy constructor for class type1 may not have a parameter of type type2.

E0520409 [Message] Type "symbol" returns incomplete type "type".

E0520410 [Message] Protected name is not accessible through a type pointer or object.

E0520411 [Message] A parameter is not allowed.

E0520413 [Message] No suitable conversion function from type1 to type2 exists.

E0520415 [Message] No suitable constructor exists to convert from type1 to type2.

E0520416 [Message] More than one constructor applies to convert from type1 to type2:

E0520417 [Message] More than one conversion function from type1 to type2 applies:

E0520418 [Message] More than one conversion function from type to a built-in type applies:

E0520424 [Message] A constructor or destructor may not have its address taken.

E0520427 [Message] Qualified name is not allowed in member declaration.

E0520429 [Message] The size of an array in "new" must be non-negative.

E0520432 [Message] enum declaration is not allowed.

E0520433 [Message] Qualifiers dropped in binding reference of type type1 to initializer of type type2.

E0520434 [Message] A reference of type type1 (not const-qualified) cannot be initialized with a value of
type type2.

E0520435 [Message] A pointer to function may not be deleted.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 943 of 1053
Nov 01, 2020

E0520436 [Message] Conversion function must be a nonstatic member function.

E0520437 [Message] Template declaration is not allowed here.

E0520438 [Message] Expected a "<".

E0520439 [Message] Expected a ">".

E0520440 [Message] Template parameter declaration is missing.

E0520441 [Message] Argument list for "name" is missing.

E0520442 [Message] Too few arguments for "name".

E0520443 [Message] Too many arguments for "symbol".

E0520445 [Message] name1 is not used in declaring the parameter types of "name2".

E0520449 [Message] More than one instance of name matches the required type.

E0520450 [Message] The type "long long" is nonstandard.

E0520451 [Message] Omission of "class" is nonstandard.

E0520452 [Message] Return type may not be specified on a conversion function.

E0520456 [Message] Excessive recursion at instantiation of name.

E0520457 [Message] name is not a function or static data member.

E0520458 [Message] Argument of type type1 is incompatible with template parameter of type type2.

E0520459 [Message] Initialization requiring a temporary or conversion is not allowed.

E0520460 [Message] declaration of xxx hides function parameter.

E0520461 [Message] Initial value of reference to non-const must be an lvalue.

E0520463 [Message] "template" is not allowed.

E0520464 [Message] type is not a class template.

E0520466 [Message] "main" is not a valid name for a function template.

E0520467 [Message] Invalid reference to name (union/nonunion mismatch).

E0520468 [Message] A template argument may not reference a local type.

E0520469 [Message] Tag kind of xxx is incompatible with declaration of "symbol".

E0520470 [Message] The global scope has no tag named xxx.

E0520471 [Message] symbol has no tag member named xxx.

E0520473 [Message] name may be used only in pointer-to-member declaration.

E0520475 [Message] A template argument may not reference a non-external entity.

E0520476 [Message] Name followed by "::~" must be a class name or a type name.

E0520477 [Message] Destructor name does not match name of class type.

E0520478 [Message] Type used as destructor name does not match type type.

E0520481 [Message] Invalid storage class for a template declaration.

E0520484 [Message] Invalid explicit instantiation declaration.

E0520485 [Message] name is not an entity that can be instantiated.

E0520486 [Message] Compiler generated name cannot be explicitly instantiated.

R20UT3248EJ0110 Rev.1.10 Page 944 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

E0520487 [Message] Inline name cannot be explicitly instantiated.

E0520489 [Message] name cannot be instantiated -- no template definition was supplied.

E0520490 [Message] name cannot be instantiated -- it has been explicitly specialized.

E0520493 [Message] No instance of name matches the specified type.

E0520494 [Message] Declaring a void parameter list with a typedef is nonstandard.

E0520496 [Message] Template parameter name may not be redeclared in this scope.

E0520498 [Message] Template argument list must match the parameter list.

E0520500 [Message] Extra parameter of postfix "operator xxx" must be of type "int".

E0520501 [Message] An operator name must be declared as a function.

E0520502 [Message] Operator name is not allowed.

E0520503 [Message] name cannot be specialized in the current scope.

E0520504 [Message] Nonstandard form for taking the address of a member function.

E0520505 [Message] Too few template parameters -- does not match previous declaration.

E0520506 [Message] Too many template parameters -- does not match previous declaration.

E0520507 [Message] Function template for operator delete(void *) is not allowed.

E0520508 [Message] class template and template parameter may not have the same name.

E0520510 [Message] A template argument may not reference an unnamed type.

E0520511 [Message] Enumerated type is not allowed.

E0520513 [Message] A value of type "type1" cannot be assigned to an entity of type "type2".

E0520515 [Message] Cannot convert to incomplete class type.

E0520516 [Message] const object requires an initializer.

E0520517 [Message] Object has an uninitialized const or reference member.

E0520518 [Message] Nonstandard preprocessing directive.

E0520519 [Message] name may not have a template argument list.

E0520520 [Message] Initialization with "{...}" expected for aggregate object.

E0520521 [Message] Pointer-to-member selection class types are incompatible (type1 and type2).

E0520525 [Message] A dependent statement may not be a declaration.

[Explanation] Cannot write declaration due to lack of "{" character after "if()" statement.

E0520526 [Message] A parameter may not have void type.

E0520529 [Message] This operator is not allowed in a template argument expression.

E0520530 [Message] Try block requires at least one handler/

E0520531 [Message] Handler requires an exception declaration.

E0520532 [Message] Handler is masked by default handler.

E0520536 [Message] Exception specification is incompatible with that of previous name.

E0520540 [Message] Support for exception handling is disabled.

E0520543 [Message] Non-arithmetic operation not allowed in nontype template argument.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 945 of 1053
Nov 01, 2020

E0520544 [Message] Use of a local type to declare a nonlocal variable.

E0520545 [Message] Use of a local type to declare a function.

E0520546 [Message] Transfer of control bypasses initialization of:

E0520548 [Message] Transfer of control into an exception handler.

E0520551 [Message] symbol cannot be defined in the current scope.

E0520555 [Message] Tag kind of name is incompatible with template parameter of type type.

E0520556 [Message] Function template for operator new(size_t) is not allowed.

E0520558 [Message] Pointer to member of type "type" is not allowed.

E0520559 [Message] Tointer to member of type type is not allowed.

E0520560 [Message] symbol is reserved for future use as a keyword.

E0520561 [Message] Invalid macro definition:

E0520562 [Message] Invalid macro undefinition:

E0520598 [Message] A template parameter may not have void type.

E0520599 [Message] Excessive recursive instantiation of name due to instantiate-all mode.

E0520601 [Message] A throw expression may not have void type.

E0520603 [Message] Parameter of abstract class type type is not allowed:

E0520604 [Message] Array of abstract class type is not allowed:

E0520605 [Message] Floating-point template parameter is nonstandard.

E0520606 [Message] This pragma must immediately precede a declaration.

E0520607 [Message] This pragma must immediately precede a statement.

E0520608 [Message] This pragma must immediately precede a declaration or statement.

E0520609 [Message] This kind of pragma may not be used here.

E0520612 [Message] Specific definition of inline template function must precede its first use.

E0520615 [Message] Parameter type involves pointer to array of unknown bound.

E0520616 [Message] Parameter type involves reference to array of unknown bound.

E0520618 [Message] struct or union declares no named members.

E0520619 [Message] Nonstandard unnamed field.

E0520620 [Message] Nonstandard unnamed member.

E0520643 [Message] restrict is not allowed.

E0520644 [Message] A pointer or reference to function type may not be qualified by "restrict".

E0520647 [Message] Conflicting calling convention modifiers.

E0520651 [Message] A calling convention may not be followed by a nested declarator.

E0520654 [Message] Declaration modifiers are incompatible with previous declaration.

E0520656 [Message] Transfer of control into a try block.

E0520658 [Message] Closing brace of template definition not found.

E0520660 [Message] Invalid packing alignment value.

R20UT3248EJ0110 Rev.1.10 Page 946 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

E0520661 [Message] Expected an integer constant.

E0520663 [Message] Invalid source file identifier string.

E0520664 [Message] A class template cannot be defined in a friend declaration.

E0520665 [Message] asm is not allowed.

E0520666 [Message] asm must be used with a function definition.

E0520667 [Message] asm function is nonstandard.

E0520668 [Message] Ellipsis with no explicit parameters is nonstandard.

E0520669 [Message] &... is nonstandard.

E0520670 [Message] invalid use of "&...".

E0520673 [Message] A reference of type type1 cannot be initialized with a value of type type2.

E0520674 [Message] Initial value of reference to const volatile must be an lvalue.

E0520676 [Message] Using out-of-scope declaration of type "symbol" (declared at line number).

E0520691 [Message] xxx, required for copy that was eliminated, is inaccessible.

E0520692 [Message] xxx required for copy that was eliminated, is not callable because reference param-
eter cannot be bound to rvalue.

E0520693 [Message] <typeinfo> must be included before typeid is used.

E0520694 [Message] xxx cannot cast away const or other type qualifiers.

E0520695 [Message] The type in a dynamic_cast must be a pointer or reference to a complete class
type, or void *.

E0520696 [Message] The operand of a pointer dynamic_cast must be a pointer to a complete class type.

E0520697 [Message] The operand of a reference dynamic_cast must be an lvalue of a complete class
type.

E0520698 [Message] The operand of a runtime dynamic_cast must have a polymorphic class type.

E0520701 [Message] An array type is not allowed here.

E0520702 [Message] Expected an "=".

E0520703 [Message] Expected a declarator in condition declaration.

E0520704 [Message] xxx, declared in condition, may not be redeclared in this scope.

E0520705 [Message] Default template arguments are not allowed for function templates.

E0520706 [Message] Expected a "," or ">".

E0520707 [Message] Expected a template parameter list.

E0520709 [Message] bool type is not allowed.

E0520710 [Message] Offset of base class name1 within class name2 is too large.

E0520711 [Message] Expression must have bool type (or be convertible to bool).

E0520717 [Message] The type in a const_cast must be a pointer, reference, or pointer to member to an
object type.

E0520718 [Message] A const_cast can only adjust type qualifiers; it cannot change the underlying type.

E0520719 [Message] mutable is not allowed.

E0520724 [Message] namespace definition is not allowed.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 947 of 1053
Nov 01, 2020

E0520725 [Message] name must be a namespace name.

E0520726 [Message] namespace alias definition is not allowed.

E0520727 [Message] namespace-qualified name is required.

E0520728 [Message] A namespace name is not allowed.

E0520730 [Message] name is not a class template.

E0520731 [Message] Array with incomplete element type is nonstandard.

E0520732 [Message] Allocation operator may not be declared in a namespace.

E0520733 [Message] Deallocation operator may not be declared in a namespace.

E0520734 [Message] name1 conflicts with using-declaration of name2.

E0520735 [Message] using-declaration of name1 conflicts with name2.

E0520742 [Message] symbol has no actual member xxx.

E0520749 [Message] A type qualifier is not allowed.

E0520750 [Message] name was used before its template was declared.

E0520751 [Message] Static and nonstatic member functions with same parameter types cannot be over-
loaded.

E0520752 [Message] No prior declaration of "symbol".

E0520753 [Message] A template-id is not allowed.

[Explanation] The use of templates (template name<template argument>) is not allowed.

E0520754 [Message] A class-qualified name is not allowed.

E0520755 [Message] symbol may not be redeclared in the current scope.

E0520756 [Message] Qualified name is not allowed in namespace member declaration.

E0520757 [Message] symbol is not a type name.

E0520758 [Message] Explicit instantiation is not allowed in the current scope.

E0520759 [Message] symbol cannot be explicitly instantiated in the current scope.

E0520761 [Message] typename may only be used within a template.

E0520765 [Message] Nonstandard character at start of object-like macro definition.

E0520766 [Message] Exception specification for virtual name1 is incompatible with that of overridden
name2.

E0520767 [Message] Conversion from pointer to smaller integer.

E0520768 [Message] Exception specification for implicitly declared virtual name1 is incompatible with
that of overridden name2.

E0520769 [Message] name1, implicitly called from name2, is ambiguous.

E0520771 [Message] "explicit" is not allowed.

E0520772 [Message] Declaration conflicts with xxx (reserved class name).

E0520773 [Message] Only "()" is allowed as initializer for array "symbol".

E0520774 [Message] "virtual" is not allowed in a function template declaration.

E0520775 [Message] Invalid anonymous union -- class member template is not allowed.

R20UT3248EJ0110 Rev.1.10 Page 948 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

E0520776 [Message] Template nesting depth does not match the previous declaration of %n.

E0520779 [Message] xxx, declared in for-loop initialization, may not be redeclared in this scope.

E0520782 [Message] Definition of virtual name is required here.

E0520784 [Message] A storage class is not allowed in a friend declaration.

E0520785 [Message] Template parameter list for name is not allowed in this declaration.

E0520786 [Message] name is not a valid member class or function template.

E0520787 [Message] Not a valid member class or function template declaration.

E0520788 [Message] A template declaration containing a template parameter list may not be followed by
an explicit specialization declaration.

E0520789 [Message] Explicit specialization of name1 must precede the first use of name2.

E0520790 [Message] Explicit specialization is not allowed in the current scope.

E0520791 [Message] Partial specialization of "symbol" is not allowed.

E0520792 [Message] name is not an entity that can be explicitly specialized.

E0520793 [Message] Explicit specialization of %n must precede its first use.

E0520795 [Message] Specializing name requires "template<>" syntax.

E0520799 [Message] Specializing symbol without "template<>" syntax is nonstandard.

E0520800 [Message] This declaration may not have extern "C" linkage.

E0520801 [Message] name is not a class or function template name in the current scope.

E0520803 [Message] Specifying a default argument when redeclaring an already referenced function
template is not allowed.

E0520804 [Message] Cannot convert pointer to member of base class type2 to pointer to member of
derived class type1 -- base class is virtual.

E0520805 [Message] Exception specification is incompatible with that of name.

E0520807 [Message] Unexpected end of default argument expression.

E0520808 [Message] Default-initialization of reference is not allowed.

E0520809 [Message] Uninitialized "symbol" has a const member.

E0520810 [Message] Uninitialized base class type has a const member.

E0520811 [Message] const name requires an initializer -- class type has no explicitly declared default
constructor.

E0520812 [Message] Const object requires an initializer -- class type has no explicitly declared default
constructor.

E0520816 [Message] In a function definition a type qualifier on a "void" return type is not allowed.

E0520817 [Message] Static data member declaration is not allowed in this class.

E0520818 [Message] Template instantiation resulted in an invalid function declaration.

E0520819 [Message] ... is not allowed.

E0520822 [Message] Invalid destructor name for type type.

E0520824 [Message] Destructor reference is ambiguous -- both name1 and name2 could be used.

E0520827 [Message] Only one member of a union may be specified in a constructor initializer list.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 949 of 1053
Nov 01, 2020

E0520828 [Message] Support for "new[]" and "delete[]" is disabled.

E0520832 [Message] No appropriate operator delete is visible.

E0520833 [Message] Pointer or reference to incomplete type is not allowed.

E0520834 [Message] Invalid partial specialization -- name is already fully specialized.

E0520835 [Message] Incompatible exception specifications.

E0520840 [Message] A template argument list is not allowed in a declaration of a primary template.

E0520841 [Message] Partial specializations may not have default template arguments.

E0520842 [Message] name1 is not used in or cannot be deduced from the template argument list of
name2.

E0520844 [Message] The template argument list of the partial specialization includes a nontype argu-
ment whose type depends on a template parameter.

E0520845 [Message] This partial specialization would have been used to instantiate name.

E0520846 [Message] This partial specialization would have made the instantiation of name ambiguous.

E0520847 [Message] Expression must have integral or enum type.

E0520848 [Message] Expression must have arithmetic or enum type.

E0520849 [Message] Expression must have arithmetic, enum, or pointer type.

E0520850 [Message] Type of cast must be integral or enum.

E0520851 [Message] Type of cast must be arithmetic, enum, or pointer.

E0520852 [Message] Expression must be a pointer to a complete object type.

E0520854 [Message] A partial specialization nontype argument must be the name of a nontype parame-
ter or a constant.

E0520855 [Message] Return type is not identical to return type type of overridden virtual function name.

E0520857 [Message] A partial specialization of a class template must be declared in the namespace of
which it is a member.

E0520858 [Message] name is a pure virtual function.

E0520859 [Message] Pure virtual name has no overrider.

E0520861 [Message] Invalid character in input line.

E0520862 [Message] Function returns incomplete type "type".

E0520864 [Message] name is not a template.

E0520865 [Message] A friend declaration may not declare a partial specialization.

E0520868 [Message] Space required between adjacent ">" delimiters of nested template argument lists
(">>" is the right shift operator).

E0520870 [Message] Invalid multibyte character sequence.

E0520871 [Message] Template instantiation resulted in unexpected function type of type1 (the meaning
of a name may have changed since the template declaration -- the type of the tem-
plate is type2).

E0520872 [Message] Ambiguous guiding declaration -- more than one function template name matches
type type.

E0520873 [Message] Non-integral operation not allowed in nontype template argument.

E0520875 [Message] Embedded C++ does not support templates.

R20UT3248EJ0110 Rev.1.10 Page 950 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

E0520876 [Message] Embedded C++ does not support exception handling.

E0520877 [Message] Embedded C++ does not support namespaces.

E0520878 [Message] Embedded C++ does not support run-time type information.

E0520879 [Message] Embedded C++ does not support the new cast syntax.

E0520880 [Message] Embedded C++ does not support using-declarations.

E0520881 [Message] Embedded C++ does not support \"mutable\".

E0520882 [Message] Embedded C++ does not support multiple or virtual inheritance.

E0520885 [Message] type1 cannot be used to designate constructor for type2.

E0520886 [Message] Invalid suffix on integral constant.

[Explanation] The integer constant has an invalid suffix.

E0520890 [Message] Variable length array with unspecified bound is not allowed.

E0520891 [Message] An explicit template argument list is not allowed on this declaration.

E0520892 [Message] An entity with linkage cannot have a type involving a variable length array.

E0520893 [Message] A variable length array cannot have static storage duration.

E0520894 [Message] Entity-kind "name" is not a template.

E0520896 [Message] Expected a template argument.

E0520898 [Message] Nonmember operator requires a parameter with class or enum type.

E0520901 [Message] Qualifier of destructor name type1 does not match type type2.

E0520915 [Message] A segment name has already been specified.

E0520916 [Message] Cannot convert pointer to member of derived class type1 to pointer to member of
base class type2 -- base class is virtual.

E0520928 [Message] Incorrect use of va_start.

E0520929 [Message] Incorrect use of va_arg.

E0520930 [Message] Incorrect use of va_end.

E0520934 [Message] A member with reference type is not allowed in a union.

E0520935 [Message] Typedef may not be specified here.

E0520937 [Message] A class or namespace qualified name is required.

E0520938 [Message] Return type "int" omitted in declaration of function "main".

E0520939 [Message] Pointer-to-member representation xxx is too restrictive for xxx.

E0520940 [Message] Missing return statement at end of non-void type "symbol".

E0520946 [Message] Name following "template" must be a template.

E0520948 [Message] Nonstandard local-class friend declaration -- no prior declaration in the enclosing
scope.

E0520951 [Message] Return type of function "main" must be "int".

E0520952 [Message] A nontype template parameter may not have class type.

E0520953 [Message] A default template argument cannot be specified on the declaration of a member of
a class template outside of its class.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 951 of 1053
Nov 01, 2020

E0520954 [Message] A return statement is not allowed in a handler of a function try block of a construc-
tor.

E0520955 [Message] Ordinary and extended designators cannot be combined in an initializer designa-
tion.

E0520956 [Message] The second subscript must not be smaller than the first.

E0520960 [Message] Type used as constructor name does not match type type.

E0520961 [Message] Use of a type with no linkage to declare a variable with linkage.

E0520962 [Message] Use of a type with no linkage to declare a function.

E0520963 [Message] Return type may not be specified on a constructor.

E0520964 [Message] Return type may not be specified on a destructor.

E0520965 [Message] Incorrectly formed universal character name.

E0520966 [Message] Universal character name specifies an invalid character.

E0520967 [Message] A universal character name cannot designate a character in the basic character
set.

E0520968 [Message] This universal character is not allowed in an identifier.

E0520969 [Message] The identifier __VA_ARGS__ can only appear in the replacement lists of variadic
macros.

E0520971 [Message] Array range designators cannot be applied to dynamic initializers.

E0520972 [Message] Property name cannot appear here.

E0520975 [Message] A variable-length array type is not allowed.

E0520976 [Message] A compound literal is not allowed in an integral constant expression.

E0520977 [Message] A compound literal of type "type" is not allowed.

E0520978 [Message] A template friend declaration cannot be declared in a local class.

E0520979 [Message] Ambiguous "?" operation: second operand of type type1 can be converted to third
operand type type2, and vice versa.

E0520980 [Message] Call of an object of a class type without appropriate operator() or conversion func-
tions to pointer-to-function type.

E0520982 [Message] There is more than one way an object of type "type" can be called for the argument
list:

E0520983 [Message] typedef name has already been declared (with similar type).

E0520985 [Message] Storage class "mutable" is not allowed for anonymous unions.

E0520987 [Message] Abstract class type type is not allowed as catch type:

E0520988 [Message] A qualified function type cannot be used to declare a nonmember function or a
static member function.

E0520989 [Message] A qualified function type cannot be used to declare a parameter.

E0520990 [Message] Cannot create a pointer or reference to qualified function type.

E0520992 [Message] Invalid macro definition:.

E0520993 [Message] Subtraction of pointer types "type1" and "type2" is nonstandard.

E0520994 [Message] An empty template parameter list is not allowed in a template template parameter
declaration.

R20UT3248EJ0110 Rev.1.10 Page 952 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

E0520995 [Message] Expected "class".

E0520996 [Message] The "class" keyword must be used when declaring a template template parameter.

E0520998 [Message] A qualified name is not allowed for a friend declaration that is a function definition.

E0520999 [Message] symbol1 is not compatible with "symbol2".

E0521001 [Message] Class member designated by a using-declaration must be visible in a direct base
class.

E0521006 [Message] A template template parameter cannot have the same name as one of its template
parameters.

E0521007 [Message] Recursive instantiation of default argument.

E0521009 [Message] symbol is not an entity that can be defined.

E0521010 [Message] Destructor name must be qualified.

E0521011 [Message] Friend class name may not be introduced with "typename".

E0521012 [Message] A using-declaration may not name a constructor or destructor.

E0521013 [Message] A qualified friend template declaration must refer to a specific previously declared
template.

E0521014 [Message] Invalid specifier in class template declaration.

E0521015 [Message] Argument is incompatible with formal parameter.

E0521017 [Message] Loop in sequence of "operator->" functions starting at class xxx.

E0521018 [Message] xxx has no member class xxx.

E0521019 [Message] The global scope has no class named xxx.

E0521020 [Message] Recursive instantiation of template default argument.

E0521021 [Message] Access declarations and using-declarations cannot appear in unions.

E0521022 [Message] xxx is not a class member.

E0521023 [Message] Nonstandard member constant declaration is not allowed.

E0521029 [Message] Type containing an unknown-size array is not allowed.

E0521030 [Message] A variable with static storage duration cannot be defined within an inline function.

E0521031 [Message] An entity with internal linkage cannot be referenced within an inline function with
external linkage.

E0521032 [Message] Argument type %t does not match this type-generic function macro.

E0521034 [Message] Friend declaration cannot add default arguments to previous declaration.

E0521035 [Message] xxx cannot be declared in this scope.

E0521036 [Message] The reserved identifier "symbol" may only be used inside a function.

E0521037 [Message] This universal character cannot begin an identifierl.

E0521038 [Message] Expected a string literal.

E0521039 [Message] Unrecognized STDC pragma.

E0521040 [Message] Expected "ON", "OFF", or "DEFAULT".

E0521041 [Message] A STDC pragma may only appear between declarations in the global scope or
before any statements or declarations in a block scope.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 953 of 1053
Nov 01, 2020

E0521042 [Message] Incorrect use of va_copy.

E0521043 [Message] xxx can only be used with floating-point types.

E0521044 [Message] Complex type is not allowed.

E0521045 [Message] Invalid designator kind.

E0521047 [Message] Complex floating-point operation result is out of range.

E0521048 [Message] Conversion between real and imaginary yields zero.

E0521049 [Message] An initializer cannot be specified for a flexible array member.

E0521051 [Message] Standard requires that "symbol" be given a type by a subsequent declaration ("int"
assumed).

E0521052 [Message] A definition is required for inline "symbol".

E0521054 [Message] A floating-point type must be included in the type specifier for a _Complex or
_Imaginary type.

E0521055 [Message] Types cannot be declared in anonymous unions.

E0521056 [Message] Returning pointer to local variable.

E0521057 [Message] Returning pointer to local temporary.

E0521061 [Message] Declaration of "symbol" is incompatible with a declaration in another translation
unit.

E0521062 [Message] The other declaration is %p.

E0521065 [Message] A field declaration cannot have a type involving a variable length array.

E0521066 [Message] Declaration of "symbol" had a different meaning during compilation of file.

E0521067 [Message] Eexpected "template".

E0521072 [Message] A declaration cannot have a label.

E0521075 [Message] "symbol" already defined during compilation of any-string.s

E0521076 [Message] "symbol" already defined in another translation unit.

E0521081 [Message] A field with the same name as its class cannot be declared in a class with a user-
declared constructor.

E0521086 [Message] The object has cv-qualifiers that are not compatible with the member "symbol".

E0521087 [Message] No instance of xxx matches the argument list and object (the object has cv-qualifi-
ers that prevent a match).

E0521088 [Message] An attribute specifies a mode incompatible with xxx.

E0521089 [Message] There is no type with the width specified.

E0521139 [Message] The "template" keyword used for syntactic disambiguation may only be used within
a template.

E0521144 [Message] Storage class must be auto or register.

E0521146 [Message] xxx is not a base class member.

E0521158 [Message] void return type cannot be qualified.

E0521161 [Message] A member template corresponding to xxx is declared as a template of a different
kind in another translation unit.

E0521163 [Message] va_start should only appear in a function with an ellipsis parameter.

R20UT3248EJ0110 Rev.1.10 Page 954 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

E0521201 [Message] typedef xxx may not be used in an elaborated type specifier.

E0521203 [Message] Parameter parameter may not be redeclared in a catch clause of function try block.

E0521204 [Message] The initial explicit specialization of xxx must be declared in the namespace contain-
ing the template.

E0521206 [Message] "template" must be followed by an identifier.

E0521212 [Message] This pragma cannot be used in a _Pragma operator (a #pragma directive must be
used).

E0521227 [Message] Transfer of control into a statement expression is not allowed.

E0521229 [Message] This statement is not allowed inside of a statement expression.

E0521230 [Message] Anon-POD class definition is not allowed inside of a statement expression.

E0521254 [Message] Integer overflow in internal computation due to size or complexity of "type".

E0521255 [Message] Integer overflow in internal computation.

E0521273 [Message] Alignment-of operator applied to incomplete type.

E0521280 [Message] Conversion from inaccessible base class xxx is not allowed.

E0521282 [Message] String literals with different character kinds cannot be concatenated.

E0521291 [Message] A non-POD class type cannot be fetched by va_arg.

E0521292 [Message] The 'u' or 'U' suffix must appear before the 'l' or 'L' suffix in a fixed-point literal.

E0521295 [Message] Fixed-point constant is out of range.

E0521303 [Message] Expression must have integral, enum, or fixed-point type.

E0521304 [Message] Expression must have integral or fixed-point type.

E0521311 [Message] Fixed-point types have no classification.

E0521312 [Message] A template parameter may not have fixed-point type.

E0521313 [Message] Hexadecimal floating-point constants are not allowed.

E0521315 [Message] Floating-point value does not fit in required fixed-point type.

E0521317 [Message] Fixed-point conversion resulted in a change of sign.

E0521318 [Message] Integer value does not fit in required fixed-point type.

E0521319 [Message] Fixed-point operation result is out of range.

E0521320 [Message] Multiple named address spaces.

E0521321 [Message] Variable with automatic storage duration cannot be stored in a named address
space.

E0521322 [Message] Type cannot be qualified with named address space.

E0521323 [Message] Function type cannot be qualified with named address space.

E0521324 [Message] Field type cannot be qualified with named address space.

E0521325 [Message] Fixed-point value does not fit in required floating-point type.

E0521326 [Message] Fixed-point value does not fit in required integer type.

E0521327 [Message] Value does not fit in required fixed-point type.

E0521344 [Message] A named address space qualifier is not allowed here.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 955 of 1053
Nov 01, 2020

E0521345 [Message] An empty initializer is invalid for an array with unspecified bound.

E0521348 [Message] Declaration hides "symbol".

E0521349 [Message] A parameter cannot be allocated in a named address space.

E0521350 [Message] Invalid suffix on fixed-point or floating-point constant.

E0521351 [Message] A register variable cannot be allocated in a named address space.

E0521352 [Message] Expected "SAT" or "DEFAULT".

E0521355 [Message] A function return type cannot be qualified with a named address space.

E0521365 [Message] Named-register variables cannot have void type.

E0521372 [Message] Nonstandard qualified name in global scope declaration.

E0521380 [Message] Virtual xxx was not defined (and cannot be defined elsewhere because it is a mem-
ber of an unnamed namespace).

E0521381 [Message] Carriage return character in source line outside of comment or character/string lit-
eral.

[Explanation] Carriage return character (\r) in source line outside of comment or character/string
literal.

E0521382 [Message] Expression must have fixed-point type.

E0521398 [Message] Invalid member for anonymous member class -- class xxx has a disallowed mem-
ber function.

E0521403 [Message] A variable-length array is not allowed in a function return type.

E0521404 [Message] Variable-length array type is not allowed in pointer to member of type "type".

E0521405 [Message] The result of a statement expression cannot have a type involving a variable-length
array.

E0521420 [Message] Some enumerator values cannot be represented by the integral type underlying the
enum type.

E0521424 [Message] Second operand of offsetof must be a field.

E0521425 [Message] Second operand of offsetof may not be a bit field.

E0521436 [Message] xxx is only allowed in C.

E0521437 [Message] __ptr32 and __ptr64 must follow a "*".

E0521441 [Message] Complex integral types are not supported.

E0521442 [Message] __real and __imag can only be applied to complex values.

E0521445 [Message] Invalid redefinition of "symbol".

E0521534 [Message] Duplicate function modifier.

E0521535 [Message] Invalid character for char16_t literal.

E0521536 [Message] __LPREFIX cannot be applied to char16_t or char32_t literals.

E0521537 [Message] Unrecognized calling convention xxx must be one of:

E0521539 [Message] Option "--uliterals" can be used only when compiling C.

E0521542 [Message] Some enumerator constants cannot be represented by "type".

E0521543 [Message] xxx not allowed in current mode.

E0521557 [Message] Alias creates cycle of aliased entities.

R20UT3248EJ0110 Rev.1.10 Page 956 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

E0521558 [Message] Subscript must be constant.

E0521574 [Message] Static assertion failed with xxx.

E0521576 [Message] Field name resolves to more than one offset -- see "symbol1" and "symbol2".

E0521577 [Message] xxx is not a field name.

E0521578 [Message] case label value has already appeared in this switch at line number.

E0521582 [Message] The option to list macro definitions may not be specified when compiling more than
one translation unit.

E0521583 [Message] Unexpected parenthesis after declaration of "symbol" (malformed parameter list or
invalid initializer?).

E0521584 [Message] Parentheses around a string initializer are nonstandard.

E0521586 [Message] A variable declared with an auto type specifier cannot appear in its own initializer.

E0521587 [Message] Cannot deduce "auto" type.

E0521588 [Message] Initialization with "{...}" is not allowed for "auto" type.

E0521589 [Message] auto type cannot appear in top-level array type.

E0521590 [Message] auto type cannot appear in top-level function type.

E0521593 [Message] Cannot deduce "auto" type (initializer required).

E0521596 [Message] Invalid use of a type qualifier.

E0521597 [Message] A union cannot be abstract or sealed.

E0521598 [Message] auto is not allowed here.

E0521602 [Message] struct/union variable "variable" with a member of incomplete type cannot be placed
into the section.

E0521603 [Message] Variable of incomplete type "variable" cannot be placed into the section.

E0521604 [Message] Illegal section attribute.

E0521605 [Message] Illegal #pragma character string syntax.

E0521606 [Message] "function" has already been placed into another section.

[Explanation] A "#pragma text" has already been specified for function "function". It cannot be
put into a different section.

E0521608 [Message] #pragma asm is not allowed outside of function.

E0521609 [Message] The #pragma endasm for this #pragma asm is missing.

E0521610 [Message] The #pragma asm for this #pragma endasm is missing.

E0521612 [Message] Duplicate interrupt hander for "request".

E0521613 [Message] Interrupt request name "request" not supported.

E0521614 [Message] Duplicate #pragma interrupt for this function.

E0521615 [Message] Duplicate #pragma smart_correct for this function "function".

[Explanation] A "#pragma smart_correct" has already been specified for function "function".

E0521616 [Message] Type "symbol" has already been placed into another section (declared as extern).

E0521617 [Message] Type "symbol" has already been placed into another section.

E0521618 [Message] Type "symbol" has already been declared with #pragma section.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 957 of 1053
Nov 01, 2020

E0521619 [Message] Type "symbol" has already been declared without #pragma section.

E0521620 [Message] "function()" argument overflow. use "minimum value - maximum value".

E0521621 [Message] Cannot write I/O register "register name".

E0521622 [Message] Cannot read I/O register "register name".

E0521623 [Message] Cannot use expanded specification. Device must be specified.

E0521624 [Message] Second argument for __set_il()must be string literal.

E0521625 [Message] Cannot set interrupt level for "request".

E0521626 [Message] Specification character string is specified for function "function name", previously
specified #pragma inline is ignored.

E0521627 [Message] Function for #pragma smart_correct is same.

E0521628 [Message] Function for #pragma smart_correct "function" is undefined.

E0521629 [Message] Could not open symbol file "file name".

E0521630 [Message] Could not close symbol file "file name".

E0521631 [Message] Syntax error in symbol file.

E0521632 [Message] Unrecognized symbol information "character string" is ignored.

E0521633 [Message] Section name is not specified.

E0521634 [Message] Unrecognized section name "section".

E0521635 [Message] "variable name" has already been placed into "section name" section in symbol file.
The latter is ignored.

E0521636 [Message] "variable name" has already been placed into "section name" section in symbol file.
#pragma is ignored.

E0521637 [Message] Illegal binary digit.

E0521638 [Message] First argument for special function name()must be integer constant.

E0521639 [Message] Function "function name" specified as "direct" can not be allocated in text.

E0521640 [Message] Function allocated in text can not be specified #pragma interrupt with "direct".

E0521641 [Message] FE level interrupt not supported.

E0521642 [Message] Cannnot give a name for "attribute" section.

E0521643 [Message] "direct" cannot be specified for plural interrupt.

E0521644 [Message] Reduced exception handler option of device is available. Address of the handler-
maybe overlaps.

E0521645 [Message] Function "function name" has illegal type for interrupt function,must be void(void).

E0521646 [Message] Cannot use direct with NO_VECT.

E0521647 [Message] character string is not allowed here.

E0521648 [Message] Cannot call type function "function name".

R20UT3248EJ0110 Rev.1.10 Page 958 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

E0521649 [Message] Cannot use character string1 with character string2.

[Explanation] The functions of string 1 and string 2 cannot be used at the same time.

[Message] [CC-RX] White space is required between the macro name xxx and its replacement
text.

[Action by User] [CC-RX] Insert white space between the macro name and its replacement text.

E0521650 [Message] type "symbol name" has already been declared with other #pragma pic/nopic.

[Explanation] There is a "#pragma pic/nopic" specification in conflict with type "symbol name".

E0523005 [Message] Invalid pragma declaration

[Explanation] Write the #pragma syntax in accord with the correct format.

E0523006 [Message] "symbol name" has already been specified by other pragma

[Explanation] Two or more #pragma directives have been specified for one symbol, and such
specification is not allowed.

E0523007 [Message] Pragma may not be specified after definition

[Explanation] The #pragma directive precedes definition of the target symbol.

E0523008 [Message] Invalid kind of pragma is specified to this symbol

[Explanation] The given type of #pragma directive is not specifiable for the symbol.

E0523042 [Message] Using "function item" function at influence the code generation of "SuperH" com-
piler

[Explanation] The use of "function item" may affect compatibility with the SuperH compiler. Con-
firm details of differences from the specification.

E0523047 [Message] Illegal #pragma interrupt declaration

[Explanation] The interrupt function declaration by #pragma interrupt is incorrect.

E0523057 [Message] Illegal section specified

[Explanation] Strings that are not usable for the purpose were used to specify the attributes of
sections.

E0523058 [Message] Illegal #pragma section syntax

[Explanation] The #pragma section syntax is illegal.

E0523059 [Message] Cannot change text section

[Explanation] The #pragma section syntax is incorrect.

E0523061 [Message] Argument is incompatible with formal parameter of intrinsic function.

E0523062 [Message] Return value type does not match the intrinsic function type.

E0523065 [Message] Cannot assign address constant to initializer for bitfield

[Explanation] An address constant cannot be written as the initial value of a bit field.

E0523066 [Message] The combination of the option and section specification is inaccurate

E0523129 [Message] The "option name" option is necessary for use of "function".

[Explanation] The option must be specified to use this function.

E0532002 [Message] Exception exception has occurred at compile time.

E0544003 [Message] The size of "section name" section exceeds the limit.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 959 of 1053
Nov 01, 2020

E0544240 [Message] Illegal naming of section "section name".

[Explanation] There is an error in section naming. The same section name is specified for differ-
ent use of the section.

E0544854 [Message] Illegal address was specified with #pragma address.

[Explanation] "#pragma address" specification satisfies either of the following conditions.

(1) The same address was specified for different variables.

(2) Overlapping address ranges were specified for different variables.

E0552000 [Message] No space after mnemonic or directive.

[Explanation] The mnemonic or assemble directive is not followed by a space character.

[Action by User] Enter a space character between the instruction and operand.

E0552001 [Message] ',' is missing.

[Explanation] ',' is not entered.

[Action by User] Insert a comma to separate between operands.

E0552002 [Message] Characters exist in expression.

[Explanation] Extra characters are written in an instruction or expression.

[Action by User] Check the rules to be followed when writing an expression.

E0552003 [Message] Size specifier is missing.

[Explanation] No size specifier is entered.

[Action by User] Write a size specifier.

E0552004 [Message] Invalid operand(s) exist in instruction.

[Explanation] The instruction contains an invalid operand.

[Action by User] Check the syntax for this instruction and rewrite it correctly.

E0552005 [Message] Operand type is not appropriate.

[Explanation] The operand type is incorrect.

[Action by User] Check the syntax for this operand and rewrite it correctly.

E0552006 [Message] Size specifier is not appropriate.

[Explanation] The size specifier is written incorrectly.

[Action by User] Rewrite the size specifier correctly.

E0552007 [Message] Operand label is not in the same section.

[Explanation] The branch destination is not in the same section.

[Action by User] Execution can branch only to a destination within the same section. Correct the
mnemonic.

E0552008 [Message] Illegal displacement value.

[Explanation] An illegal displacement value is specified.

[Action by User] Specify a multiple of 2 when the size specifier is W. Specify a multiple of 4 when
the size specifier is L.

R20UT3248EJ0110 Rev.1.10 Page 960 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

E0552009 [Message] FPU instruction or FPSW is used.

[Explanation] A floating-point operation (FPU) instruction or FPSW is used.

[Action by User] Check the CPU type.

E0552010 [Message] ISAV2 instruction or EXTB is used

[Action by User] Check the RX instruction-set architecture selected by the -isa option or environ-
ment variable ISA_RX.

E0552011 [Message] Type instruction is used.

[Action by User] Instructions of the indicated type are not usable with the current settings of options
or environment variables. Change the settings as required.

E0552020 [Message] Invalid operand(s) exist in debug information

[Explanation] The operand of the .line directive is invalid.

E0552022 [Message] Symbol name is missing.

[Explanation] Symbol is not entered.

[Action by User] Write a symbol name.

E0552023 [Message] Illegal directive command is used.

[Explanation] An illegal instruction is entered.

[Action by User] Rewrite the instruction correctly.

E0552024 [Message] No ';' at the top of comment.

[Explanation] ';' is not entered at the beginning of a comment.

[Action by User] Enter a semicolon at the beginning of each comment. Check whether the mne-
monic or operand is written correctly.

E0552026 [Message] 'CODE' section in big endian is not appropriate.

[Explanation] The value specified for the start address of the absolute-addressing CODE section
is not a multiple of 4 while endian=big is specified.

[Action by User] Specify a multiple of 4 for the start address.

E0552027 [Message] Illegal character code.

[Explanation] An illegal character code is specified.

E0552028 [Message] Unrecognized character escape sequence.

[Explanation] An unrecognizable escape sequence is specified.

E0552029 [Message] Invalid description in #pragma inline_asm function.

[Explanation] Invalid assembly-language code was usedin an assembly-language function.
Go through the C-language source file and check the code corresponding to func-
tions for which #pragma_inline_asm was specified.

E0552040 [Message] Include nesting over.

[Explanation] Include is nested too many levels.

[Action by User] Rewrite include so that it is nested within 30 levels.

E0552041 [Message] Can't open include file 'XXXX'.

[Explanation] The include file cannot be opened.

[Action by User] Check the include file name. Check the directory where the include file is stored.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 961 of 1053
Nov 01, 2020

E0552042 [Message] Including the include file in itself.

[Explanation] An attempt is made to include the include file in itself.

[Action by User] Check the include file name and rewrite correctly.

E0552049 [Message] Invalid reserved word exist in operand.

[Explanation] The operand contains a reserved word.

[Action by User] Reserved words cannot be written in an operand. Rewrite the operand correctly.

E0552050 [Message] Operand value is not defined.

[Explanation] An undefined operand value is entered.

[Action by User] Write a valid value for operands.

E0552051 [Message] '{' is missing.

[Explanation] '{' is not specified.

E0552052 [Message] Addressing mode specifier is not appropriate.

[Explanation] The addressing mode specifier is written incorrectly.

[Action by User] Make sure that the addressing mode is written correctly.

E0552053 [Message] Reserved word is missing.

[Explanation] No reserved word is entered.

E0552054 [Message] ']' is missing.

[Explanation] ']' is not entered.

[Action by User] Write the right bracket ']' corresponding to the '['.

E0552055 [Message] Right quote is missing.

[Explanation] A right quote is not entered.

[Action by User] Enter the right quote.

E0552056 [Message] The value is not constant.

[Explanation] The value is indeterminate when assembled.

[Action by User] Write an expression, symbol name, or label name that will have a determinate
value when assembled.

E0552057 [Message] Quote is missing.

[Explanation] Quotes for a character string are not entered.

[Action by User] Enclose a character string with quotes as you write it.

E0552058 [Message] Illegal operand is used.

[Explanation] The operand is incorrect.

[Action by User] Check the syntax for this operand and rewrite it correctly.

E0552059 [Message] Operand number is not enough.

[Explanation] The number of operands is insufficient.

[Action by User] Check the syntax for these operands and rewrite them correctly.

R20UT3248EJ0110 Rev.1.10 Page 962 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

E0552060 [Message] Too many macro nesting.

[Explanation] The macro is nested too many levels.

[Action by User] Make sure that the macro is nested no more than 65,535 levels. Check the syntax
for this source statement and rewrite it correctly.

E0552061 [Message] Too many macro local label definition.

[Explanation] Too many macro local labels are defined.

[Action by User] Make sure that the number of macro local labels defined in one file are 65,535 or
less.

E0552062 [Message] '.MACRO' is missing for '.ENDM'.

[Explanation] .MACRO for .ENDM is not found.

[Action by User] Check the position where .ENDM is written.

E0552063 [Message] '.MREPEAT' is missing for '.ENDR'.

[Explanation] .MREPEAT for .ENDR is not found.

[Action by User] Check the position where .ENDR is written.

E0552064 [Message] '.MACRO' or '.MREPEAT' is missing for '.EXITM'.

[Explanation] .MACRO or .MREPEAT for .EXITM is not found.

[Action by User] Check the position where .EXITM is written.

E0552065 [Message] No macro name.

[Explanation] No macro name is entered.

[Action by User] Write a macro name for each macro definition.

E0552066 [Message] Too many formal parameter.

[Explanation] There are too many formal parameters defined for the macro.

[Action by User] Make sure that the number of formal parameters defined for the macro is 80 or
less.

E0552067 [Message] Illegal macro parameter.

[Explanation] The macro parameter contains some incorrect description.

[Action by User] Check the written contents of the macro parameter.

E0552068 [Message] Source line is too long.

[Explanation] The source line is excessively long.

[Action by User] Check the contents written in the source line and correct it as necessary.

E0552069 [Message] '.MACRO' is missing for '.LOCAL'.

[Explanation] .MACRO for .LOCAL is not found.

[Action by User] Check the position where .LOCAL is written. .LOCAL can only be written in a
macro block.

E0552070 [Message] No '.ENDM' statement.

[Explanation] .ENDM is not entered.

[Action by User] Check the position where .ENDM is written. Write .ENDM as necessary.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 963 of 1053
Nov 01, 2020

E0552071 [Message] No '.ENDR' statement.

[Explanation] .ENDR is not entered.

[Action by User] Check the position where .ENDR is written. Write .ENDR as necessary.

E0552072 [Message] ')' is missing.

[Explanation] ')' is not entered.

[Action by User] Write the right parenthesis ')' corresponding to the '('.

E0552073 [Message] Operand expression is not completed.

[Explanation] The operand description is not complete.

[Action by User] Check the syntax for this operand and rewrite it correctly.

E0552074 [Message] Syntax error in expression.

[Explanation] The expression is written incorrectly.

[Action by User] Check the syntax for this expression and rewrite it correctly.

E0552075 [Message] String value exist in expression.

[Explanation] A character string is entered in the expression.

[Action by User] Rewrite the expression correctly.

E0552076 [Message] Division by zero.

[Explanation] A divide by 0 operation is attempted.

[Action by User] Rewrite the expression correctly.

E0552077 [Message] No '.END' statement.

[Explanation] .END is not entered.

[Action by User] Be sure to enter .END in the last line of the source program.

E0552078 [Message] The specified address overlaps at 'address'.

[Explanation] Something has already beenallocated to 'address'.

[Action by User] Check the specifications for .ORG and .OFFSET.

E0552080 [Message] '.IF' is missing for '.ELSE'.

[Explanation] .IF for .ELSE is not found.

[Action by User] Check the position where .ELSE is written.

E0552081 [Message] '.IF' is missing for '.ELIF'.

[Explanation] .IF for .ELIF is not found.

[Action by User] Check the position where .ELIF is written.

E0552082 [Message] '.IF' is missing for '.ENDIF'.

[Explanation] .IF for .ENDIF is not found.

[Action by User] Check the position where .ENDIF is written.

E0552083 [Message] Too many nesting level of condition assemble.

[Explanation] Condition assembling is nested too many levels.

[Action by User] Check the syntax for this condition assemble statement and rewrite it correctly.

R20UT3248EJ0110 Rev.1.10 Page 964 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

E0552084 [Message] No '.ENDIF' statement.

[Explanation] No corresponding .ENDIF is found for the .IF statement in the source file.

[Action by User] Check the source description.

E0552088 [Message] Can't open '.ASSERT' message file 'XXXX'.

[Explanation] .The .ASSERT output file cannot be opened.

[Action by User] Check the file name.

E0552089 [Message] Can't write '.ASSERT' message file 'XXXX'.

[Explanation] Data cannot be written to the .ASSERT output file.

[Action by User] Check the permission of the file.

E0552090 [Message] Too many temporary label.

[Explanation] There are too many temporary labels.

[Action by User] Replace the temporary labels with label names.

E0552091 [Message] Temporary label is undefined.

[Explanation] The temporary label is not defined yet.

[Action by User] Define the temporary label.

E0552100 [Message] Value is out of range.

[Explanation] The value is out of range.

[Action by User] Write a value that matches the register bit length.

E0552112 [Message] Symbol is missing.

[Explanation] Symbol is not entered.

[Action by User] Write a symbol name.

E0552113 [Message] Symbol definition is not appropriate.

[Explanation] The symbol is defined incorrectly.

[Action by User] Check the method for defining this symbol and rewrite it correctly.

E0552114 [Message] Symbol has already defined as another type.

[Explanation] The symbol has already been defined in a different directive with the same name.

[Action by User] Change the symbol name.

E0552115 [Message] Symbol has already defined as the same type.

[Explanation] The symbol has already been defined.

[Action by User] Change the symbol name.

E0552116 [Message] Symbol is multiple defined.

[Explanation] The symbol is defined twice or more. The macro name and some other name are
duplicates.

[Action by User] Change the symbol name.

E0552117 [Message] Invalid label definition.

[Explanation] An invalid label is entered.

[Action by User] Rewrite the label definition.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 965 of 1053
Nov 01, 2020

E0552118 [Message] Invalid symbol definition.

[Explanation] An invalid symbol is entered.

[Action by User] Rewrite the symbol definition.

E0552119 [Message] Reserved word is used as label or symbol.

[Explanation] Reserved word is used as a label or symbol.

[Action by User] Rewrite the label or symbol name correctly.

E0552120 [Message] Created symbol is too long

[Explanation] The label for a reserved word created by the -create_unfilled_area option is too
long.

[Action by User] Shorten the file or section name.

E0552130 [Message] No '.SECTION' statement.

[Explanation] .SECTION is not entered.

[Action by User] Always make sure that the source program contains at least one .SECTION.

E0552131 [Message] Section type is not appropriate.

[Action by User] An instruction or a directive used in a section does not match the section type.

E0552132 [Message] Section has already determined as attribute.

[Explanation] The attribute of this section has already been defined as relative. Directive com-
mand .ORG cannot be written here.

[Action by User] Check the attribute of the section.

E0552133 [Message] Section attribute is not defined.

[Explanation] Section attribute is not defined. Directive command .ALIGN cannot be written in
this section.

[Action by User] Make sure that directive .ALIGN is written in an absolute attribute section or a rela-
tive attribute section where ALIGN is specified.

E0552134 [Message] Section name is missing.

[Explanation] No section name is entered.

[Action by User] Write a section name in the operand.

E0552135 [Message] 'ALIGN' is multiple specified in '.SECTION'.

[Explanation] Two or more ALIGN's are specified in the .SECTION definition line.

[Action by User] Delete extra ALIGN specifications.

E0552136 [Message] Section type is multiple specified.

[Explanation] Section type is specified two or more times in the section definition line.

[Action by User] Only one section type CODE, DATA, or ROMDATA can be specified in a section
definition line.

E0552137 [Message] Too many operand.

[Explanation] There are extra operands.

[Action by User] Check the syntax for these operands and rewrite them correctly.

R20UT3248EJ0110 Rev.1.10 Page 966 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

E0562000 [Message] Invalid option : "option"

[Explanation] option is not supported.

E0562001 [Message] Option "option" cannot be specified on command line

[Explanation] option cannot be specified on the command line.

[Explanation] Specify this option in a subcommand file.

E0562002 [Message] Input option cannot be specified on command line

[Explanation] The input option was specified on the command line.

[Action by User] Input file specification on the command line should be made without the input
option.

E0562003 [Message] Subcommand option cannot be specified in subcommand file

[Explanation] The -subcommand option was specified in a subcommand file. The -subcommand
option cannot be nested.

E0562004 [Message] Option "option1" cannot be combined with option "option2"

[Explanation] option 1 and option 2 cannot be specified simultaneously.

E0562005 [Message] Option "option" cannot be specified while processing "process"

[Explanation] option cannot be specified for process.

E0562006 [Message] Option "option1" is ineffective without option "option2"

[Explanation] option 1 requires option 2 be specified.

E0562010 [Message] Option "option" requires parameter

[Explanation] option requires a parameter to be specified.

E0562011 [Message] Invalid parameter specified in option "option" : "parameter"

[Explanation] An invalid parameter was specified for option.

E0562012 [Message] Invalid number specified in option "option" : "value"

[Explanation] An invalid value was specified for option.

[Action by User] Check the range of valid values.

E0562013 [Message] Invalid address value specified in option "option" : "address"

[Explanation] The address address specified in option is invalid.

[Action by User] A hexadecimal address between 0 and FFFFFFFF should be specified.

E0562014 [Message] Illegal symbol/section name specified in "option" : "name"

[Explanation] The section or symbol name specified in option uses an illegal character.

E0562016 [Message] Invalid alignment value specified in option "option" : "alignment value"

[Explanation] The alignment value specified in option is invalid.

[Action by User] 1, 2, 4, 8, 16, or 32 should be specified.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 967 of 1053
Nov 01, 2020

E0562017 [Message] Cannot output "section" specified in option "option"

[Explanation] Could not output a portion of the code in "section" specified by "option." Part of the
instruction code in "section" has been swapped with instruction code in another
section due to endian conversion.

[Action by User] Check the section address range with respect to 4-byte boundaries in the linkage
list and find which section code is swapped with the target section code.

E0562020 [Message] Duplicate file specified in option "option" : "file"

[Explanation] The same file was specified twice in option.

E0562022 [Message] Address ranges overlap in option "option" : "address range"

[Explanation] Address ranges address range specified in option overlap.

E0562100 [Message] Invalid address specified in cpu option : "address"

[Explanation] An address was specified with the -cpu option that cannot be specified for a cpu.

E0562101 [Message] Invalid address specified in option "option" : "address"

[Explanation] The address specified in option exceeds the address range that can be specified
by the cpu or the range specified by the cpu option.

E0562110 [Message] Section size of second parameter in rom option is not 0 : "section"

[Explanation] The second parameter in the -rom option specifies "section" with non-zero size.

E0562111 [Message] Absolute section cannot be specified in "option" option : "section"

[Explanation] An absolute address section was specified in option.

E0562120 [Message] Library "file" without module name specified as input file

[Explanation] A library file without a module name was specified as the input file.

E0562121 [Message] Input file is not library file : "file(module)"

[Explanation] The file specified by file (module) as the input file is not a library file.

E0562130 [Message] Cannot find file specified in option "option" : "file"

[Explanation] The file specified in option could not be found.

E0562131 [Message] Cannot find module specified in option "option" : "module"

[Explanation] The module specified in option could not be found.

E0562132 [Message] Cannot find "name" specified in option "option"

[Explanation] The symbol or section specified in option does not exist.

E0562133 [Message] Cannot find defined symbol "name" in option "option"

[Explanation] The externally defined symbol specified in option does not exist.

E0562140 [Message] Symbol/section "name" redefined in option "option"

[Explanation] The symbol or section specified in option has already been defined.

E0562141 [Message] Module "module" redefined in option "option"

[Explanation] The module specified in option has already been defined.

R20UT3248EJ0110 Rev.1.10 Page 968 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

E0562142 [Message] Interrupt number "vector number" of "section" has multiple definition

[Explanation] Vector number definition was made multiple times in vector table section. Only one
address can be specified for a vector number.

[Action by User] Check and correct the code in the source file.

E0562200 [Message] Illegal object file : "file"

[Explanation] A format other than ELF format was input.

E0562201 [Message] Illegal library file : "file"

[Explanation] file is not a library file.

E0562210 [Message] Invalid input file type specified for option "option" : "file(type)"

[Explanation] When specifying option, a file (type) that cannot be processed was input.

E0562211 [Message] Invalid input file type specified while processing "process" : "file(type)"

[Explanation] A file (type) that cannot be processed was input during processing process.

E0562212 [Message] "option" cannot be specified for inter-module optimization information in "file"

[Explanation] The option option cannot be used because file includes inter-module optimization
information.

[Action by User] Do not specify the goptimize option at compilation or assembly.

E0562221 [Message] Section type mismatch : "section"

[Explanation] Sections with the same name but different attributes (whether initial values present
or not) were input.

E0562300 [Message] Duplicate symbol "symbol" in "file"

[Explanation] There are duplicate occurrences of symbol.

E0562301 [Message] Duplicate module "module" in "file"

[Explanation] There are duplicate occurrences of module.

E0562310 [Message] Undefined external symbol "symbol" referenced in "file"

[Explanation] An undefined symbol symbol was referenced in file.

E0562311 [Message] Section "section1" cannot refer to overlaid section : "section2-symbol"

[Explanation] A symbol defined in section 1 was referenced in section 2 that is allocated to the
same address as section 1 overlaid.

[Action by User] section 1 and section 2 must not be allocated to the same address.

E0562320 [Message] Section address overflowed out of range : "section"

[Explanation] The address of section exceeds the usable address range.

E0562321 [Message] Section "section1" overlaps section "section2"

[Explanation] The addresses of section 1 and section 2 overlap.

[Action by User] Change the address specified by the start option.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 969 of 1053
Nov 01, 2020

E0562330 [Message] Relocation size overflow : "file"-"section"-"offset

[Explanation] The result of the relocation operation exceeded the relocation size. Possible
causes include inaccessibility of a branch destination, and referencing of a symbol
which must be located at a specific address.

[Action by User] Ensure that the referenced symbol at the offset position of section in the source list
is placed at the correct position.

E0562331 [Message] Division by zero in relocation value calculation : "file"-"section"-"offset"

[Explanation] Division by zero occurred during a relocation operation.

[Action by User] Check for problems in calculation of the position at offset in section in the source
list.

E0562332 [Message] Relocation value is odd number : "file"-"section"-"offset"

[Explanation] The result of the relocation operation is an odd number.

[Action by User] Check for problems in calculation of the position at offset in section in the source
list.

E0562340 [Message] Symbol name "file"-"section"-"symbol" is too long

[Explanation] The length of "symbol" in "section" exceeds the assembler translation limit.

[Action by User] To output a symbol address file, use a symbol name that is no longer than the
assembler translation limit.

E0562366 [Message] "section" specified in option "option" was moved other area.

E0562403 [Message] Fast interrupt register in "file" conflicts with that in another file

[Explanation] The register number specified for the fast interrupt general register in file does not
match the settings in other files.

[Action by User] Correct the register number to match the other settings and recompile the code.

E0562404 [Message] Base register "base register type" in "file" conflicts with that in another file

[Explanation] The register number specified for base register type in file does not match the set-
tings in other files.

[Action by User] Correct the register number to match the other settings and recompile the code.

E0562405 [Message] Option "compile option" in "file" conflicts with that in another files

[Explanation] Specification of compile option is inconsistent between the input files.

[Action by User] Review the compile option.

E0562410 [Message] Address value specified by map file differs from one after linkage as to "symbol"

[Explanation] The address of symbol differs between the address within the external symbol allo-
cation information file used at compilation and the address after linkage.

[Action by User] Check (1) to (2) below.

(1) Do not change the program before or after the map option specification at
compilation.

(2) rlink optimization may cause the sequence of the symbols after the map
option specification at compilation to differ from that before the map option.
Disable the map option at compilation or disable the rlink option for optimi-
zation.

R20UT3248EJ0110 Rev.1.10 Page 970 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

E0562411 [Message] Map file in "file" conflicts with that in another file

[Explanation] Different external symbol allocation information files were used by the input files at
compilation.

E0562412 [Message] Cannot open file : "file"

[Explanation] file (external symbol allocation information file) cannot be opened.

[Action by User] Check whether the file name and access rights are correct.

E0562413 [Message] Cannot close file : "file"

[Explanation] file (external symbol allocation information file) cannot be closed. There may be
insufficient disk space.

E0562414 [Message] Cannot read file : "file"

[Explanation] file (external symbol allocation information file) cannot be read. There may be
insufficient disk space.

E0562415 [Message] Illegal map file : "file"

[Explanation] file (external symbol allocation information file) has an illegal format.

[Action by User] Check whether the file name is correct.

E0562416 [Message] Order of functions specified by map file differs from one after linkage as to "function
name"

[Explanation] The sequences of a function function name and those of other functions are differ-
ent between the information within the external symbol allocation information file
used at compilation and the location after linkage. The address of static within the
function may be different between the external symbol allocation information file
and the result after linkage.

E0562417 [Message] Map file is not the newest version : "file name"

[Explanation] The external symbol allocation information file is not the latest version.

E0562420 [Message] "file1" overlap address "file2" : "address"

[Explanation] The address specified for file 1 is the same as that specified for file 2.

E0562600 [Message] Library "library" requires "licence edition"

[Explanation] The "library" requires the "edition" edition.

E0563602 [Message] "character string" option requires Edition.

E0572000 [Message] Invalid option : "option"

[Explanation] "option" is not supported.

E0572200 [Message] Illegal object file : "file"

[Explanation] The input file is not in the ELF format.

E0572500 [Message] Cannot find library file : "file"

[Explanation] "file" specified as the library file was not found.

E0572501 [Message] "instance" has been referenced as both an explicit specialization and a generated
instantiation

[Action by User] For the file using "instance", confirm that form=relocate has not been used to gen-
erate a relocatable object file.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 971 of 1053
Nov 01, 2020

E0572502 [Message] "instance" assigned to "file1" and "file2"

[Explanation] The definition of "instance" is duplicated in "file1" and "file2".

[Action by User] For the file using "instance", confirm that form=relocate has not been used to gen-
erate a relocatable object file.

E0573005 [Message] Instantiation loop

[Explanation] An input file name may coincide with another file.

[Action by User] Change the filenames so that they do not coincide without the extension.

E0573007 [Message] Cannot create instantiation request file "file"

[Explanation] The intermediate file for instantiation was not created.

[Action by User] Check whether access rights for the object creation directory are correct.

E0573008 [Message] Cannot change to directory "folder"

[Action by User] Check if "folder" exists.

E0573009 [Message] File "file" is read-only

[Action by User] Change the access rights.

E0573300 [Message] Cannot open file : "file"

[Action by User] Check the filename and access rights.

E0573303 [Message] Cannot read file : "file"

[Explanation] The input file was blank or there was not enough disk space.

E0573310 [Message] Cannot open temporary file

[Explanation] An intermediate file cannot be opened. The HLNK_TMP specification was incor-
rect or there was not enough disk space.

E0573320 [Message] Memory overflow

[Explanation] There is no more space in the usable memory within the linkage editor.

[Action by User] Increase the amount of memory available.

E0592001 [Message] Multiple input files are not allowed.

[Action by User] Use a list file to convert more than one file.

E0592002 [Message] Multiple output files are not allowed.

[Action by User] Use a list file to convert more than one file.

E0592003 [Message] List file is specified more than once.

[Action by User] Combine them into a single list file.

E0592004 [Message] Invalid argument for the "option" option.

[Action by User] Check the argument.

E0592005 [Message] The "option" option can not have an argument.

[Explanation] An invalid argument was specified for the "option" option.

E0592006 [Message] The "option" option requires an argument.

[Explanation] A required argument is missing from the "option" option specification.

R20UT3248EJ0110 Rev.1.10 Page 972 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

E0592007 [Message] The "option" option is specified more than once.

[Explanation] Option "option" can only be specified once at a time.

E0592008 [Message] Requires an output file.

[Explanation] No output file has been specified for the specified input file.

E0592010 [Message] Failed to open an output file "file".

E0592013 [Message] Failed to delete a temporary file "file".

E0592015 [Message] Failed to close an input file "file".

E0592016 [Message] Failed to write an output file "file".

E0592018 [Message] Failed to open an list file "file".

[Action by User] Make sure that the list file exists and has been specified correctly.

E0592019 [Message] Syntax error in list file "file".

[Explanation] There is a syntax error in list file "file".

E0592020 [Message] Failed to read a list file "file".

E0592101 [Message] Unknown character 'C'.

[Explanation] The pre-conversion C-language source file could not be converted, because it con-
tains a character that is not permitted by the C language.

[Action by User] Edit the C-language source file and correct any syntax errors.

E0592102 [Message] Illegal syntax in string.

[Explanation] The pre-conversion C-language source file could not be converted, because it con-
tains a syntax error.

[Action by User] Edit the C-language source file and correct any syntax errors.

E0592201 [Message] Illegal syntax.

[Explanation] The pre-conversion assembly-language source file could not be converted,
because it contains a syntax error.

[Action by User] Edit the assembly-language source file and correct any syntax errors.

E0593002 [Message] "-Xsfg_size_tidata_byte" size larger than "-Xsfg_size_tidata" size.

[Action by User] Set size "-Xsfg_size_tidata_byte" to equal to or less than size "-Xsfg_size_tidata",
or size "-Xsfg_size_tidata" to greater than or equal to size "-
Xsfg_size_tidata_byte".

E0593003 [Message] Can not Read Symbol Information.

[Explanation] The symbol could not be loaded because there is no symbol-analysis information
in memory, or it is corrupt.

[Action by User] Check the CX options and rebuild.

E0593004 [Message] Can not Write the SFG file.

[Explanation] There could be a problem with disk space or user privileges.

[Action by User] Make sure that there is enough space to write the data, and check the user privi-
leges.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 973 of 1053
Nov 01, 2020

E0594000 [Message] Cannot find project file(file name).

[Explanation] There is no project file.

[Action by User] Make sure that the file exists.

E0594001 [Message] Project file read error(file name).

[Explanation] An error occurred while loading the project file.
Reading the project file may be blocked.

E0594002 [Message] Illegal format in project file(file name).

[Explanation] The project file format is invalid.

[Action by User] This error occurs when invalid format is found in the project file. Either correct the
error, or create the project again.

R20UT3248EJ0110 Rev.1.10 Page 974 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

10.5.3 Fatal Errors

Table 10.4 Fatal Errors

F0511128 [Message] Library file "file-name" is not found.

F0512003 [Message] Toomany errors.

F0520003 [Message] #include file "file" includes itself.

[Explanation] #include file "file" includes itself. Correct the error.

F0520004 [Message] Out of memory.

[Action by User] Out of memory. Close other applications, and perform the compile again.

F0520005 [Message] Could not open source file "file".

F0520013 [Message] Expected a file name.

F0520016 [Message] "file" is not a valid source file name.

F0520035 [Message] #error directive: character string

[Explanation] There is an "#error" directive in the source file.

F0520143 [Message] Program too large or complicated to compile.

F0520163 [Message] Could not open temporary file xxx.

F0520164 [Message] Name of directory for temporary files is too long (xxx).

F0520182 [Message] Could not open source file xxx (no directories in search list).

F0520189 [Message] Error while writing "file" file.

F0520190 [Message] Invalid intermediate language file.

F0520219 [Message] Error while deleting file "file".

F0520542 [Message] Could not create instantiation request file name.

F0520563 [Message] Invalid preprocessor output file.

F0520564 [Message] Cannot open preprocessor output file.

F0520641 [Message] xxx is not a valid directory.

F0520642 [Message] Cannot build temporary file name.

F0520869 [Message] Could not set locale xxx to allow processing of multibyte characters.

F0520919 [Message] Invalid output file: xxx

F0520920 [Message] Cannot open output file: xxx

F0520926 [Message] Cannot open definition list file: xxx

F0521083 [Message] Exported template file xxx is corrupted.

F0521151 [Message] Mangled name is too long.

F0521335 [Message] Cannot open predefined macro file: xxx

F0521336 [Message] Invalid predefined macro entry at line line: line2

F0521337 [Message] Invalid macro mode name xxx.

F0521338 [Message] Incompatible redefinition of predefined macro xxx.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 975 of 1053
Nov 01, 2020

F0523029 [Message] Cannot open rule file

[Explanation] The file specified in the -misra2004="file name" or -misra2012="file name" option
cannot be opened.

F0523030 [Message] Incorrect description "file name" in rule file

[Explanation] The file specified in the -misra2004="file name" or -misra2012="file name" option
includes illegal code.

F0523031 [Message] Rule rule number is unsupported

[Explanation] The number of a rule that is not supported was specified.

F0523073 [Message] "instruction-set architecture name" does not support this intrinsic function.

[Explanation] The specified intrinsic function is not supported. Check the -isa option setting.

F0523088 [Message] Bit position is out of range.

F0523129 [Message] The "option name" option is necessary for use of "function".

[Explanation] The option must be specified to use this function.

F0523300 [Message] Cannot open internal file.

[Explanation] An intermediate file internally generated by the compiler cannot be opened.

F0523301 [Message] Cannot close internal file.

[Explanation] An intermediate file internally generated by the compiler cannot be closed.

F0523302 [Message] Cannot write internal file.

[Explanation] An error occurred while an intermediate file was being written to.

F0530320 [Message] Duplicate symbol "symbol name".

F0530800 [Message] Type of symbol "symbol-name" differs between files.

F0530808 [Message] Alignment of variable "variable-name" differs between files.

F0530810 [Message] #pragma directive for symbol "symbol-name" differs between files.

F0533021 [Message] Out of memory.

[Explanation] Memory is insufficient.

[Action by User] Close other applications and recompile the program.

F0533300 [Message] Cannot open an intermediate file.

[Explanation] A temporary file that was internally generated by the compiler cannot be opened.

F0533301 [Message] Cannot close an intermediate file.

[Explanation] A temporary file that was internally generated by the compiler cannot be closed.

F0533302 [Message] Cannot read an intermediate file.

[Explanation] An error occurred during reading of a temporary file.

F0533303 [Message] Cannot write to an intermediate file.

[Explanation] An error occurred during writing of a temporary file.

F0533306 [Message] Compilation was interrupted.

[Explanation] During compilation, an interrupt due to entry of the Cntl + C key combination was
detected.

R20UT3248EJ0110 Rev.1.10 Page 976 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

F0533330 [Message] Cannot open an intermediate file.

[Explanation] A temporary file that was internally generated by the compiler cannot be opened.

F0540027 [Message] Cannot read file "file-name".

F0540204 [Message] Illegal stack access.

[Explanation] Attempted usage of the stack by a function has exceeded 2 Gbytes.

F0540300 [Message] Cannot open an intermediate file.

[Explanation] A temporary file that was internally generated by the compiler cannot be opened.

F0540301 [Message] Cannot close an intermediate file.

[Explanation] A temporary file that was internally generated by the compiler cannot be closed.

F0540302 [Message] Cannot read an intermediate file.

[Explanation] An error occurred during reading of a temporary file.

F0540303 [Message] Cannot write to an intermediate file.

[Explanation] An error occurred during writing of a temporary file.

F0540400 [Message] Different parameters are set for the same #pramga "identifier".

F0544302 [Message] Cannot read an intermediate file.

[Explanation] An error occurred while an intermediate file was being read.

F0544802 [Message] The value of the parameter for the in-line function is outside the defined range.

[Explanation] The value of the parameter for the inline function is outside the supported range.

F0553000 [Message] Can't create file 'filename'.

[Explanation] The filename file cannot be generated.

[Action by User] Check the directory capacity.

F0553001 [Message] Can't open file 'filename'.

[Explanation] The filename file cannot be opened.

[Action by User] Check the file name.

F0553002 [Message] Can't write file 'filename'.

[Explanation] The filename file cannot be written to.

[Action by User] Check the permission of the file.

F0553003 [Message] Can't read file 'filename'.

[Explanation] The filename file cannot be read.

[Action by User] Check the permission of the file.

F0553004 [Message] Can't create Temporary file.

[Explanation] Temporary file cannot be generated.

[Action by User] Specify a directory in environment variable TMP_RX so that a temporary file will be
created in some place other than the current directory.

F0553005 [Message] Can't open Temporary file.

[Explanation] The temporary file cannot be opened.

[Action by User] Check the directory specified in TMP_RX.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 977 of 1053
Nov 01, 2020

F0553006 [Message] Can't read Temporary file.

[Explanation] The temporary file cannot be read.

[Action by User] Check the directory specified in TMP_RX.

F0553007 [Message] Can't write Temporary file.

[Explanation] The temporary file cannot be written to.

[Action by User] Check the directory specified in TMP_RX.

F0553008 [Message] Illegal file name 'filename'.

[Explanation] The file name is illegal.

[Action by User] Specify a file name that conforms to file name description rules.

F0553016 [Message] Lacking cpu specification.

[Explanation] No CPU type is specified.

[Action by User] Specify the CPU type by the cpuoption or environment variable CPU_RX.

F0553100 [Message] Command line is too long.

[Explanation] The command line has too many characters.

[Action by User] Re-input the command.

F0553101 [Message] Invalid option 'xx' is used.

[Explanation] An invalid command option xx is used.

[Action by User] The specified option is nonexistent. Re-input the command correctly.

F0553102 [Message] Ignore option 'xx'.

[Explanation] An invalid option is specified.

F0553103 [Message] Option 'xx' is not appropriate.

[Explanation] Command option xx is written incorrectly.

[Action by User] Specify the command option correctly again.

F0553104 [Message] No input files specified.

[Explanation] No input file is specified.

[Action by User] Specify an input file.

F0553105 [Message] Source files number exceed 80.

[Explanation] The number of source files exceeds 80.

[Action by User] Execute assembling separately in two or more operations.

F0553106 [Message] Lacking cpu specification.

[Explanation] No CPU type is specified.

[Action by User] Specify the CPU type by the cpuoption or environment variable CPU_RX.

F0553110 [Message] Multiple register base/fint_register.

[Explanation] A single register is specified by the baseand fint_registeroptions.

F0553111 [Message] Multiple register base/pid.

[Explanation] A single register is specified by the baseand pidoptions.

R20UT3248EJ0110 Rev.1.10 Page 978 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

F0553112 [Message] Multiple register base/nouse_pid_register.

[Explanation] A single register is specified by the baseand nouse_pid_registeroptions.

F0553113 [Message] Neither isa nor cpu is specified

F0553114 [Message] Both '-isa' option and '-cpu' option are specified

F0553115 [Message] The '-cpu' option and the '-fpu' option are inconsistent

F0553200 [Message] Error occurred in executing 'xxx'.

[Explanation] An error occurred when executing xxx.

[Action by User] Rerun asrx.

F0553201 [Message] Not enough memory.

[Explanation] Memory is insufficient.

[Action by User] Divide the file and re-run. Orincrease the memory capacity.

F0553202 [Message] Can't find work dir.

[Explanation] The work directory is not found.

[Action by User] Make sure that the setting of environment variable TMP_RX is correct.

F0563000 [Message] No input file

[Explanation] There is no input file.

F0563001 [Message] No module in library

[Explanation] There are no modules in the library.

F0563002 [Message] Option "option1" is ineffective without option "option2"

[Explanation] The option option 1 requires that the option option 2 be specified.

F0563003 [Message] Illegal file format "file"

F0563004 [Message] Invalid inter-module optimization information type in "file"

[Explanation] The file contains an unsupported inter-module optimization information type.

[Action by User] Check if the compiler and assembler versions are correct.

F0563020 [Message] No cpu information in input files

[Explanation] The CPU type cannot be identified from the input file.

[Action by User] Check that the binary file is specified with the -binary option and the .obj or .rel files
to be linked together exist.

F0563100 [Message] Section address overflow out of range : "section"

[Explanation] The address of section exceeded the area available.

[Action by User] Change the address specified by the start option.
For details of the address space, refer to the hardware manual of the target CPU.

F0563102 [Message] Section contents overlap in absolute section "section" in "file"

[Explanation] Data addresses overlap within an absolute address section.

[Action by User] Modify the source program.

F0563103 [Message] Section size overflow : "section"

[Explanation] Section "section" has exceeded the usable size.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 979 of 1053
Nov 01, 2020

F0563110 [Message] Illegal cpu type "cpu type" in "file"

[Explanation] A file with a different cpu type was input.

F0563111 [Message] Illegal encode type "endian type" in "file"

[Explanation] A file with a different endian type was input.

F0563112 [Message] Invalid relocation type in "file"

[Explanation] There is an unsupported relocation type in file.

[Action by User] Ensure the compiler and assembler versions are correct.

F0563120 [Message] Illegal size of the absolute code section : "section" in "file"

[Explanation] Absolute-addressing section section in file has an illegal size.

F0563150 [Message] Multiple files cannot be specified while processing "process"

F0563200 [Message] Too many sections

[Explanation] The number of sections exceeded the translation limit. It may be possible to elimi-
nate this problem by specifying multiple file output.

F0563201 [Message] Too many symbols

[Explanation] The number of symbols exceeded the translation limit. It may be possible to elimi-
nate this problem by specifying multiple file output.

F0563202 [Message] Too many modules

[Explanation] The number of modules exceeded the translation limit.

[Action by User] Divide the library.

F0563203 [Message] Reserved module name "rlink_generates"

[Explanation] rlink_generates_** (** is a value from 01 to 99) is a reserved name used by the
optimizing linkage editor. It is used as an .obj or .rel file name or a module name
within a library.

[Action by User] Modify the name if it is used as a file name or a module name within a library.

F0563204 [Message] Reserved section name "$sss_fetch"

[Explanation] sss_fetch** (sss is any string, and ** is a value from 01 to 99) is a reserved name
used by the optimizing linkage editor.

[Action by User] Change the symbol name or section name.

F0563300 [Message] Cannot open file : "file"

[Explanation] file cannot be opened.

[Action by User] Check whether the file name and access rights are correct.

F0563301 [Message] Cannot close file : "file"

[Explanation] file cannot be closed. There may be insufficient disk space.

F0563302 [Message] Cannot write file : "file"

[Explanation] Writing to file is not possible. There may be insufficient disk space.

F0563303 [Message] Cannot read file : "file"

[Explanation] file cannot be read. An empty file may have been input, or there may be insufficient
disk space.

R20UT3248EJ0110 Rev.1.10 Page 980 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

F0563310 [Message] Cannot open temporary file

[Explanation] A temporary file cannot be opened.

[Action by User] Check to ensure the HLNK_TMP specification is correct, or there may be insuffi-
cient disk space.

F0563314 [Message] Cannot delete temporary file

[Explanation] A temporary file cannot be deleted. There may be insufficient disk space.

F0563320 [Message] Memory overflow

[Explanation] There is no more space in the usable memory within the linker.

[Action by User] Increase the amount of memory available.

F0563400 [Message] Cannot execute "load module"

[Explanation] load module cannot be executed.

[Action by User] Check whether the path for load module is set correctly.

F0563410 [Message] Interrupt by user

[Explanation] An interrupt generated by (Ctrl) + C keys from a standard input terminal was
detected.

F0563420 [Message] Error occurred in "load module"

[Explanation] An error occurred while executing load module.

F0563430 [Message] The total section size exceeded the limit

[Explanation] The total size of sections has exceeded the limit from linkage (128 Kbytes) that is
allowed for the free evaluation edition.

[Action by User] Reduce the total size of sections so that the size falls within the limit, or purchase
the commercial edition of the compiler.

F0563431 [Message] Incorrect device type, object file mismatch.

F0563600 [Message] Option "option" requires parameter

F0563601 [Message] Invalid parameter specified in option "option" : "parameter"

F0578200 [Message] memory allocation fault

[Explanation] Not enough memory.

F0578201 [Message] bad key character - use [dm(a|b)qr(a|b|u)txV]

[Explanation] character cannot be specified as a key.

F0578202 [Message] bad option character - use [cv]

[Explanation] character cannot be specified as an option.

F0578203 [Message] bad option string

[Explanation] string cannot be specified as an option.

F0578204 [Message] can not create file file

[Explanation] Could not create file file.

F0578205 [Message] file name name... is too long - limit is number

[Explanation] File name name is too long. The maximum value is number1.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 981 of 1053
Nov 01, 2020

F0578206 [Message] can not open file file

[Explanation] Could not open file file.

F0578207 [Message] can not close file file

[Explanation] Could not close file file.

F0578208 [Message] can not read file file

[Explanation] Cannot read from file file.

F0578209 [Message] can not write file file

[Explanation] Cannot write to file file.

F0578210 [Message] can not seek file file

[Explanation] Cannot seek in file file.

F0578212 [Message] can not nest command file file

[Explanation] Command file file is nested. Nesting is not allowed.

F0578213 [Message] file is not library file

[Explanation] file is not a library file.

F0578214 [Message] malformed library file file

[Explanation] Library file file could be corrupt.

F0578215 [Message] can not find member member

[Explanation] Member member not found in library file.

F0578216 [Message] symbol table limit error file (number1) - limit is number2

[Explanation] The number of symbols number1 in library file file exceeds the maximum limit. The
maximum value is number2.

F0578217 [Message] symbol table error file

[Explanation] Failed to create a library file table for library file file.

F0578218 [Message] string table error file

[Explanation] The library string table for library file file could be corrupt.

F0578219 [Message] file has no member

[Explanation] There are no members in library file file.

F0578220 [Message] version error file

[Explanation] The version of the format of the specified file file is not supported by this librarian.

F0578221 [Message] can not read library header file

[Explanation] Cannot read header from library file file.

F0593113 [Message] Neither isa nor cpu is specified

F0593114 [Message] Both '-isa' option and '-cpu' option are specified

R20UT3248EJ0110 Rev.1.10 Page 982 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

10.5.4 Informations

Table 10.5 Informations

M0520009 [Message] Nested comment is not allowed.

M0520018 [Message] Expected a ")".

M0520111 [Message] Statement is unreachable.

M0520128 [Message] Loop is not reachable from preceding code.

M0520174 [Message] Expression has no effect.

M0520193 [Message] Zero used for undefined preprocessing identifier xxx.

M0520237 [Message] Selector expression is constant.

M0520261 [Message] Access control not specified ("name" by default).

M0520324 [Message] Duplicate friend declaration.

M0520381 [Message] Extra ";" ignored.

M0520399 [Message] name has an operator new xxx() but no default operator delete xxx().

M0520400 [Message] name has a default operator delete xxx() but no operator new xxx().

M0520479 [Message] name redeclared "inline" after being called.

M0520487 [Message] Inline name cannot be explicitly instantiated.

M0520534 [Message] Use of a local type to specify an exception.

M0520535 [Message] Redundant type in exception specification.

M0520549 [Message] symbol is used before its value is set.

M0520618 [Message] Struct or union declares no named members.

M0520652 [Message] Calling convention is ignored for this type.

M0520678 [Message] Call of "symbol" cannot be inlined.

M0520679 [Message] symbol cannot be inlined.

M0520815 [Message] Type qualifier on return type is meaningless.

M0520831 [Message] Support for placement delete is disabled.

M0520863 [Message] Effect of this "#pragma pack" directive is local to xxx.

M0520866 [Message] Exception specification ignored.

M0520949 [Message] Specifying a default argument on this declaration is nonstandard.

M0521348 [Message] Declaration hides "symbol".

M0521353 [Message] symbol has no corresponding member operator delete xxx (to be called if an
exception is thrown during initialization of an allocated object).

M0521380 [Message] Virtual xxx was not defined (and cannot be defined elsewhere because it is a mem-
ber of an unnamed namespace).

M0521381 [Message] Carriage return character in source line outside of comment or character/string lit-
eral.

M0523009 [Message] This pragma has no effect.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 983 of 1053
Nov 01, 2020

M0523028 [Message] Rule rule number : description

[Explanation] Violation of a MISRA-C:2004 rule (indicated by the rule number and description)
was detected.

M0523033 [Message] Precision lost.

M0523086 [Message] Rule rule number : description

[Explanation] Violation of a MISRA-C:2012 rule (indicated by the rule number and description)
was detected.

M0560002 [Message] Symbol "symbol" created by optimization "optimization"

[Explanation] The symbol named symbol was created as a result of the optimization.

M0560004 [Message] "file"-"symbol" deleted by optimization

[Explanation] As a result of symbol_delete optimization, the symbol named symbol in file was
deleted.

M0560005 [Message] The offset value from the symbol location has been changed by optimization "file"-
"section"-"symbol offset"

[Explanation] As a result of the size being changed by optimization within the range of symbol
offset, the offset value was changed. Check that this does not cause a problem.
To disable changing of the offset value, cancel the specification of the goptimize
option on assembly of file.

M0560100 [Message] No inter-module optimization information in "file"

[Explanation] No inter-module optimization information was found in file. Inter-module optimiza-
tion is not performed on file. To perform inter-module optimization, specify the gop-
timize option on compiling and assembly.

M0560101 [Message] No stack information in "file"

[Explanation] No stack information was found in file. file may be an assembler output file. The
contents of the file will not be in the stack information file output by the linker.

M0560102 [Message] Stack size "size" specified to the undefined symbol "symbol" in "file"

[Explanation] Stack size size is specified for the undefined symbol named symbol in file.

M0560103 [Message] Multiple stack sizes specified to the symbol "symbol"

[Explanation] Multiple stack sizes are specified for the symbol named symbol.

M0560300 [Message] Mode type "mode type1" in "file" differ from "mde type2"

[Explanation] A file with a different mode type was input.

M0560400 [Message] Unused symbol "file"-"symbol"

[Explanation] The symbol named symbol in file is not used.

M0560500 [Message] Generated CRC code at "address"

[Explanation] CRC code was generated at address.

M0560510 [Message] Section "section" was moved other area specified in option "cpu=<attribute>"

[Explanation] section without dividing is allocated according to cpu=<attribute>.

M0560511 [Message] Sections "section name","new section name" are Non-contiguous

[Explanation] section was divided and the newly created section is new section name.

M0560700 [Message] Section address overflow out of range : "section"

R20UT3248EJ0110 Rev.1.10 Page 984 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

10.5.5 Warnings

Table 10.6 Warnings

W0511105 [Message] "path" specified by the "character string" option is a file. Specify a folder.

W0511106 [Message] The folder "folder" specified by the "character string" option is not found.

W0511123 [Message] The "character string2" option is ignored when the "character string1" option is
specified at the same time.

W0511143 [Message] The "-Xfloat" option is ignored because specified device does not have FPU.

W0511144 [Message] "-C" option and "-Xcommon" option is mismatch. Instruction set by "character
string1" option is ignored. Create common object for "character string2" instruction
set.

W0511146 [Message] "symbol name" specified in the "character string" option is not allowed for a prepro-
cessor macro. Recognized only as an assembler symbol.

W0511147 [Message] The "character string" option is specified more than once. The latter is valid.

W0511149 [Message] The "character string2" option is ignored when the "character string1" option and
the "character string2" option are inconsistent.

W0511151 [Message] The "character string2" option is ignored when the "character string1" option is not
specified.

W0511153 [Message] Optimization itemoptions were cleared when "-Ocharacter string" option is speci-
fied. Optimization itemoptions need to specify after "-Ocharacter string" option.

W0511156 [Message] Device file is not found in the folder specified by the "-Xdev_path" option.

[Explanation] Device file is not found in the folder specified by the "-Xdev_path" option. Will
search standard device file folder.

W0511164 [Message] Dupulicate file name. "file-name".

[Explanation] The same file name was specified more than once in a command line.
CC-RH is not capable of handling multiple instances of the same file name.
Only the last file name to have been specified is valid.

W0511166 [Message] "macro name" is not a valid predefined macro name.

[Explanation] Specification of the undefine option is invalid.

W0511168 [Message] "option-name" option has no effect in this version.

W0511169 [Message] "code" is not valid in "language specifications"

[Explanation] "code" is invalid in the "language specifications (C or C++)".

W0511170 [Message] "option-name" option is ignored due to the specification of another option.

W0511171 [Message] "code" is ignored in "language specifications".

[Explanation] "code" is ignored in the "language specifications (C or C++)".

W0511172 [Message] Nothing to compile, assemble or link.(input and output combination)

[Action by User] Check the combination of the input file and output option.

W0511179 [Message] The evaluation version is valid for the remaining number days.

W0511180 [Message] The evaluation period has expired.

W0511185 [Message] The trial period for the features of the Professional edition expires in number days.

W0519999 [Message] The "option-name" option is not implemented.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 985 of 1053
Nov 01, 2020

W0520001 [Message] Last line of file ends without a newline.

[Action by User] Add a line break.

W0520009 [Message] Nested comment is not allowed.

[Action by User] Eliminate nesting.

W0520011 [Message] Unrecognized preprocessing directive.

W0520012 [Message] Parsing restarts here after previous syntax error.

W0520014 [Message] Extra text after expected end of preprocessing directive.

W0520019 [Message] Extra text after expected end of number.

W0520021 [Message] Type qualifiers are meaningless in this declaration.

[Explanation] Type qualifiers are meaningless in this declaration. Ignored.

W0520026 [Message] Too many characters in character constant.

[Explanation] Too many characters in character constant. Character constants cannot contain
more than one character.

W0520027 [Message] Character value is out of range.

W0520038 [Message] Directive is not allowed -- an #else has already appeared.

[Explanation] Since there is a preceding #else, this directive is illegal.

W0520039 [Message] Division by zero.

W0520042 [Message] Operand types are incompatible ("type1" and "type2").

W0520045 [Message] #undef may not be used on this predefined name.

W0520046 [Message] symbol is predefined; attempted redefinition ignored.

W0520047 [Message] Incompatible redefinition of macro "symbol".

W0520054 [Message] Too few arguments in macro invocation.

W0520055 [Message] Too many arguments in macro invocation.

W0520061 [Message] Integer operation result is out of range.

W0520062 [Message] Shift count is negative.

[Explanation] Shift count is negative. The behavior will be undefined in ANSI-C.

W0520063 [Message] Shift count is too large.

W0520064 [Message] Declaration does not declare anything.

W0520066 [Message] Enumeration value is out of "int" range.

W0520068 [Message] Integer conversion resulted in a change of sign.

W0520069 [Message] Integer conversion resulted in truncation.

[Explanation] The conversion result of the integer type was truncated.

W0520070 [Message] Incomplete type is not allowed.

W0520076 [Message] Argument to macro is empty.

W0520077 [Message] This declaration has no storage class or type specifier.

W0520082 [Message] Storage class is not first.

[Explanation] Storage class is not first. Specify the declaration of the storage class first.

R20UT3248EJ0110 Rev.1.10 Page 986 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

W0520083 [Message] Type qualifier specified more than once.

W0520085 [Message] Invalid storage class for a parameter.

W0520086 [Message] Invalid storage class for a function.

W0520099 [Message] A declaration here must declare a parameter.

W0520101 [Message] xxx has already been declared in the current scope.

W0520108 [Message] Signed bit field of length 1.

W0520111 [Message] Statement is unreachable.

W0520117 [Message] Non-void "symbol" should return a value.

W0520118 [Message] A void function may not return a value.

W0520127 [Message] Expected a statement.

W0520128 [Message] Loop is not reachable from preceding code.

W0520138 [Message] Taking the address of a register variable is not allowed.

W0520139 [Message] Taking the address of a bit field is not allowed.

W0520140 [Message] Too many arguments in function call.

W0520144 [Message] A value of type "type1" cannot be used to initialize an entity of type "type2".

W0520147 [Message] Declaration is incompatible with "declaration" (declared at line number).

W0520152 [Message] Conversion of nonzero integer to pointer.

W0520157 [Message] Expression must be an integral constant expression.

W0520161 [Message] Unrecognized #pragma.

W0520165 [Message] Too few arguments in function call.

W0520167 [Message] Argument of type "type1" is incompatible with parameter of type "type2".

W0520170 [Message] Pointer points outside of underlying object.

W0520171 [Message] Invalid type conversion.

W0520172 [Message] External/internal linkage conflict with previous declaration.

W0520173 [Message] Floating-point value does not fit in required integral type.

W0520174 [Message] Expression has no effect.

[Explanation] Expression has no effect. It is invalid.

W0520175 [Message] Subscript out of range.

W0520177 [Message] Type "symbol" was declared but never referenced.

W0520179 [Message] Right operand of "%" is zero.

W0520180 [Message] Argument is incompatible with formal parameter.

W0520181 [Message] Argument is incompatible with corresponding format string conversion.

W0520185 [Message] Dynamic initialization in unreachable code.

W0520186 [Message] Pointless comparison of unsigned integer with zero.

W0520187 [Message] Use of "=" where "==" may have been intended.

W0520188 [Message] Enumerated type mixed with another type.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 987 of 1053
Nov 01, 2020

W0520191 [Message] Type qualifier is meaningless on cast type.

W0520192 [Message] Unrecognized character escape sequence.

W0520223 [Message] Function xxx declared implicitly.

W0520224 [Message] The format string requires additional arguments.

W0520225 [Message] The format string ends before this argument.

W0520226 [Message] Invalid format string conversion.

W0520229 [Message] Bit field cannot contain all values of the enumerated type.

W0520231 [Message] Declaration is not visible outside of function.

W0520232 [Message] Old-fashioned typedef of "void" ignored.

W0520236 [Message] Controlling expression is constant.

W0520257 [Message] const "symbol" requires an initializer.

W0520260 [Message] Explicit type is missing ("int" assumed).

W0520262 [Message] Not a class or struct name.

W0520280 [Message] Declaration of a member with the same name as its class.

W0520284 [Message] NULL reference is not allowed.

W0520296 [Message] Invalid use of non-lvalue array.

W0520300 [Message] A pointer to a bound function may only be used to call the function.

W0520301 [Message] typedef name has already been declared (with same type).

W0520326 [Message] Inline is not allowed.

W0520335 [Message] Linkage specification is not allowed.

W0520368 [Message] xxx defines no constructor to initialize the following:

W0520370 [Message] symbol has an uninitialized const field.

W0520375 [Message] Declaration requires a typedef name.

W0520377 [Message] "virtual" is not allowed.

W0520381 [Message] Extra ";" ignored.

W0520382 [Message] In-class initializer for nonstatic member is nonstandard.

W0520414 [Message] Delete of pointer to incomplete class.

W0520430 [Message] Returning reference to local temporary.

W0520494 [Message] Declaring a void parameter list with a typedef is nonstandard.

W0520497 [Message] Declaration of %sq hides template parameter.

W0520512 [Message] Type qualifier on a reference type is not allowed.

W0520513 [Message] A value of type "type1" cannot be assigned to an entity of type "type2".

W0520514 [Message] Pointless comparison of unsigned integer with a negative constant.

W0520520 [Message] Initialization with "{...}" expected for aggregate object.

W0520522 [Message] Pointless friend declaration.

W0520523 [Message] "." used in place of "::" to form a qualified name.

R20UT3248EJ0110 Rev.1.10 Page 988 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

W0520533 [Message] Handler is potentially masked by previous handler for type "type".

W0520541 [Message] Omission of exception specification is incompatible with previous name.

W0520549 [Message] Type "symbol" is used before its value is set.

W0520550 [Message] Type "symbol" was set but never used.

W0520552 [Message] Exception specification is not allowed.

W0520553 [Message] external/internal linkage conflict for "symbol".

W0520554 [Message] name will not be called for implicit or explicit conversions.

W0520611 [Message] Overloaded virtual function name1 is only partially overridden in name2.

W0520617 [Message] Pointer-to-member-function cast to pointer to function.

W0520618 [Message] struct or union declares no named members.

W0520650 [Message] Calling convention specified here is ignored.

W0520657 [Message] Inline specification is incompatible with previous "symbol".

W0520662 [Message] Call of pure virtual function.

W0520676 [Message] Using out-of-scope declaration of type "symbol" (declared at line number).

W0520691 [Message] xxx, required for copy that was eliminated, is inaccessible.

W0520692 [Message] xxx, required for copy that was eliminated, is not callable because reference
parameter cannot be bound to rvalue.

W0520708 [Message] Incrementing a bool value is deprecated.

W0520720 [Message] Redeclaration of xxx is not allowed to alter its access.

W0520722 [Message] Use of alternative token "<:" appears to be unintended.

W0520723 [Message] Use of alternative token "%%:" appears to be unintended.

W0520737 [Message] Using-declaration ignored -- it refers to the current namespace.

W0520748 [Message] Calling convention specified more than once.

W0520760 [Message] symbol explicitly instantiated more than once.

W0520767 [Message] Conversion from pointer to smaller integer.

W0520780 [Message] Reference is to symbol1 -- under old for-init scoping rules it would have been
symbol2.

W0520783 [Message] Empty comment interpreted as token-pasting operator "##".

W0520794 [Message] Template parameter %sq may not be used in an elaborated type specifier.

W0520802 [Message] Specifying a default argument when redeclaring an unreferenced function template
is nonstandard.

W0520806 [Message] Omission of exception specification is incompatible with name.

W0520812 [Message] const object requires an initializer -- class type has no explicitly declared default
constructor.

W0520815 [Message] Type qualifier on return type is meaningless.

W0520825 [Message] Virtual inline name was never defined.

W0520826 [Message] name was never referenced.

W0520829 [Message] Double used for "long double" in generated C code.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 989 of 1053
Nov 01, 2020

W0520830 [Message] xxx has no corresponding operator deleteyyy (to be called if an exception is thrown
during initialization of an allocated object).

W0520831 [Message] Support for placement delete is disabled

W0520836 [Message] Returning reference to local variable.

W0520837 [Message] Omission of explicit type is nonstandard ("int" assumed).

W0520867 [Message] Declaration of "size_t" does not match the expected type "type".

W0520870 [Message] Invalid multibyte character sequence.

W0520902 [Message] Type qualifier ignored.

W0520912 [Message] Ambiguous class member reference -- symbol1 used in preference to symbol2.

W0520925 [Message] Type qualifiers on function types are ignored.

W0520936 [Message] Redeclaration of name alters its access.

W0520940 [Message] Missing return statement at end of non-void "symbol"..

W0520941 [Message] Duplicate using-declaration of name ignored.

W0520942 [Message] enum bit-fields are always unsigned, but enum %t includes negative enumerator.

W0520948 [Message] Nonstandard local-class friend declaration -- no prior declaration in the enclosing
scope.

W0520951 [Message] Return type of function "main" must be "int".

W0520959 [Message] Declared size for bit field is larger than the size of the bit field type; truncated to
any-string bits.

W0520961 [Message] Use of a type with no linkage to declare a variable with linkage.

W0520962 [Message] Use of a type with no linkage to declare a function.

W0520970 [Message] The qualifier on this friend declaration is ignored.

W0520973 [Message] Inline used as a function qualifier is ignored.

W0520984 [Message] operator new and operator delete cannot be given internal linkage.

W0520991 [Message] Extra braces are nonstandard.

W0520993 [Message] Subtraction of pointer types "type name 1" and "type name 2" is nonstandard.

W0520997 [Message] function2 is hidden by function1 -- virtual function override intended?

W0521000 [Message] A storage class may not be specified here.

W0521028 [Message] Invalid redeclaration of nested class.

W0521030 [Message] A variable with static storage duration cannot be defined within an inline function.

W0521046 [Message] Floating-point value cannot be represented exactly.

W0521050 [Message] Imaginary *= imaginary sets the left-hand operand to zero.

W0521051 [Message] Standard requires that "symbol" be given a type by a subsequent declaration ("int"
assumed).

W0521053 [Message] Conversion from integer to smaller poinster.

W0521055 [Message] Types cannot be declared in anonymous unions.

W0521056 [Message] Returning pointer to local variable.

W0521057 [Message] Returning pointer to local temporary.

R20UT3248EJ0110 Rev.1.10 Page 990 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

W0521072 [Message] A declaration cannot have a label.

W0521105 [Message] #warning directive: character string.

[Explanation] There is a "#warning" directive in the source file.

W0521145 [Message] type1 would have been promoted to "type2" when passed through the ellipsis
parameter; use the latter type instead.

W0521163 [Message] va_start should only appear in a function with an ellipsis parameter.

W0521192 [Message] Null (zero) character in input line ignored.

W0521193 [Message] Null (zero) character in string or character constant.

W0521194 [Message] Null (zero) character in header name.

W0521197 [Message] The prototype declaration of %nfd is ignored after this unprototyped redeclaration.

W0521211 [Message] Nonstandard cast to array type ignored.

W0521213 [Message] field uses tail padding of a base class.

W0521218 [Message] Base class xxx uses tail padding of base class yyy.

W0521222 [Message] Invalid error number.

W0521223 [Message] Invalid error tag.

W0521224 [Message] Expected an error number or error tag.

W0521235 [Message] Nonstandard conversion between pointer to function and pointer to data.

W0521273 [Message] Alignment-of operator applied to incomplete type.

W0521285 [Message] Nonstandard qualified name in namespace member declaration.

W0521290 [Message] Non-POD class type passed through ellipsis.

W0521294 [Message] Integer operand may cause fixed-point overflow.

W0521296 [Message] Fixed-point value cannot be represented exactly.

W0521297 [Message] Constant is too large for long long; given unsigned long long type (nonstandard).

W0521301 [Message] xxx declares a non-template function -- add <> to refer to a template instance.

W0521302 [Message] Operation may cause fixed-point overflow.

W0521307 [Message] Class member typedef may not be redeclared.

W0521308 [Message] Taking the address of a temporary.

W0521310 [Message] Fixed-point value implicitly converted to floating-point type.

W0521316 [Message] Value cannot be converted to fixed-point value exactly.

W0521319 [Message] Fixed-point operation result is out of range.

W0521342 [Message] const_cast to enum type is nonstandard.

W0521346 [Message] Function returns incomplete class type %t.

W0521361 [Message] Negation of an unsigned fixed-point value.

W0521373 [Message] Implicit conversion of a 64-bit integral type to a smaller integral type (potential por-
tability problem).

W0521374 [Message] Explicit conversion of a 64-bit integral type to a smaller integral type (potential por-
tability problem).

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 991 of 1053
Nov 01, 2020

W0521375 [Message] Conversion from pointer to same-sized integral type (potential portability problem).

W0521386 [Message] Storage specifier ignored.

W0521396 [Message] White space between backslash and newline in line splice ignored.

W0521400 [Message] positional format specifier cannot be zero.

W0521420 [Message] Some enumerator values cannot be represented by the integral type underlying the
enum type.

W0521422 [Message] Multicharacter character literal (potential portability problem).

W0521427 [Message] offsetof applied to non-POD types is nonstandard.

W0521433 [Message] No prior push_macro for xxx.

W0521443 [Message] __real/__imag applied to real value.

W0521444 [Message] symbol was declared "deprecated (xxx)".

W0521546 [Message] Argument must be a constant null pointer value.

W0521547 [Message] Insufficient number of arguments for sentinel value.

W0521548 [Message] Sentinel argument must correspond to an ellipsis parameter.

W0521551 [Message] No #pragma start_map_region is currently active: pragma ignored.

W0521553 [Message] Nonstandard empty wide character literal treated as L'0'.

W0521561 [Message] Predefined meaning of "symbol" discarded.

W0521564 [Message] enum qualified name is nonstandard.

W0521565 [Message] Anonymous union qualifier is nonstandard.

W0521566 [Message] Anonymous union qualifier is ignored.

W0521570 [Message] Nonstandard specifier ignored.

W0521607 [Message] #pragma text must precede the definition of function "function".

[Explanation] #pragma text must precede the definition of function "function". The specification
will be ignored.

W0521644 [Message] Definition at end of file not followed by a semicolon or a declarator.

[Explanation] The declaration at the end of the file lacked a semicolon to indicate its termination.

W0521649 [Message] Hite space is required between the macro name "macro name" and its replacement
text

[Action by User] Insert a space between the macro name and the text to be replaced.

W0523042 [Message] Using "function item" function at influence the code generation of "SuperH" com-
piler

[Action by User] The use of "function item" may affect compatibility with the SuperH compiler. Con-
firm details of differences in the specification.

W0523060 [Message] Incompatible section specified

[Explanation] The same identifier was declared several times and different sections were speci-
fied for individual declarations. Only the first section declaration is valid.

W0523063 [Message] "character string" has no effect in this version

R20UT3248EJ0110 Rev.1.10 Page 992 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

W0523064 [Message] Address taken "variable-name". It may cause an upset endian indirect reference.

[Explanation] The address of an 8-byte variable "variable name", which was in the different
endian from that specified by the endian option, was acquired. This may lead to an
indirect reference with incorrect handling of endian.

W0530809 [Message] const qualifier for variable "variable-name" differs between files.

W0530811 [Message] Type of symbol "symbol-name" differs between files.

W0544001 [Message] Alignment of "section-name" sections is inconsistent. "value" is assumed.

[Explanation] There is an error in section naming. The same section name is specified for sec-
tions with different alignment numbers.

W0544002 [Message] Endian of "section-name" sections is inconsistent. "endian type" is assumed.

[Explanation] There is an error in section naming. The same section name is specified for sec-
tions in different endian.

W0550002 [Message] Cannot use option1 with option2, option2 ignored.

[Action by User] Check the option specification.

W0550003 [Message] "option" option needs argument, ignored.

[Action by User] Check the option specification parameters.

W0550004 [Message] Illegal "option" option's value, ignored.

[Action by User] Check the option specification values.

W0550005 [Message] Illegal "option" option's symbol "symbol", ignored.

[Action by User] Check the option specification symbols.

W0550006 [Message] Illegal "option" option's argument, ignored.

[Action by User] Check the option specification parameters.

W0550007 [Message] option, -C mismatch. ignore -C. output core common object.

[Action by User] Check the option specification.

W0550008 [Message] option option is not supported for core core.

[Explanation] option option is not supported for core core. The option specification will be
ignored.

[Action by User] Check the option specification.

W0550009 [Message] Cannot find programmable peripheral I/O registers, ignored -Xprogrammable_io
option.

[Action by User] Check the option specification.

W0550010 [Message] Illegal displacement in inst instruction.

[Explanation] Illegal displacement in inst instruction.
Only the effective lower-order digits will be recognized as being specified, and the
assembly will continue.

[Action by User] Check the displacement value.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 993 of 1053
Nov 01, 2020

W0550011 [Message] Illegal operand (range error in immediate).

[Explanation] Illegal operand (range error in immediate).
Only the effective lower-order digits will be recognized as being specified, and the
assembly will continue.

[Action by User] Check the immediate value.

W0550012 [Message] Operand overflow.

[Explanation] Operand overflow.
Only the effective lower-order digits will be recognized as being specified, and the
assembly will continue.

[Action by User] Check the operand value.

W0550013 [Message] register used as kind register.

[Action by User] Check the register specification.

W0550014 [Message] Illegal list value, ignored.

[Explanation] Illegal list value, ignored.
Only the effective lower-order digits will be recognized as being specified, and the
assembly will continue.

[Action by User] Check the register list value.

W0550015 [Message] Illegal register number, ignored.

[Explanation] Illegal register number, ignored.
The invalid register will be ignored, and the assembly will continue.

[Action by User] Check the register list register.

W0550016 [Message] Illegal operand (access width mismatch).

[Action by User] Check the operand's internal peripheral I/O register.

W0550017 [Message] Base register is ep(r30) only.

[Action by User] Check the base register specification.

W0550018 [Message] Illegal regID for inst.

[Action by User] Check the system register number.

W0550019 [Message] Illegal operand (immediate must be multiple of 4).

[Explanation] Illegal operand (immediate must be multiple of 4).
The number is rounded down, and assembly continues.

[Action by User] Check the operand value.

W0550020 [Message] Duplicated cpu type, ignored $PROCESSOR.

[Explanation] The -C option is given precedence, and the target-device specified by the $PRO-
CESSOR control instruction will be ignored.

[Action by User] Check the option specification.

W0550021 [Message] string already specified, ignored.

[Explanation] string already specified, ignored. The previously specified number will be used.
This specification will be ignored.

[Action by User] Check the number of registers.

R20UT3248EJ0110 Rev.1.10 Page 994 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

W0550022 [Message] Duplicated option option, ignored.

[Explanation] Duplicated option option, ignored. The previously specified option will be used.
This specification will be ignored.

[Action by User] Check the option specification.

W0550023 [Message] Start address of programmable io is out of range(0x0,value1-value2),ignored -
Xprogrammable_io option.

[Explanation] Start address of programmable io is out of range(0x0,value1-value2),ignored -
Xprogrammable_io option.
The specified value will be ignored, and the initial value of the device will be used.

[Action by User] Check the option values.

W0550024 [Message] Sorry, -option option not implemented, ignored.

[Action by User] Check the option specification.

W0550026 [Message] Illegal register number, aligned odd register(rXX) to be even register(rYY).

[Explanation] Odd-numbered registers (r1, r3, ... r31) have been specified.
The only general-purpose registered that can be specified are even-numbered (r0,
r2, r4, ... r30).
Assembly will continue, assuming that even-numbered registers (r0, r2, r4, ... r30)
have been specified.

[Action by User] Check the register specification.

W0550027 [Message] Illegal control value, ignored.

[Explanation] The control control instruction differs from a previous specification. The previous
specification will take precedence, and register modes specified by subsequent
control control instructions will be ignored.

[Action by User] Check the control control instruction specification.

W0550028 [Message] Duplicated reg_mode, ignored $REG_MODE.

[Explanation] Duplicated reg_mode, ignored $REG_MODE. The "-Xreg_mode" option takes pre-
cedence, and register modes specified via the $REG_MODE control instruction will
be ignored.

[Action by User] Check the option specification.

W0550029 [Message] Can not use r0 as destination in mul/mulu in device-name core.

[Action by User] Check the operand.

W0550030 [Message] Can not use mul/mulu X,Y,Y format in device-name core.

[Action by User] Check the operand.

W0550031 [Message] identifier undefined.

[Action by User] Check the identifier.

W0550032 [Message] Cache instruction is used as cll.

[Action by User] The use of the cache instruction as cll is not recommended. Use the cll instruction.

W0550605 [Message] "path-name" specified by the "character string" option is a file. Specify a folder.

W0550606 [Message] The folder "folder-name" specified by the "character string" option is not found.

W0550623 [Message] The "character string2" option is ignored when the "character string1" option is
specified at the same time.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 995 of 1053
Nov 01, 2020

W0550644 [Message] "-C" option and "-Xcommon" option is mismatch. Instruction set by "character
string1" option is ignored. Create common object for "character string2" instruction
set.

W0550646 [Message] "character string1" specified in the "character string2 option is not allowed for a
preprocessor macro. Recognized only as an assembler symbol

W0550647 [Message] The "character string" option is specifiedmore than once. The latter is valid.

W0550649 [Message] The "character string2" option is ignored when the "character string1" option and
the "character string2" option are inconsistent.

W0550651 [Message] The "character string2" option is ignored when the "character string1" option is not
specified.

W0551000 [Message] '.ALIGN' with not 'ALIGN' specified relocatable section.

[Explanation] Directive command .ALIGN is written in a section that does not have an ALIGN
specification.

[Action by User] Check the position where directive command .ALIGN is written. Write an ALIGN
specification in the section definition line of a section in which directive command
.ALIGN is written.

W0551001 [Message] Destination address may be changed.

[Explanation] The jump address can be a position that differs from an anticipated destination.

[Action by User] When writing an address in a branch instruction operand using a location symbol
for offset, be sure to write the addressing mode, jump distance, and instruction for-
mat specifiers for all mnemonics at locations from that instruction to the jump
address.

W0551002 [Message] Floating point value is out of range.

[Explanation] The floating-point value is out of range.

[Action by User] Check the floating-point value written in the source code. The value out of range is
ignored.

W0551003 [Message] Location counter exceed.

[Explanation] The location counter value has exceeded 0FFFFFFFFh.

[Action by User] Check the value of the operand in .ORG. Correct the source code.

W0551004 [Message] '.ALIGN' size is different.

[Explanation] The specified boundary alignment value does not match the other settings.

[Action by User] Check the alignment value.

W0551006 [Message] Data in 'CODE' section align in 4byte.

[Explanation] When endian=big is specified, the start address of the data area in the CODE sec-
tion is aligned to a 4-byte boundary.

W0551007 [Message] Data size in 'CODE' section align in 4byte.

[Explanation] When endian=big is specified, the size of the data area in the CODE section is
adjusted to a multiple of 4.

W0551009 [Message] Multiple symbols.

[Explanation] .STACK(stack value setting) is specified multiple times for a single symbol.

W0551010 [Message] Section attribute mismatch.

[Explanation] The specified section attribute does not match the other settings.

R20UT3248EJ0110 Rev.1.10 Page 996 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

W0551011 [Message] Use PM instruction.

[Explanation] A privileged instruction is used.

W0551012 [Message] Use FPU instruction.

[Explanation] A floating-point operation instruction is used.

W0551013 [Message] Use DSP instruction.

[Explanation] A DSP function instruction is used.

W0551014 [Message] Too many actual macro parameters.

[Explanation] There are too many actual macro parameters. Extra macro parameters will be
ignored.

W0551015 [Message] Actual macro parameters are not enough.

[Explanation] The number of actual macro parameters is smaller than that of formal macro
parameters. The formal macro parameters that do not have corresponding actual
macro parameters are ignored.

W0551016 [Message] '.END' statement is in include file.

[Explanation] The include file contains an .END statement. The software will ignore .END as it
executes.

[Action by User] .END cannot be written in include files. Delete this statement.

W0551017 [Message] Use of <instruction type> instruction found.

[Explanation] An instruction indicated by <instruction type> is used.

W0561000 [Message] Option "option" ignored

[Explanation] The option named option is invalid, and is ignored.

W0561001 [Message] Option "option1" is ineffective without option "option2"

[Explanation] option 1 needs specifying option 2. option 1 is ignored.

W0561002 [Message] Option "option1" cannot be combined with option "option2"

[Explanation] option 1 and option 2 cannot be specified simultaneously. option 1 is ignored.

W0561003 [Message] Divided output file cannot be combined with option "option"

[Explanation] option and the option to divide the output file cannot be specified simultaneously.
option is ignored. The first input file name is used as the output file name.

W0561004 [Message] Fatal level message cannot be changed to other level : "option"

[Explanation] The level of a fatal error type message cannot be changed. The specification of
option is ignored. Only errors at the information/warning/error level can be changed
with the change_message option.

W0561005 [Message] Subcommand file terminated with end option instead of exit option

[Explanation] There is no processing specification following the end option. Processing is done
with the exit option assumed.

W0561006 [Message] Options following exit option ignored

[Explanation] All options following the exit option is ignored.

W0561007 [Message] Duplicate option : "option"

[Explanation] Duplicate specifications of option were found. Only the last specification is effec-
tive.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 997 of 1053
Nov 01, 2020

W0561010 [Message] Duplicate file specified in option "option" : "file name"

[Explanation] option was used to specify the same file twice. The second specification is ignored.

W0561011 [Message] Duplicate module specified in option "option" : "module"

[Explanation] option was used to specify the same module twice. The second specification is
ignored.

W0561012 [Message] Duplicate symbol/section specified in option "option" : "name"

[Explanation] option was used to specify the same symbol name or section name twice. The sec-
ond specification is ignored.

W0561013 [Message] Duplicate number specified in option "option" : "number"

[Explanation] option was used to specify the same error number. Only the last specification is
effective.

W0561014 [Message] License manager is not installed

W0561016 [Message] The evaluation version is valid for the remaining number days

[Explanation] The remaining number of days in the evaluation period for operation of a free eval-
uation edition without limitations on size is indicated.

W0561017 [Message] The evaluation period has expired

[Explanation] The evaluation period has finished. The product is currently operating as a free
evaluation edition with limitations on size.

W0561100 [Message] Cannot find "name" specified in option "option"

[Explanation] The symbol name or section name specified in option cannot be found. name
specification is ignored.

 W0561101 [Message] "name" in rename option conflicts between symbol and section

[Explanation] name specified by the rename option exists as both a section name and as a sym-
bol name.
Rename is performed for the symbol name only in this case.

W0561102 [Message] Symbol "symbol" redefined in option "option"

[Explanation] The symbol specified by option has already been defined. Processing is continued
without any change.

W0561103 [Message] Invalid address value specified in option "option" : "address"

[Explanation] address specified by option is invalid. address specification is ignored.

W0561104 [Message] Invalid section specified in option "option" : "section"

[Explanation] An invalid section is specified in option.

[Action by User] Confirm the following:

(1) The "-output" option does not accept specification of a section that has no
initial value.

(2) The "-jump_entries_for_pic" option accepts specification of only a code
section and no other sections.

W0561110 [Message] Entry symbol "sybol" in entry option conflicts

[Explanation] A symbol other than symbol specified by the entry option is specified as the entry
symbol on compiling or assembling. The option specification is given priority.

R20UT3248EJ0110 Rev.1.10 Page 998 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

W0561120 [Message] Section address is not assigned to "section"

[Explanation] section has no addresses specified for it. section will be located at the rearmost
address.

[Action by User] Specify the address of the section using the rlink option "-start".

W0561121 [Message] Address cannot be assigned to absolute section "section" in start option

[Explanation] section is an absolute address section. An address assigned to an absolute
address section is ignored.

W0561122 [Message] Section address in start option is incompatible with alignment : "section"

[Explanation] The address of section specified by the start option conflicts with memory bound-
ary alignment requirements. The section address is modified to conform to bound-
ary alignment.

W0561130 [Message] Section attribute mismatch in rom option : "section1","section2"

[Explanation] The attributes and boundary alignment of section 1 and section 2 specified by the
rom option are different. The larger value is effective as the boundary alignment of
section 2.

W0561140 [Message] Load address overflowed out of record-type in option "option"

[Explanation] A record type smaller than the address value was specified. The range exceeding
the specified record type has been output as different record type.

W0561141 [Message] Cannot fill unused area from "address" with the specified value

[Explanation] Specified data cannot be output to addresses higher than address because the
unused area size is not a multiple of the value specified by the space option.

W0561142 [Message] Cannot find symbol which is a pair of "symbol"

[Explanation] A "symbol" generated by the -create_unfilled_area option is not part of a pair.

W0561143 [Message] Address range "start address-end address" cannot be placed in flash memory
area.

[Explanation] The range of "start address-end address" is not in the flash memory area. There-
fore, there is data that cannot be written by a flash programmer.

W0561150 [Message] Sections in "option" option have no symbol

[Explanation] The section specified in option does not have an externally defined symbol.

W0561160 [Message] Undefined external symbol "symbol"

[Explanation] An undefined external symbol symbol was referenced.

W0561181 [Message] Fail to write "type of output code"

[Explanation] Failed to write type of output code to the output file.
The output file may not contain the address to which type of output code should be
output.
Type of output code:
When failed to write CRC code : "CRC Code"

W0561182 [Message] Cannot generate vector table section "section"

[Explanation] The input file contains vector table section. The linker does not create section auto-
matically.

W0561183 [Message] Interrupt number "vector number" of "section" is defined in input file

[Explanation] The vector number specified by the VECTN option is defined in the input file.
Processing is continued with priority given on the definition in the input file.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 999 of 1053
Nov 01, 2020

W0561184 [Message] Interrupt number "vector number" of "section" is defined

W0561190 [Message] Section "section" was moved other area specified in option "cpu=<attribute>"

[Explanation] The object size was modified through optimization of access to external variables.
Accordingly, section in the area specified by the next cpu specification was moved.

W0561191 [Message] Area of "FIX" is within the range of the area specified by "cpu=<attribute>"
:"<start>-<end>"

[Explanation] In the cpu option, the address range of <start>-<end> specified for FIX overlapped
with that specified for another memory type. The setting for FIX is valid.

W0561192 [Message] Bss Section "section name" is not initialized

[Explanation] section name, which is a data section without an initial value, cannot be initialized
by the initial setup program.

[Action by User] Check the address range specified with -cpu and the sizes of pointer variables.

W0561193 [Message] Section "section name" specified in option "option" is ignored

[Explanation] option specified for the section newly created due to -cpu=stride is invalid.

[Action by User] Do not specify option for the newly created section.

W0561194 [Message] Section "section" in relocation "file"-"section"-"offset" is changed.

[Explanation] The relocation section file offset now refers to a location in the new section created
with the division of section.

[Action by User] To prevent division, declare the contiguous_section option for section.

W0561200 [Message] Backed up file "file1" into "file2"

[Explanation] Input file file 1 was overwritten. A backup copy of the data in the previous version of
file 1 was saved in file 2.

W0561300 [Message] Option "option" is ineffective without debug information

[Explanation] There is no debugging information in the input files. The "option" has been ignored.

[Action by User] Check whether the relevant option was specified at compilation or assembly.

W0561301 [Message] No inter-module optimization information in input files

[Explanation] No inter-module optimization information is present in the input files. The optimize
option has been ignored.

[Action by User] Check whether the goptimize option was specified at compilation or assembly.

W0561302 [Message] No stack information in input files

[Explanation] No stack information is present in the input files. The stack option is ignored. If all
input files are assembler output files, the stack option is ignored.

W0561305 [Message] Entry address in "file" conflicts : "address"

[Explanation] Multiple files with different entry addresses are input.

W0561310 [Message] "section" in "file" is not supported in this tool

[Explanation] An unsupported section was present in file. section has been ignored.

W0561311 [Message] Invalid debug information format in "file"

[Explanation] Debugging information in file is not dwarf2. The debugging information has been
deleted.

R20UT3248EJ0110 Rev.1.10 Page 1000 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

W0561320 [Message] Duplicate symbol "symbol" in "file"

[Explanation] The symbol named symbol is duplicated. The symbol in the first file input is given
priority.

W0561321 [Message] Entry symbol "symbol" in "file" conflicts

[Explanation] Multiple object files containing more than one entry symbol definition were input.
Only the entry symbol in the first file input is effective.

W0561322 [Message] Section alignment mismatch : "section"

[Explanation] Sections with the same name but different boundary alignments were input. Only
the largest boundary alignment specification is effective.

W0561323 [Message] Section attribute mismatch : "section"

[Explanation] Sections with the same name but different attributes were input. If they are an
absolute section and relative section, the section is treated as an absolute section.
If the read/write attributes mismatch, both are allowed.

W0561324 [Message] Symbol size mismatch : "symbol" in "file"

[Explanation] Common symbols or defined symbols with different sizes were input. A defined
symbol is given priority. In the case of two common symbols, the symbol in the first
file input is given priority.

W0561325 [Message] Symbol attribute mismatch : "symbol" : "file"

[Explanation] The attribute of symbol in file does not match the attribute of the same-name sym-
bol in other files.

[Action by User] Check the symbol.

W0561326 [Message] Reserved symbol "symbol" is defined in "file"

[Explanation] Reserved symbol name symbol is defined in file.

W0561327 [Message] Section alignment in option "aligned_section" is small : "section"

[Explanation] Since the boundary alignment value specified for aligned_section is 16 which is
smaller than that of section, the option settings made for that section are ignored.

W0561331 [Message] Section alignment is not adjusted : "section"

[Explanation] Sections with the same name but different boundary alignment values were input.
Only the largest boundary alignment specification is effective. The alignment condi-
tion at input may not be satisfied.

W0561402 [Message] Parentheses specified in option "start" with optimization

[Explanation] Optimization is not available when parentheses "()" are specified in the start
option. Optimization has been disabled.

W0561410 [Message] Cannot optimize "file"-"section" due to multi label relocation operation

[Explanation] A section having multiple label relocation operations cannot be optimized. Section
section in file has not been optimized.

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 1001 of 1053
Nov 01, 2020

W0561430 [Message] Cannot generate effective bls file for compiler optimization

[Explanation] An invalid bls file was created. This optimization is not available even if optimiza-
tion of access to external variables (map option) is specified for compilation.

[Action by User] The optimization of access to external variables (map option) in the compiler has
the following restriction. Check if this restriction is applicable and modify the sec-
tion allocation.
Access to external variables cannot be optimized in some cases if a data section is
allocated immediately after a data section when the base option is specified for
compilation.
Note: The bls file indicates the external symbol allocation information file. It con-
tains the information to be used for the map option of the compiler.

W0561510 [Message] Input file was compiled with option "smap" and option "map" is specified at linkage

[Explanation] A file was compiled with smap specification.

[Action by User] The file with smap specification should not be compiled with the map option speci-
fication in the second build processing.

W0571600 [Message] An error occurred during name decoding of "instance"

[Explanation] "instance" was not decoded. The message is output using the encoding name.

W0578306 [Message] can not open file file

W0578307 [Message] can not close file file

W0578308 [Message] can not read file file

W0578309 [Message] can not write file file

W0578310 [Message] can not seek file file

W0578311 [Message] can not find file file

W0578315 [Message] can not find member member

[Explanation] Can not find member member in the library file.

W0578322 [Message] this symbol offset not true

[Explanation] This symbol offset not true in the library file.

R20UT3248EJ0110 Rev.1.10 Page 1002 of 1053
Nov 01, 2020

CC-RX 10. MESSAGES

10.5.6 Standard Library Error Messages

For some library functions, if an error occurs during the library function execution, an error code is set in the macro
errno defined in the header file <errno.h> contained in the standard library.

Error messages are defined in the error codes so that error messages can be output. The following shows an example
of an error message output program.

Example

Description:

(1) Since the file pointer of NULL is passed to the fclose function as an argument, an error will occur. In this case, an
error code corresponding to errno is set.

(2) The strerror function returns a pointer of the string literal of the corresponding error message when the error code
is passed as an argument. An error message is output by specifying the output of the string literal of the printf
function.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
main()
{
 FILE *fp;

 fp=fopen("file", "w");
 fp=NULL;

 fclose(fp); /* error occurred */

 printf("%s\n", strerror(errno)); /* print error message */
}

CC-RX 10. MESSAGES

R20UT3248EJ0110 Rev.1.10 Page 1003 of 1053
Nov 01, 2020

List of Standard Library Error Messages

Error No. Error Message/Explanation Functions to Set Error Code

0x22
(ERANGE)

Data out of range
An overflow occurred.

frexp, ldexp, modf, ceil, floor, fmod, atof, atoi,
atol, atoll, atolfixed, atolaccum, strtod, strtol,
strtoul, strtoll, strtoull, strtolfixed, strtolaccum,
perror, fprintf, fscanf, printf, scanf, sprintf,
sscanf, vfprintf, vprintf, vsprintf, acos, acosf,
asin, asinf, atan, atan2, atan2f, atanf, ceilf, cos,
cosf, cosh, coshf, exp, expf, floorf, fmodf,
ldexpf, log,log10, log10f, logf, modff, pow, powf,
sin, sinf, sinh, sinhf, sqrt, sqrtf, tan, tanf, tanh,
tanhf, fabs, fabsf, frexpf

0x21
(EDOM)

Data out of domain
Results for mathematical parameters are not
defined.

acos, acosf, asin, asinf, atan, atan2, atan2f,
atanf, ceil, ceilf, cos, cosf, cosh, coshf, exp,
expf, floor, floorf, fmod, fmodf, ldexp, ldexpf,
log, log10, log10f, logf, modf, modff, pow, powf,
sin, sinf, sinh, sinhf, sqrt, sqrtf, tan, tanf, tanh,
tanhf, fabs, fabsf, frexp, frexpf

0x450
(ESTRN)

Too long string
The length of string literal exceeds 512 charac-
ters.

atof, atoi, atol, atoll, atolfixed, atolaccum, strtod,
strtol, strtoul, strtoll, strtoull, strtolfixed,
strtolaccum

0x04B0
(ECBASE)

Invalid radix
An invalid radix was specified.

strtol, strtoul, strtoll, strtoull

0x04B2
(ETLN)

Number too long
The specified number exceeds the number of
significant digits.

atof, atolfixed, atolaccum, strtod, strtolfixed,
strtolaccum, fscanf, scanf, sscanf

0x04B4
(EEXP)

Exponent too large
The specified exponent exceeds three digits.

atof, strtod, fscanf, scanf, sscanf

0x04B6
(EEXPN)

Normalized exponent too large
The exponent exceeds three digits when the
string literal is normalized to the IEEE standard
decimal format.

atof, strtod, fscanf, scanf, sscanf

0x04BA
(EFLOATO)

Overflow out of float
A float-type decimal value is out of range (over-
flow).

fscanf, scanf, sscanf

0x04C4
(EFLOATU)

Underflow out of float
A float-type decimal value is out of range (under-
flow).

fscanf, scanf, sscanf

0x04E2
(EDBLO)

Overflow out of double
A double-type decimal value is out of range
(overflow).

fscanf, scanf, sscanf

0x04EC
(EDBLU)

Underflow out of double
A double-type decimal value is out of range
(underflow).

fscanf, scanf, sscanf

0x04F6
(ELDBLO)

Overflow out of long double
A long double-type decimal value is out of range
(overflow).

fscanf, scanf, sscanf

0x0500
(ELDBLU)

Underflow out of long double
A long double-type decimal value is out of range
(underflow).

fscanf, scanf, sscanf

R20UT3248EJ0110 Rev.1.10 Page 1004 of 1053
Nov 01, 2020

CC-RX 11.　Usage Notes

11. Usage Notes

This chapter describes the points to be noted when using the CCRX.

11.1 Notes on Program Coding

(1) Functions with Prototype Declarations
When a function is called, the prototype of the called function must be declared. If a function is called without a
prototype declaration, parameters may not be received and passed correctly.

Examples 1. The function has the float type parameter (when dbl_size=8 is specified).

Examples 2. The function has signed char, (unsigned) char, (signed) short, and unsigned short type param-
eters passed by stack.

(2) Function Declaration Containing Parameters without Type Information
When more than one function declaration (including function definition) is made for the same function, do not use
both a format in which parameters and types are not specified together and a format in which parameters and
types are specified together.
If both formats are used, the generated code may not process types correctly because there is a difference in how
the parameters are interpreted in the caller and callee.
When the error message C5147 is displayed at compilation, this problem may have caused it. In such a case,
either use only a format in which parameters and types are specified together or check the generated code to
ensure that there is no problem in parameter passing.

Example Since old_style is written in different formats, the meaning of the types of parameters d and e are
different in the caller and callee. Thus, parameters are not passed correctly.

void g()
{
 float a;
 ...
 f(a); //Converts a to double type
}
void f(float x)
{...}

void h();
void g()
{
 char a,b;
 ...
 h(1,2,3,4,a,b); // Converts a and b to int type
}
void h(int a1, int a2, int a3, int a4, char a5, char a6)
{...}

CC-RX 11.　Usage Notes

R20UT3248EJ0110 Rev.1.10 Page 1005 of 1053
Nov 01, 2020

(3) Expressions whose Evaluation Order is not Specified by the C/C++ Language
When using an expression whose evaluation order is not specified in the C/C++ language specifications, the oper-
ation is not guaranteed in a program code whose execution results differ depending on the evaluation order.

Example

(4) Overflow Operation and Zero Division
Even if an overflow operation or floating-point zero division is performed, error messages will not be output. How-
ever, if an overflow operation is included in the operations of a single constant or between constants, error mes-
sages will be output at compilation.

Example

(5) Writing to const Variables

extern int old_style(int,int,int,short,short);
 /* Function declaration: Format in which parameters and types are specified
 together */
int old_style(a,b,c,d,e)
 /* Function definition: Format in which parameters and types are not
 specified togheer */
int a,b,c;
 short d,e;
{
 return a + b + c + d + e;
}
int result;
func()
{
 result = old_style(1,2,3,4,5);
}

a[i]=a[++i]; // The value on the left side differs depending on whether
 // the right side of the assignment expression is evaluated first.
sub(++i, i) ; // The value of the second parameter differs depending on whether
 // the first parameter in the function is evaluated first.

void main()
{
 int ia;
 int ib;
 float fa;
 float fb;

 ib=32767;
 fb=3.4e+38f;

 /* Compilation error messages are output when an overflow operation */
 /* is included in operations of a constant or between constants */

 ia=99999999999; /* (W) Detects overflow in constant operation */
 fa=3.5e+40f; /* (E) Detects overflow in floating-point operation */

 /* No error message is output for overflow at execution */

 ib=ib+32767; /* Ignores overflow in operation result */
 fb=fb+3.4e+38f; /* Ignores overflow in floating-point operation result */
}

R20UT3248EJ0110 Rev.1.10 Page 1006 of 1053
Nov 01, 2020

CC-RX 11.　Usage Notes

Even if a variable is declared with const type, if assignment is done to a non-const type variable converted from
const type or if a program compiled separately uses a parameter of a different type, the compiler cannot check
the writing to a const type variable. Therefore, precautions must be taken.

Example

(6) Precision of Mathematical Function Libraries
For functions acos(x) and asin(x), an error is large around x=1. Therefore, precautions must be taken. The error
range is as follows:
Absolute error for acos(1.0) double precision 2-39 (= 2-33)
 single precision 2-21 (= 2-19)
Absolute error for asin(1.0) double precision 2-39 (= 2-28)
 single precision 2-21 (= 2-16)

(7) Codes that May be Deleted by Optimization
A code continuously referencing the same variable or a code containing an expression whose result is not used
may be deleted as redundant codes at optimization by the compiler. Variables should be declared with volatile in
order for accesses to always be guaranteed.

Example

(8) Differences between C89 Operation and C99 Operation
In the C99, selection statements and repeat statements are enclosed in curly brackets { }. This causes operations
to differ in the C89 and C99.

Example

If the above code is compiled with -lang=c99 specified, it is interpreted as follows:

<Example>
const char *p; /* Because the first parameter in library */
: /* function strcat is a pointer to char, the */
strcat(p, "abc"); /* area indicated by the parameter may change */

 file 1
const int i;

 file 2
extern int i; /* In file 2, variable i is not declared as */
: /* const, therefore writing to it in file 2 */
i=10; /* is not an error */

[1] b=a; /* The expression in the first line may be deleted */
 /* as redundant code */
 b=a;
[2] while(1)a; /* The reference to variable a and the loop */
 /* statement may be deleted as redundant code */

<Example>
enum {a,b};
int g(void)
{
 if(!sizeof(enum{b,a}))
 return a;
 return b;
}

CC-RX 11.　Usage Notes

R20UT3248EJ0110 Rev.1.10 Page 1007 of 1053
Nov 01, 2020

g()=0 in -lang=c becomes g()=1 in -lang=c99.

(9) Operations and Type Conversions That Lead to Overflows
The result of any operation or type conversion must be within the allowed range of values for the given type (i.e.
values must not overflow). If an overflow does occur, the result of the operation or type conversion may be
affected by other conditions such as compiler options.
In the standard C language, the result of an operation that leads to an overflow is undefined and thus may differ
according to the current conditions of compilation. Ensure that no operations in a program will lead to an overflow.
The following example illustrates this problem.

Example Type conversion from float to unsigned short

The value of ui2, which is acquired as the result of executing ex1func, depends on whether –fpu or –nofpu has
been specified.
-fpu (with the FPU): ui2 = 65535
-nofpu (without the FPU): ui2 = 0
This is because the method of type conversion from float to unsigned short differs according to whether –fpu or
–nofpu has been specified.

(10) Symbols That Contain Two or More Underscores (__)
Symbols must not contain sequences of two or more underscores. Even though the code generated in such cases
seems normal, the symbol names may be mistaken as different C++ function names when they are output as link-
age-map information.

Example

This will be output to the linkage map as sample(char) rather than _sample__Fc.

enum {a,b};
int g(void)
{
 {
 if(!sizeof(enum{b,a}))
 return a;
 }
 return b;
}

float f = 2147483648.0f;
unsigned short ui2;
void ex1func(void)
{
 ui2 = f; /* Type conversion from float to unsigned short */
}

int sample__Fc(void) { return 0; }

R20UT3248EJ0110 Rev.1.10 Page 1008 of 1053
Nov 01, 2020

CC-RX 11.　Usage Notes

11.2 Notes on Compiling a C Program with the C++ Compiler

(1) Functions with Prototype Declarations
Before using a function, a prototype declaration is necessary. At this time, the types of the parameters should also
be declared.

(2) Linkage of const Objects
Whereas in C programs const type objects are linked externally, in C++ programs they are linked internally. In
addition, const type objects require initial values.

(3) Assignment of void*
In C++ programs, if explicit casting is not used, assignment of pointers to other objects (excluding pointers to func-
tions and to members) is not possible.

11.3 Notes on Options

(1) Options Requiring the Same Specifications
Options that should always be specified in the same way are shown in (a) and (b) below. If relocatable files and
library files using different options are linked, the operation of the program at runtime is not guaranteed.

(a) The five options isa, cpu, endian, base, and fint_register should be specified in the same way in the compiler,
assembler, and library generator.

(b) The options in the Microcontroller Options section of the COMMAND REFERENCE chapter, except for the
options in (a), must be specified in the same way in the compiler and library generator.

(2) When Using -reent (an Option Which Generates a Reentrant Library) of lbgrx (a Library Generator)
To enable specification of the -reent option for the lbgrx library generator in a project generated in a Renesas inte-
grated development environment, confirm if the low-level _INIT_IOLIB() function of the project contains the state-
ments for execution in relation to alignment_Files listed below.
If the function does not include these statements, add them with reference to the contents of the _INIT_IOLIB()
function in the listing of the lowsrc.c file in the of section 8.4 Coding Example.

_Files[0] = stdin;
_Files[1] = stdout;
_Files[2] = stderr;

extern void func1();
void g()
{
 func1(1); // Error
}

extern void func1(int);
void g()
{
 func1(1); // OK
}

const cvalue1; // Error

const cvalue2 = 1; // Links internally

const cvalue1 = 0; // Gives initial value

extern const cvalue2 = 1; // Links externally as a C program

void func(void *ptrv, int *ptri)
{
 ptri = ptrv; // Error
}

void func(void *ptrv, int *ptri)
{
 ptri = (int *)ptrv; // OK
}

CC-RX 11.　Usage Notes

R20UT3248EJ0110 Rev.1.10 Page 1009 of 1053
Nov 01, 2020

11.4 Preventing E0562330 Errors in Cases Where Optimization by the Optimizing Linkage
Editor is Enabled

The optimizing linkage editor is used for optimization, which involves replacing existing code with code that takes up
less space in relation to the address where each symbol referred to by the original instruction is located. To reduce the
size of the code as much as possible, the linkage editor will attempt to replace numerous instructions.

Replacing instructions may, however, change the addresses where individual symbols are located and thus prevent ref-
erence to symbols by the optimized code. In such cases, the optimizing linkage editor reports an E0562330 error and
stops operations so that code having this problem will not be output.

Due to the characteristics of the RX architecture, this error may arise when any symbol (e.g. a variable, constant, or
switch table) located at FFFF8000h or a higher address prior to optimization is allocated to an address below FFFF8000h
after optimization.

(1) Outline
Examples of conditions leading to E0562330 errors are given below.

In a program where the reading of constants CONST1 and CONST2 is intended, section P is followed by section
C, which is allocated to address FFFF8000h prior to optimization.

Examples 1.
Section P

 ; 6-byte instruction MOV.L #_CONST1:32, R1
 MOV.L #0FFFF8002H, R1

 ; 6-byte instruction MOV.L #_CONST2:32, R2
 MOV.L #0FFFF8006H, R2

Section C
 _CONST0: ; Allocated to address FFFF8000h
 .byte 00H,01H
 _CONST1: ; Allocated to address FFFF8002h
 .byte "123"
 .byte 00H
 _CONST2: ; Allocated to address FFFF8006h
 .byte "abc"
 .byte 00H

Since optimization changes the address of section C from FFFF8000H (a 32-bit immediate value) to -8000H (a
signed 16-bit immediate value), the 32-bit immediate-value transfer MOV.L instruction will be replaced by a 16-
bit immediate-value transfer instruction.
This reduces the size of section P and leads to its allocation to a lower address than section C.

Examples 2.
Section P

 ; 4-byte instruction MOV.L #_CONST1:16, R1
 MOV.L #-8002H, R1 ; Exceeds the range of signed 16-bit values

 ; 4-byte instruction MOV.L #_CONST2:16, R2
 MOV.L #-7FFEH, R2

Section C
 _CONST0: ; Allocated to address FFFF7FFCh
 .byte 00H,01H
 _CONST1: ; Allocated to address FFFF7FFEh
 .byte "123"
 .byte 00H
 _CONST2: ; Allocated to address FFFF8002h
 .byte "abc"
 .byte 00H

R20UT3248EJ0110 Rev.1.10 Page 1010 of 1053
Nov 01, 2020

CC-RX 11.　Usage Notes

Due to optimization of multiple MOV.L instructions, constant CONST1 is allocated to an address beyond the range
of signed 16-bit values, leading to an E0562330 error as shown below.

Examples 3.
 E0562330:Relocation size overflow : "fileA.obj"-"P"-"0000002"

(2) How to identify the cause
You can identify the cause of the error in the following way.
First, specify the optimizing linkage editor options nooptimize and list and build the user program to generate a
link map file. Since the information on the allocation of sections begins from the line "*** Mapping List ***" in the
link map file, check sections allocated to FFFF8000h and higher addresses.

Examples 4.
 *** Mapping List ***
 C
 ffff7ffc ffff8005 a 1

After that, specify the assembler option listfile and build the user program to generate a source listing file. Find
the section (P in example 3) in the source listing file for the object file ("fileA.obj" in example 3) indicated by the
error message.
The offset value indicated by the error message is the value after optimization.
In the source listing file, locate the instructions that are at or above the offset address (0000002 in example 3) and
references to any symbols within sections allocated to the address FFFF8000h or a higher address.
In example 5, you can see that the MOV.L instruction that attempts access to constant CONST1 in section C at an
address above FFFF8000h is the reason for the error.

Examples 5.
 .section P, CODE
 00000000 FB1Arrrr MOV.L #_CONST1:16, R1 <- Access to section C
 00000004 FB2Arrrr MOV.L #_CONST2:16, R2

 .section C, ROMDATA
 00000000 _CONST0:
 00000000 0001 .byte 00H,01H
 00000002 _CONST1:
 00000002 313233 .byte "123"
 00000005 00 .byte 00H
 00000006 _CONST2:
 00000006 616263 .byte "abc"
 00000009 00 .byte 00H

(3) Countermeasures
Select one of the following countermeasures.

- Countermeasure 1: Change the order of sections
If the first address of a section allocated to address FFFF8000h or above before optimization is shifted to an
address below FFFF8000h after optimization, use the start option to change the place of that section in the
order of sections.

Example
Before:

 -start=P,C,L,D/FFFF7000
After (switching sections C and L):

 -start=P,L,C,D/FFFF7000

If an E0562330 error is still output even after the order of sections is switched, change the order again until the
error is no longer output.

CC-RX 11.　Usage Notes

R20UT3248EJ0110 Rev.1.10 Page 1011 of 1053
Nov 01, 2020

- Countermeasure 2: Allocate the section to address FFFF8000h
If the first address of a section allocated to address FFFF8000h or above before optimization is shifted to an
address below FFFF8000h after optimization, use the start option to allocate that section to address
FFFF8000h.

Example
Before:

 -start=P,C,L,D/FFFF7000
After:

 -start=P/FFFF7000,C,L,D/FFFF8000

- Countermeasure 3: Disable optimization by the optimizing linkage editor
Use the -nooptimize option to completely disable optimization or select the desired sub-options for the -opti-
mize option to prevent the output of the E0562330 error while watching the reduction of the size of code by opti-
mization.

11.5 Compatibility with an Older Version or Older Revision

The effect of the compatibility regarding a version change or revision change is described here.

11.5.1 V.1.01 and Later Versions (Compatibility with V.1.00)

(1) Changing Specifications of Intrinsic Functions
For intrinsic functions having parameters or return values that indicate addresses, their type is changed from the
conventional unsigned long to void *. The changed functions are shown in Table 11.1.

Table 11.1 List of Intrinsic Functions Whose Type is Changed

Due to this change, a program using the above functions in V.1.00 may generate a warning or an error about
invalid types. In this case, add or delete the cast to correct the types.
An example of a startup program normally used in V.1.00 is shown below. This example will output warning mes-
sage W0520167 in V.1.01, but this warning can be avoided by deleting the cast to correct the type.

Example
[Usage example of set_intb function]

No. Item Specification Function Changed Contents

Item Details

1 User stack
pointer
(USP)

void set_usp(void *data) USP setting Parameter unsigned long void *

2 void *get_usp(void) USP reference Return value unsigned long void *

3 Interrupt
stack pointer
(ISP)

void set_isp(void *data) ISP setting Parameter unsigned long void *

4 void *get_isp(void) ISP reference Return value unsigned long void *

5 Interrupt
table regis-
ter (INTB)

void set_intb (void *data) INTB setting Parameter unsigned long void *

6 void *get_intb(void) INTB reference Return value unsigned long void *

7 Backup PC
(BPC)

void set_bpc(void *data) BPC setting Parameter unsigned long void *

8 void *get_bpc(void) BPC reference Return value unsigned long void *

9 Fast inter-
rupt vector
register
(FINTV)

void set_fintv(void *data) FINTV setting Parameter unsigned long void *

10 void *get_fintv(void) FINTV reference Return value unsigned long void *

R20UT3248EJ0110 Rev.1.10 Page 1012 of 1053
Nov 01, 2020

CC-RX 11.　Usage Notes

[Example of code changed to match V.1.01]

(2) Adding Section L (section Option and Start Option)
V.1.01 is provided with section L which is used for storing literal areas, such as, string literal.
Since the number of sections has increased and section L is located at the end at linkage, the optimizing linkage
editor may output address error F0563100 in some cases.
To avoid such an error, adopt either one of the following methods.

(a) Add L to the section sequence specified with the Start option of the optimizing linkage editor at linkage.

Example
[Example of specification in V.1.00]

[Changed example (L is added after C)]

(b) Select -section=L=C at compilation.
By specifying -section=L=C at compilation, the output destination of the literal area is changed to section C,
and a section configuration compatible with V.1.00 can be achieved.
Note that this method may affect code efficiency compared to the above method of changing the Start option at
linkage.

11.5.2 V.2.00 and Later Versions (Compatibility with Versions between 1.00 and 1.02)

(1) Restriction That Applies to Operation of the Linkage Editor When the -merge_files Option of the Compiler Has
been Used
When an object module file created by the compiler with the -merge_files option specified is to be linked, correct
operation is not guaranteed if the -delete, -rename, or -replace option is specified.

(2) Note on Generation of Code That Corresponds to if Statements When optimize=0
In this version of this compiler, if statements where the conditional expression has a constant value and state-
ments that will accordingly never be executed are not reflected in the output code whether or not optimize=0 is
specified.
In the examples below, lines marked [Deleted] are not reflected at the time of code generation.

Examples 1. Expression that produces a constant value

#include <machine.h>
#pragma entry Reset_Program
void PowerON_Reset_PC(void)
{
 ...
 set_intb((unsigned long)__sectop("C$VECT")); //Warning W0520167 is output
 ...
}

#include <machine.h>
#pragma entry Reset_Program
void PowerON_Reset_PC(void)
{
 ...
 set_intb(__sectop("C$VECT")); //Cast (unsigned long) is deleted
 ...
}

-start=B_1,R_1,B_2,R_2,B,R,SU,SI/01000,PResetPRG/0FFFF8000,C_1,C_2,C,C$*,D*,P,
PIntPRG,W*/0FFFF8100,FIXEDVECT/0FFFFFFD0

-start=B_1,R_1,B_2,R_2,B,R,SU,SI/01000,PResetPRG/0FFFF8000,C_1,C_2,C,L,C$*,D*,
P,PIntPRG,W*/0FFFF8100,FIXEDVECT/0FFFFFFD0

CC-RX 11.　Usage Notes

R20UT3248EJ0110 Rev.1.10 Page 1013 of 1053
Nov 01, 2020

Examples 2. Constant expressions that include symbolic addresses are also treated as constant expressions.

(3) Differences in Assembly Source Code Output by -show=source
There are the following differences in the assembly source code to be output by this version of this compiler when
-show=source is specified.

- .LINE is not displayed unless -debug has been specified.

- #include statements are not expanded.

- The instruction that corresponds to source code that follows #line may be incorrect.

11.5.3 V.2.03 and Later Versions (Compatibility with Versions between 1.00 and 2.02)

(1) Const-type Static Variables without Initial Values
In versions before 2.02, const-type static variables with initial values were output first, but from this revision, const-
type static variables are aligned in the data area in order of their definition regardless of the existence of initial val-
ues.

Example

[Result of compilation for versions before 2.02.00]

int a,b,c;
void func01(void)
{
 if (1+2) { /* [Deleted] */
 /* Executed */
 a = b;
 } else {
 /* Never executed */
 a++; /* [Deleted] */
 b = c; /* [Deleted] */
 }
}

void f1(void),f2(void);
void func02(void)
{
 if (f1==0) { /* [Deleted] */
 /* Never executed */
 f2(); /* [Deleted] */
 } else {
 /* Executed */
 f1();
 }
}

const int a=1;
const int b;
const int c=2;

 .SECTION C,ROMDATA,ALIGN=4
_a:
 .lword 00000001H
_c:
 .lword 00000002H ; The variables with initial values are output first.
_b:
 .lword 00000000H

R20UT3248EJ0110 Rev.1.10 Page 1014 of 1053
Nov 01, 2020

CC-RX 11.　Usage Notes

[Result of compilation for versions after 2.03.00]

11.5.4 V2.06 and Later Versions (Compatibility with V2.05 and earlier)

(1) Introducing the Method for Controlling the Output of Bit Manipulation Instructions
In V2.05 and earlier versions of the compiler, there was no method for the user to always output bit manipulation
instructions.
In V2.06, the compiler is modified to allow the user to control whether to output bit manipulation instructions
instead of using intrinsic functions.

To output bit manipulation instructions without using intrinsic functions, create a source program so that all condi-
tions shown below are satisfied.

(a) A constant value is assigned.
(b) The value is assigned to a single-bit bit field of a 1-byte type.
(c) The bit field where the value is assigned is qualified with volatile.

To stop the output of bit manipulation instructions, satisfy condition (c) above and either assign a value that is not
a constant in condition (a) or use a type that is not a 1-byte type in condition (b).

Otherwise, the compiler automatically determines whether to output bit manipulation instructions according to the
specified optimization level and the contents of the source program.

Note 1-byte types are char, unsigned char, signed char, _Bool, and bool. _Bool and bool are
excluded when -lang=c is specified.

Example

To always output bit manipulation instructions in V2.05, use intrinsic functions __bclr(), __bset(), and __bnot().
When the intrinsic functions are not used, the compiler automatically determines whether to output bit manipula-
tion instructions according to the specified optimization level and the contents of the source program.
The V2.04 and earlier versions of the compiler do not support these intrinsic functions. To check whether bit
manipulation instructions are output, refer to the assembly source code output by the compiler.

11.5.5 Version of Compiler Package

When using an optimizing linker, use one provided with the same compiler package used to generate all object files,
relocatable files, and library files that are to be input. An optimizing linker provided with a newer compiler package can also
be used.

When using standard library functions, use those provided with the same compiler package as the optimizing linker in
use.

 .SECTION C,ROMDATA,ALIGN=4
_a:
 .lword 00000001H
_b:
 .lword 00000000H ; The variables are output in order of their definition
 ; regardless of the existence of initial values.
_c:
 .lword 00000002H

volatile struct {
 unsigned char bit0:1;
 unsigned int bit1:1;
} data;

void func(void) {
 data.bit0 = 1; /* A bit manipulation instruction is output. */
 data.bit1 = 1; /* No bit manipulation instruction is output. */
}

CC-RX 11.　Usage Notes

R20UT3248EJ0110 Rev.1.10 Page 1015 of 1053
Nov 01, 2020

11.6 W0523041 message [C/C++ compiler]

When the -int_to_short option is specified and a file including a C standard header is compiled as C++ or EC++, the
compiler may show the W0523041 message. In this case, simply ignore the message because there are no problems.

[NOTE]
In compilation of C++ or EC++, the -int_to_short option will be invalid.
Data that are shared between C and C++ (EC++) program must be declared as the long or short type rather than as the

int type.

11.7 Using MVTC or POPC instructions [Assembler]

In the assembly language, the program counter (PC) cannot be specified for MVTC or POPC instructions.

11.8 Using the -delete option for linkage [Optimizing linkage editor]

When a function symbol is removed by the -delete option, its following function in the source program is not allowed to
have a breakpoint at its function name on the editor while debugging. If you intend to set a breakpoint via the [Label]
window at the function entrance, set the breakpoint via the [Label] window or at the program code of the function.

11.9 Path names

Absolute paths that include drive letters or relative paths can be used as the path names for specifying input/output files
or folders. Each path name should consist of no more than 259 characters.

R20UT3248EJ0110 Rev.1.10 Page 1016 of 1053
Nov 01, 2020

CC-RX A.　QUICK GUIDE

A. QUICK GUIDE

This chapter describes programming methods and the usage of extended functions for effective use of the RX family.

A.1 Variables (C Language)

This section describes variables (C language).

A.1.1 Changing Mapped Areas

The defaults for the mapped sections of variables are as follows:

- Variables without initial values: Sections B, B_2, and B_1

- Variables with initial values: Sections D, D_2, and D_1 (ROM) and sections R, R_2, and R_1 (RAM)

- const variables: Sections C, C_2, and C_1
For changing the area (section) to map variables, specify the section type and section name through #pragma section.

Variable declaration/definition

When a section type is specified, only section names of the specified type can be changed.
Note that in the RX family C/C++ compiler, the section to map a variable depends on the alignment value of the variable.

Example
B: Variables without initial values and an alignment value of four bytes are mapped
B_2: Variables without initial values and an alignment value of two bytes are mapped
B_1: Variables without initial values and an alignment value of one byte are mapped

For variables with initial values, the initial value is mapped to ROM and the variable itself is mapped to RAM (both ROM
and RAM areas are necessary). When the resetprg.c file of the startup routine is used, the INITSCT function copies the
initial values in ROM to the variables in RAM.

The relationship between the section type and the created section is shown in the following.

#pragma section <section type> <section name>

#pragma section

Name Section
Name

Attribute Format Type Initial Value and Write Oper-
ation

Alignment
Value

Constant area C*1*2 romdata Relative Has initial values and writing
is not possible

4 bytes

C_2*1*2 romdata Relative Has initial values and writing
is not possible

2 bytes

C_1*1*2 romdata Relative Has initial values and writing
is not possible

1 byte

Initialized data area D*1*2 romdata Relative Has initial values and writing
is possible

4 bytes

D_2*1*2 romdata Relative Has initial values and writing
is possible

2 bytes

D_1*1*2 romdata Relative Has initial values and writing
is possible

1 byte

CC-RX A.　QUICK GUIDE

R20UT3248EJ0110 Rev.1.10 Page 1017 of 1053
Nov 01, 2020

Example 1. Section names can be switched by the section option or the #pragma section extension. However, par-
tial data (e.g., string literal) is not affected by #pragma section. For details, see the detailed description
of 4.2.3 #pragma Directive - #pragma section.

Example 2. Specifying a section with an alignment value of 4 when switching the section names also changes the
section name of sections with an alignment value of 1 or 2. When #pragma endian is used to specify an
endian that differs from the setting by the endian option, a dedicated section is created and the relevant
data stored. For this section, after the section name, _B is added for #pragma endian big and _L is
added for #pragma endian little. However, partial data (e.g., string literal) is not affected by #pragma
endian. For details, see the detailed description of 4.2.3 #pragma Directive - #pragma endian.

Example 3. <section> is a C, D, or B section name, and <address> is an absolute address (hexadecimal).

Example 4. The initial value and write operation depend on the attribute of <section>.

A.1.2 Defining Variables Used at Normal Processing and Interrupt Processing

Variables used for both normal processing and interrupt processing must be volatile qualified.
When a variable is qualified with the volatile qualifier, that variable is not to be optimized and optimization, such as

assigning it to a register, is not performed. When operating a variable that has been volatile qualified, a code that reads its
value from memory and writes its value to memory after operation must be used. A variable not volatile qualified is
assigned to a register by optimization, and the code that loads that variable from memory may be deleted. When the same
value is to be assigned to a variable that is not volatile qualified, the processing may be interpreted as redundant and the
code deleted by optimization.

A.1.3 Generating a Code that Accesses Variables in the Declared Size

When accessing a variable in its declared size, the __evenaccess extended function should be used.

Uninitialized data
area

B*1*2 data Relative Does not have initial values
and writing is possible

4 bytes

B_2*1*2 data Relative Does not have initial values
and writing is possible

2 bytes

B_1*1*2 data Relative Does not have initial values
and writing is possible

1 byte

switch statement
branch table area

W*1*2 romdata Relative Has initial values and writing
is not possible

4 bytes

W_2*1*2 romdata Relative Has initial values and writing
is not possible

2 bytes

W_1*1*2 romdata Relative Has initial values and writing
is not possible

1 byte

C++ initial process-
ing/
postprocessing
data area

C$INT romdata Relative Has initial values and writing
is not possible

4 bytes

C++ virtual function
table area

C$VTBL romdata Relative Has initial values and writing
is not possible

4 bytes

Absolute address
variable area

$ADDR_
<section>_
<address>*3

data Absolute Has or does not have initial
values and writing is possi-
ble or not possible*4

Variable vector area C$VECT romdata Relative Does not have initial values
and writing is possible

Name Section
Name

Attribute Format Type Initial Value and Write Oper-
ation

Alignment
Value

R20UT3248EJ0110 Rev.1.10 Page 1018 of 1053
Nov 01, 2020

CC-RX A.　QUICK GUIDE

The __evenaccess declaration guarantees access in the size of the variable type. The guaranteed size is a scalara
type (signed char, unsigned char, signed short, unsigned short, signed int, unsigned int, signed long, or unsigned
long) of four bytes or less.

The __evenaccess is invalid to the case of accessing of members by a lump of these structure and union frame.
When a structure or union is specified, the __evenaccess declaration is effective for all members. In such a case, the

access size of a scalara type member of four bytes or less is guaranteed but the access size for the whole structure or
union is not guaranteed.

[Example]
C source code

Output code (when __evenaccess is not specified)

Output code (when __evenaccess is specified)

A.1.4 Performing const Declaration for Variables with Unchangeable Initialized Data

A variable with an initial value is normally transferred from a ROM area to a RAM area at startup, and processing is per-
formed using the RAM area. Accordingly, if the value is initialized data which is unchangeable in the program, the allo-
cated RAM area goes to waste. If the const operator is added to initialized data, transfer to the RAM area at startup is
disabled and the amount of used memory can be saved.

In addition, writing a program based on the rule of not changing the initial values also makes usage of ROM easier.
[Example before improvement]

char a[] = { 1, 2, 3, 4, 5 };
Initial values are transferred from ROM to RAM and then processing is performed.

[Example after improvement]
const char a[] = { 1, 2, 3, 4, 5 };
Processing is performed using the initial values in ROM.

A.1.5 Defining the const Constant Pointer

The pointer is interpreted differently according to where "const" is specified.
[Example 1]

const char *p;
In this example, the object (*p) indicated by the pointer cannot be changed. The pointer itself (p) can be changed.

Therefore, the result becomes as shown below and the pointer itself is mapped to RAM (section B).
p = 0; / Error */
 p = 0; /* Correct */

[Example 2]
char *const p;

#pragma address A=0xff0178
unsigned long __evenaccess A;
void test(void)
{
 A &= ~0x20;
}

_test:
 MOV.L #16712056,R1
 BCLR #5,[R1] ; 1-byte memory access
 RTS

_test:
 MOV.L #16712056,R1
 MOV.L [R1],R5 ; 4-byte memory access
 BCLR #5,R5
 MOV.L R5,[R1] ; 4-byte memory access
 RTS

CC-RX A.　QUICK GUIDE

R20UT3248EJ0110 Rev.1.10 Page 1019 of 1053
Nov 01, 2020

In this example, the pointer itself (p) cannot be changed. The object (*p) indicated by the pointer can be changed.
Therefore, the result becomes as shown below and the pointer itself is mapped to ROM (section C).

p = 0; / Correct */
 p = 0; /* Error */

[Example 3]
char *const p;

In this example, the pointer itself (p) and the object (*p) indicated by the pointer cannot be changed. Therefore, the
result becomes as shown below and the pointer itself is mapped to ROM (section C).

p = 0; / Error */
 p = 0; /* Error */

A.1.6 Referencing Addresses of a Section

The addresses and size of a section can be referenced by using section address operators.
__sectop ("<section name>"): References the start address of <section name>
__secend ("<section name>"): References the sum of the size of <section name> and the address where
<section name> starts.
__secsize ("<section name>"): References the size of <section name>

[Example]

The INITSCT function in the resetprg.c file of the startup routine executes transfer from ROM to RAM and initialization
of uninitialized areas. The addresses acquired by __sectop and __secend written in the dbsct.c file are referenced dur-
ing execution.

A.2 Functions

This section describes functions.

A.2.1 Filling Assembler Instructions

In the RX family C/C++ compiler, assembler instructions can be written in a C-language source program using #pragma
inline_asm.

[Example]

Inline expansion is performed for an assembly-language function specified by #pragma inline_asm.
The general function calling rules are also applied to the calls of assembly-language inline functions.

A.2.2 Performing In-Line Expansion of Functions

#pragma inline declares a function for which inline expansion is performed.
The compiler options inline and noline are also used to enable or disable inline expansion. However, even when the

noinline option is specified, inline expansion is done for the function specified by #pragma inline.

#pragma section $DSEC
static const struct {
 void *rom_s; /* Acquires the start address value of the initialized data section in
ROM */
 void *rom_e; /* Acquires the last address value of the initialized data section in
ROM */
 void *ram_s; /* Acquires the start address value of the initialized data section in
RAM */
} DTBL[]={__sectop("D"), __secend("D"), __sectop("R")};

#pragma inline_asm func
static int func(int a, int b){
 ADD R2,R1 ; Assembly-language description
}
main(int *p){
 *p = func(10,20);
}

R20UT3248EJ0110 Rev.1.10 Page 1020 of 1053
Nov 01, 2020

CC-RX A.　QUICK GUIDE

A global function or a static function member can be specified as a function name. A function specified by #pragma
inline or a function with specifier inline (C++ and C (C99)) are expanded where the function is called.

[Example]
C source code

Expanded image

A.2.3 Performing (Inter-File) In-Line Expansion of Functions

Normally, inline expansion is performed for functions within a file. However, using the
-file_inline option of the compiler allows inline expansion to be performed for even inter-file function calling.

[Example]

By compiling with the specification of ccrx -inline -file_inline=b.c a.c, calling of function g in a.c is expanded and
becomes as follows:

A.3 Using Microcomputer Functions

This section describes usage of microcomputer functions.

A.3.1 Processing an Interrupt in C Language

Use #pragma interrupt to declare an interrupt function.
[Example]
C source code

#pragma inline(func)
static int func (int a, int b)
{
 return (a+b)/2;
}
int x;
main()
{
 x=func(10,20);
}

int x;
main()
{
 int func_result;
 {
 int a_1=10, b_1=20;
 func_result=(a_1+b_1)/2;
 }
 x=func_result;
}

<a.c>
 func(){
 g();
 }
<b.c>
 g(){
 h();
}

func(){
 h();
}

CC-RX A.　QUICK GUIDE

R20UT3248EJ0110 Rev.1.10 Page 1021 of 1053
Nov 01, 2020

Generated code

A.3.2 Using CPU Instructions in C Language

The compiler provides the following intrinsic functions for cases of accessing control registers and special instructions
that cannot be expressed in C language.

- Maximum and minimum value selection

- Byte switching in data

- Data exchange

- Multiply-and-accumulate operation

- Rotation

- Special instructions (BRK, WAIT, INT, and NOP)

- Special instructions for the RX family (such as BRK and WAIT)

- Control register setting and reference
The intrinsic functions are listed below.

#pragma interrupt func
void func(){ }

_func:
 PUSHM R1-R3 ; Saves registers used in the function
 ...
 (R1, R2, and R3 are used in the function)
 ...
 POPM R1-R3 ; Restores registers that were saved at the function entry
 RTE

Specifications Function

signed long max(signed long data1, signed long data2) Selects the maximum value.

signed long min(signed long data1, signed long data2) Selects the minimum value.

unsigned long revl(unsigned long data) Reverses the byte order in longword data.

unsigned long revw(unsigned long data) Reverses the byte order in longword data
in word units.

void xchg(signed long *data1, signed long *data2) Exchanges data.

long long rmpab(long long init, unsigned long count, signed char *addr1,
signed char *addr2)

Multiply-and-accumulate operation (byte).

long long rmpaw(long long init, unsigned long count, short *addr1, short
*addr2)

Multiply-and-accumulate operation
(word).

long long rmpal(long long init, unsigned long count, long *addr1, long
*addr2)

Multiply-and-accumulate operation (long-
word).

unsigned long rolc(unsigned long data) Rotates data including the carry to left by
one bit.

unsigned long rorc(unsigned long data) Rotates data including the carry to right by
one bit.

unsigned long rotl(unsigned long data, unsigned long num) Rotates data to left.

unsigned long rotr(unsigned long data, unsigned long num) Rotates data to right.

void brk(void) BRK instruction exception.

R20UT3248EJ0110 Rev.1.10 Page 1022 of 1053
Nov 01, 2020

CC-RX A.　QUICK GUIDE

A.4 Variables (Assembly Language)

This section describes variables (assembly language).

A.4.1 Defining Variables without Initial Values

Allocate a memory area in a DATA section.
To define a DATA section, use the .SECTION directive. To allocate a memory area, use the .BLKB directive for specifi-

cation in 1-byte units, the .BLKW directive for 2-byte units, the .BLKL directive for 4-byte units, and the .BLKD directive
for 8-byte units.

[Example]

void int_exception(signed long num) INT instruction exception.

void wait(void) Stops program execution.

void nop(void) Expanded to a NOP instruction.

void set_ipl(signed long level) Sets the interrupt priority level.

unsigned char get_ipl(void) Refers to the interrupt priority level.

void set_psw(unsigned long data) Sets a value for PSW.

unsigned long get_psw(void) Refers to the PSW value.

void set_fpsw(unsigned long data) Sets a value for FPSW.

unsigned long get_fpsw(void) Refers to the FPSW value.

void set_usp(void *data) Sets a value for USP.

void *get_usp(void) Refers to the USP value.

void set_isp(void *data) Sets a value for ISP.

void *get_isp(void) Refers to the ISP value.

void set_intb(void *data) Sets a value for INTB.

void *get_intb(void) Refers to the INTB value.

void set_bpsw(unsigned long data) Sets a value for BPSW.

unsigned long get_bpsw(void) Refers to the BPSW value.

void set_bpc(void *data) Sets a value for BPC.

void *get_bpc(void) Refers to the BPC value.

void set_fintv(void *data) Sets a value for FINTV.

void *get_fintv(void) Refers to the FINTV value.

signed long long emul(signed long, signed long) Signed multiplication of valid 64 bits

unsigned long long emulu(unsigned long, unsigned long) Unsigned multiplication of valid 64 bits

 .SECTION area,DATA
work1: .BLKB 1; Allocates a RAM area in 1-byte units
work2: .BLKW 1; Allocates a RAM area in 2-byte units
work3: .BLKL 1; Allocates a RAM area in 4-byte units
work4: .BLKD 1; Allocates a RAM area in 8-byte units

Specifications Function

CC-RX A.　QUICK GUIDE

R20UT3248EJ0110 Rev.1.10 Page 1023 of 1053
Nov 01, 2020

A.4.2 Defining a cost Constant with an Initial Value

Initialize a memory area in a ROMDATA section.
To define a ROMDATA section, use the .SECTION directive. To initialize memory, use the .BYTE directive for 1 byte, the

.WORD directive for 2 bytes, the .LWORD directive for 4 bytes, the .FLOAT directive for floating-point 4 bytes, and the

.DOUBLE directive for floating-point 8 bytes.
[Example]

A.4.3 Referencing the Address of a Section

The size and start address of a section that were specified as operands using the SIZEOF and TOPOF operators are
handled as values.

[Example]

A.5 Startup Routine

This section describes the startup routine.

A.5.1 Allocating Stack Areas

Since the PowerON_Reset_PC function in the resetprg.c file of the startup routine is declared by "#pragma entry", the
compiler and optimizing linkage editor automatically generate the initialization code for the user stack USP and interrupt
stack ISP at the top of the function, based on the settings below.

(1) Setting the User Stack
Specify the size of the stack area by #pragma stacksize su=0xXXX in the stacksct.h file, and specify the loca-
tion of the SU section by the -start option of the optimizing linkage editor.

(2) Setting the Interrupt Stack
Specify the size of the stack area by #pragma stacksize si=0xXXX in the stacksct.h file, and specify the location
of the SI section by the -start option of the optimizing linkage editor.
[Example]

[Generated code example]

 .SECTION value,ROMDATA
work1: .BYTE "data"; Stores 1-byte fixed data in ROM
work2: .WORD "data"; Stores 2-byte fixed data in ROM
work3: .LWORD "data"; Stores 4-byte fixed data in ROM
work4: .FLOAT 5E2; Stores 4-byte floating-point data in ROM
work5: .DOUBLE 5E2; Stores 8-byte floating-point data in ROM

...
MVTC #(TOPOF SU + SIZEOF SU),USP
; Sets the user stack area address to USP as (SU start address + SU size)
MVTC #(TOPOF SI + SIZEOF SI),ISP
; Sets the interrupt stack area address to ISP as (SI start address + SI size)
 ...

<resetprg.c>
...
#pragma section ResetPRG
#pragma entry PowerON_Reset_PC
void PowerON_Reset_PC(void)
{
...
<stacksct.h>
#pragma stacksize su=0x300
#pragma stacksize si=0x100

R20UT3248EJ0110 Rev.1.10 Page 1024 of 1053
Nov 01, 2020

CC-RX A.　QUICK GUIDE

A.5.2 Initializing RAM

The _INITSCT function in the resetprg.c file of the startup routine is used to initialize uninitialized areas. To add a sec-
tion to be initialized, add the following description to the dbsct.c file.

[Example]

In the above example, the addresses used in the INITSCT function are stored in the table in order to initialize the B,
B_2, and B_1 sections.

A.5.3 Transferring Variables with Initial Values from ROM to RAM

The _INITSCT function in the resetprg.c file of the startup routine is used to transfer variables with initial values from
ROM to RAM. To add a section to be transferred, add the following description to the dbsct.c file.

[Example]

In the above example, the addresses used in the INITSCT function are stored in the table in order to transfer the con-
tents of the D, D_2, and D_1 sections to the R, R_2, and R_1 sections. Note that the location addresses of the D, D_2,
D_1, R, R_2, and R_1 sections should be specified by the
-start option of the optimizing linkage editor. The relocation solution by transferring data from ROM to RAM should be
specified by the -rom option of the optimizing linkage editor.

A.6 Reducing the Code Size

This section describes code size reduction.

A.6.1 Data Structure

When // -start=SU,SI/01000 is specified
_PowerON_Reset_PC MVTC #00001300H,USP
 MVTC #00001400H,ISP
...

<dbsct.c>
...
#pragma section C C$BSEC
extern const struct {
 _UBYTE *b_s; /* Start address of non-initialized data section */
 _UBYTE *b_e; /* End address of non-initialized data section */
} _BTBL[] = {
 { __sectop("B"), __secend("B") },
 { __sectop("B_2"), __secend("B_2") },
 { __sectop("B_1"), __secend("B_1") }
};
...

<dbsct.c>
...
#pragma section C C$DSEC
extern const struct {
 _UBYTE *rom_s; /* Start address of the initialized data section in ROM */
 _UBYTE *rom_e; /* End address of the initialized data section in ROM */
 _UBYTE *ram_s; /* Start address of the initialized data section in RAM */
} _DTBL[] = {
 { __sectop("D"), __secend("D"), __sectop("R") },
 { __sectop("D_2"), __secend("D_2"), __sectop("R_2") },
 { __sectop("D_1"), __secend("D_1"), __sectop("R_1") }
};
...

CC-RX A.　QUICK GUIDE

R20UT3248EJ0110 Rev.1.10 Page 1025 of 1053
Nov 01, 2020

In a case where related data is referenced many times in the same function, usage of a structure will facilitate genera-
tion of a code using relative access, and an improvement in efficiency can be expected. The efficiency will also be
improved when data is passed as arguments. Because the access range of relative access is limited, it is effective to place
the frequently accessed data at the top of the structure.

When data takes the form of a structure, it is easy to perform tuning that changes the data expressions.
[Example]
Numeric values are assigned to variables a, b, and c.
Source code before improvement

Assembly-language expansion code before improvement

Source code after improvement

Assembly-language expansion code after improvement

A.6.2 Local Variables and Global Variables

Variables that can be used as local variables must be declared as local variables and not as global variables. There is a
possibility that the value of a global variable will be changed by function calling or pointer operations, thus the efficiency of
optimization is degraded.

The following advantages are available when local variables are used.

- Access cost is low

int a, b, c;
void func()
{
 a = 1;
 b = 2;
 c = 3;
}

_func:
 MOV.L #_a,R4
 MOV.L #00000001H,[R4]
 MOV.L #_b,R4
 MOV.L #00000002H,[R4]
 MOV.L #_c,R4
 MOV.L #00000003H,[R4]
 RTS

struct s{
 int a;
 int b;
 int c;
} s1;
void func()
{
 register struct s *p=&s1;
 p->a = 1;
 p->b = 2;
 p->c = 3;
}

_func:
 MOV.L #_s1,R5
 MOV.L #00000001H,[R5]
 MOV.L #00000002H,04H[R5]
 MOV.L #00000003H,08H[R5]
 RTS

R20UT3248EJ0110 Rev.1.10 Page 1026 of 1053
Nov 01, 2020

CC-RX A.　QUICK GUIDE

- May be assigned to a register

- Efficiency of optimization is good
[Example]
Case in which global variables are used for temporary variables (before improvement) and case in which local variables

are used (after improvement)
Source code before improvement

Assembly-language expansion code before improvement

Source code after improvement

Assembly-language expansion code after improvement

A.6.3 Offset for Structure Members

A structure member is accessed after adding the offset to the structure address. Since a small offset is advantageous
for the size, members often used should be declared at the top.

The most effective combination is within 32 bytes from the top for the signed char or unsigned char type, within 64
bytes from the top for the short or unsigned short type, or within 128 bytes from the top for the int, unsigned int, long,
or unsigned long type.

[Example]
An example in which the code is changed because of the offset of the structure is shown below.
Source code before improvement

int tmp;
void func(int* a, int* b)
{
 tmp = *a;
 *a = *b;
 *b = tmp;
}

__func:
 MOV.L #_tmp,R4
 MOV.L [R1],[R4]
 MOV.L [R2],[R1]
 MOV.L [R4],[R2]
 RTS

void func(int* a, int* b)
{
 int tmp;
 tmp = *a;
 *a = *b;
 *b = tmp;
}

__func:
 MOV.L [R1],R5
 MOV.L [R2],[R1]
 MOV.L R5,[R2]
 RTS

CC-RX A.　QUICK GUIDE

R20UT3248EJ0110 Rev.1.10 Page 1027 of 1053
Nov 01, 2020

Assembly-language expansion code before improvement

Source code after improvement

Assembly-language expansion code after improvement

Note When defining a structure, declare the members while considering the boundary alignment value. The
boundary alignment value of a structure is the most largest boundary alignment value within the struc-
ture. The size of a structure becomes a multiple of the boundary alignment value. For this reason, when
the end of a structure does not match the boundary alignment value of the structure itself, the size of the
structure also includes the unused area that was created for guaranteeing the next boundary alignment.

Source code before improvement

struct str {
 long L1[8];
 char C1;
};
struct str STR1;
char x;
void func()
{
 x = STR1.C1;
}

_func:
 MOV.L #_STR1,R4
 MOVU.B 20H[R4],R5
 MOV.L #_x,R4
 MOV.B R5,[R4]
 RTS

struct str {
 char C1;
 long L1[8];
};
struct str STR1;
char x;
void func()
{
 x = STR1.C1;
}

_func:
 MOV.L #_STR1,R4
 MOVU.B [R4],R5
 MOV.L #_x,R4
 MOV.B R5,[R4]
 RTS

/* Boundary alignment value is 4 because the maximum member is the int type */
struct str {
 char C1; /* 1 byte + 3 bytes of boundary alignment */
 long L1; /* 4 bytes */
 char C2; /* 1 byte */
 char C3; /* 1 byte */
 char C4; /* 1 byte + 1 byte of boundary alignment */
}STR1;

R20UT3248EJ0110 Rev.1.10 Page 1028 of 1053
Nov 01, 2020

CC-RX A.　QUICK GUIDE

str size before improvement

Source code after improvement

str size after improvement

A.6.4 Allocating Bit Fields

To set members of different bit fields, the data including the bit field needs to be accessed each time. These accesses
can be kept down to one access by collectively allocating the related bit fields to the same structure.

[Example]
An example in which the size is improved by allocating bit fields related to the same structure is shown below.
Source code before improvement

Assembly-language expansion code before improvement

Source code after improvement

 .SECTION B,DATA,ALIGN=4
 .glb _STR1
_STR1: ; static: STR1
 .blkl 3

/* Boundary alignment value is 4 because the maximum member is the int type */
struct str {
 char C1; /* 1 byte */
 char C2; /* 1 byte */
 char C3; /* 1 byte */
 char C4; /* 1 byte */
 long L1; /* 4 bytes */
}STR1;

 .SECTION B,DATA,ALIGN=4
 .glb _STR1
_STR1: ; static: STR1
 .blkl 2

struct str
{
 Int flag1:1;
}b1,b2,b3;
void func()
{
 b1.flag1 = 1;
 b2.flag1 = 1;
 b3.flag1 = 1;
}

_func:
 MOV.L #_b1,R5
 BSET #00H,[R5]
 MOV.L #_b2,R5
 BSET #00H,[R5]
 MOV.L #_b3,R5
 BSET #00H,[R5]
 RTS

CC-RX A.　QUICK GUIDE

R20UT3248EJ0110 Rev.1.10 Page 1029 of 1053
Nov 01, 2020

Assembly-language expansion code after improvement

A.6.5 Optimization of External Variable Accesses when the Base Register is Specified

When R13 is specified as the base register of the RAM section, accesses to the RAM section are performed relative to
the R13 register. Furthermore, if optimization of inter-module external variable accesses is enabled, the value relative to
the R13 register is optimized, and the instruction size becomes smaller if the value is 8 bits or less.

[Example]
Source code before improvement

Assembly-language expansion code before improvement

Source code after improvement

struct str
{
 int flag1:1;
 int flag2:1;
 int flag3:1;
}a1;
void func()
{
 a1.flag1 = 1;
 a1.flag2 = 1;
 a1.flag3 = 1;
}

_func:
 MOV.L #_a1,R4
 MOVU.B [R4],R5
 OR #07H,R5
 MOV.B R5,[R4]
 RTS

int a;
int b;
int c;
int d;
void fu{
 a=0;
 b=1;
 c=2;
 d=3;
}

_func:
 MOV.L #_a,R4
 MOV.L #0000000H,[R4]
 MOV.L #_b,R4
 MOV.L #00000001H,{R4}
 MOV.L #_c,R4
 MOV.L #00000002H,[R4]
 MOV.L #_d,[R4]
 MOV.L #00000003H,[R4]
 RTS

R20UT3248EJ0110 Rev.1.10 Page 1030 of 1053
Nov 01, 2020

CC-RX A.　QUICK GUIDE

Assembly-language expansion code after improvement

A.6.6 Specified Order of Section Addresses by Optimizing Linkage Editor at Optimization
of External Variable Accesses

In an instruction that accesses memory in the register relative-address format, the instruction size is small when the dis-
placement value is small.

In some cases, the code size can be improved when the order of allocating the sections by the optimizing linkage editor
is changed with reference to the following guidelines.

- Place at the beginning the sections of external variables that are frequently accessed in the function.

- Place at the beginning the sections of external variables with small type sizes.
Note however that the build time gets longer when external variable accesses are optimized because the compiler runs

twice.
[Example]
Source code before improvement

Assembly-language expansion code before improvement

int a;
int b;
int c;
int d;
void fu{
 a=0;
 b=1;
 c=2;
 d=3;
}

_func:
 MOV.L #0000000H,_a-__RAM_TOP:16[R13]
 MOV.L #0000001H,_b-__RAM_TOP:16[R13]
 MOV.L #0000002H,_c-__RAM_TOP:16[R13]
 MOV.L #0000003H,_d-__RAM_TOP:16[R13]
 RTS

/* Section D_1 */
char d11=0, d12=0, d13=0, d14=0;
/* Section D_2 */
short d21=0, d22=0, d23=0, d24=0, dmy2[12]={0};
/* Section D */
int d41=0, d42=0, d43=0, d44=0, dmy4[60]={0}

void func(int a){
 d11 = a;
 d12 = a;
 d13 = a;
 d14 = a;
 d21 = a;
 d22 = a;
 d23 = a;
 d24 = a;
 d41 = a;
 d42 = a;
 d43 = a;
 d44 = a;
}

CC-RX A.　QUICK GUIDE

R20UT3248EJ0110 Rev.1.10 Page 1031 of 1053
Nov 01, 2020

Source code after improvement

Assembly-language expansion code after improvement

<When the allocation order of sections is "D, D_2, D_1" or D*>
_func:
 MOV.L #d41,R4
 MOV.B R1,0120H[R4]
 MOV.B R1,0121H[R4]
 MOV.B R1,0122H[R4]
 MOV.B R1,0123H[R4]
 MOV.W R1,0100H[R4]
 MOV.W R1,0102H[R4]
 MOV.W R1,0104H[R4]
 MOV.W R1,0106H[R4]
 MOV.L R1,[R4]
 MOV.L R1,04H[R4]
 MOV.L R1,08H[R4]
 MOV.L R1,0CH[R4]
 RTS

/* Section D_1 */
char d11=0, d12=0, d13=0, d14=0;
/* Section D_2 */
short d21=0, d22=0, d23=0, d24=0, dmy2[12]={0};
/* Section D */
int d41=0, d42=0, d43=0, d44=0, dmy4[60]={0}

void func(int a){
 d11 = a;
 d12 = a;
 d13 = a;
 d14 = a;
 d21 = a;
 d22 = a;
 d23 = a;
 d24 = a;
 d41 = a;
 d42 = a;
 d43 = a;
 d44 = a;
}

<When the allocation order of sections is "D_1, D_2, D" or D*>
_func:
 MOV.L #d11,R4
 MOV.B R1,[R4]
 MOV.B R1,01H[R4]
 MOV.B R1,02H[R4]
 MOV.B R1,03H[R4]
 MOV.W R1,04H[R4]
 MOV.W R1,06H[R4]
 MOV.W R1,08H[R4]
 MOV.W R1,0AH[R4]
 MOV.L R1,24H[R4]
 MOV.L R1,28H[R4]
 MOV.L R1,2CH[R4]
 MOV.L R1,30H[R4]
 RTS

R20UT3248EJ0110 Rev.1.10 Page 1032 of 1053
Nov 01, 2020

CC-RX A.　QUICK GUIDE

A.6.7 Interrupt

Due to many registers being saved and restored before and after an interrupt processing, the expected interrupt
response time may not be obtained. In such a case, the fast interrupt setting (fint) and fint_register option should be
used to keep down the number of saving and restoring of registers so that the interrupt response time can be reduced.

Note however that usage of the fint_register option limits the usable registers in other functions so the efficiency of the
entire program is degraded in some cases.

[Example]
Source code before improvement

Assembly-language expansion code before improvement

Source code after improvement

Assembly-language expansion code after improvement

A.7 High-Speed Processing

This section describes high-speed processing.

A.7.1 Loop Control Variable

Loop expansion cannot be optimized if there is a possibility that the size difference prevents the loop control variable
from expressing the data to be compared when determining whether the loop end condition is met. For example, if the
loop control variable is signed char while the data to be compared is signed long, loop expansion is not optimized. Thus,

#pragma interrupt int_func
volatile int count;

void int_func()
{
 count++;
}

_int_func:
 PUSHM R4-R5
 MOV.L #_count,R4
 MOV.L [R4],R5
 ADD #01H,R5
 MOV.L R5,[R4]
 POPM R4-R5
 RTE

#pragma interrupt int_func(fint)
volatile int count;

void int_func()
{
 count++;
}

<When the fint_register=2 option is specified>
_int_func:
 MOV.L #_count,R12
 MOV.L [R12],[R13]
 ADD #01H,R13
 MOV.L R13,[R12]
 RTFI

CC-RX A.　QUICK GUIDE

R20UT3248EJ0110 Rev.1.10 Page 1033 of 1053
Nov 01, 2020

compared to signed char and signed short, it is easier to perform optimization of loop expansion for signed long. To
optimize loop expansion, specify the loop control variable as a 4-byte integer type.

[Example]
Source code before improvement

Assembly-language expansion code before improvement

Source code after improvement

Assembly-language expansion code after improvement

signed long array_size=16;
signed char array[16];

void func()
{
 signed char I;
 for(i=0;i<array_size;i++)
 {
 array[i]=0;
 }
}

<When loop=2 is specified>
_func:
 MOV.L #_array_size,R4
 MOV.L [R4],R2
 MOV.L #00000000H,R5
 BRA L11
L12:
 MOV.L #_array,R14
 MOV.L #00000000H,R3
 MOV.B R3,[R5,R4]
 ADD #01H,R5
L11:
 MOV.B R5,R5
 CMP R2,R5
 BLT L12
L13:
 RTS

signed long array_size=16;
signed char array[16];

void func()
{
 signed long I;
 for(i=0;i<array_size;i++)
 {
 array[i]=0;
 }
}

R20UT3248EJ0110 Rev.1.10 Page 1034 of 1053
Nov 01, 2020

CC-RX A.　QUICK GUIDE

A.7.2 Function Interface

The number of arguments should be carefully selected so that all arguments can be set in registers (up to four). If there
are too many arguments, turn them into a structure and pass the pointer. If the structure itself is passed through and forth,
instead of the pointer of the structure, the structure may be too large to be set in a register. When arguments are set in
registers, calling and processing at the entry and exit of the function can be simplified. In addition, space in the stack area
can be saved. Note that registers R1 to R4 are to be used for arguments.

[Example]
Function f has four more arguments than the number of registers for arguments.
Source code before improvement

Assembly-language expansion code before improvement

<When loop=2 is specified>
_func:
 MOV.L #_array_size,R5
 MOV.L [R5],R2
 MOV.L #00000000H,R4
 ADD #0FFFFFFFFH,R2,R3
 CMP R3,R2
 BLE L12
L11:
 MOV.L #_array,R1
 MOV.L R1,R5
 BRA L13
L14:
 MOV.W #0000H,[R5]
 ADD #02H,R5
 ADD #02H,R4
L13:
 CMP R3,R4
 BLT L14
L15:
 CMP R2,R4
 BGE L17 L16:
 MOV.L #00000000H,R5
 MOV.B R5,[R4,R1]
 RTS
L12:
 MOV.L #_array,R5
 MOV.L #00000000H,R3
L19:
 CMPR2,R4
 BGE L17
L20:
 MOV.B R3,[R5+]
 ADD #01H,R4
 BRA L19
L17:
 RTS

void call_func()
{
 func(1,2,3,4,5,6,7,8);
}

CC-RX A.　QUICK GUIDE

R20UT3248EJ0110 Rev.1.10 Page 1035 of 1053
Nov 01, 2020

Source code after improvement

Assembly-language expansion code after improvement

A.7.3 Reducing the Number of Loops

Loop expansion is especially effective for inner loops. Since the program size is increased by loop expansion, loop
expansion should be performed when a fast execution speed is preferred at the expense of the program size.

[Example]
Array a[] is initialized.
Source code before improvement

Assembly-language expansion code before improvement

_call_func:
 SUB #04H,R0
 MOV.L #08070605H,[R0]
 MOV.L #00000004H,R4
 MOV.L #00000003H,R3
 MOV.L #00000002H,R2
 MOV.L #00000001H,R1
 BSR _func
 ADD #04H,R0
 RTS

struct str{
 char a;
 char b;
 char c;
 char d;
 char e;
 char f;
 char g;
 char h;
};
struct str arg = {1,2,3,4,5,6,7,8};

void call_func()
{
 func(&arg);
}

_call_func:
 MOV.L #arg,R1
 BRA _func

extern int a[100];
void func()
{
 int I;
 for(i = 0 ; i < 100 ; i++){
 a[i] = 0;
 }
}

R20UT3248EJ0110 Rev.1.10 Page 1036 of 1053
Nov 01, 2020

CC-RX A.　QUICK GUIDE

Source code after improvement

Assembly-language expansion code after improvement

A.7.4 Usage of a Table

If the processing in each case label of a switch statement is almost the same, consider the usage of a table.
[Example]
The character constant to be assigned to variable ch is changed by the value of variable i.
Source code before improvement

_func:
 MOV.L #00000064H,R4
 MOV.L #_a,R5
 MOV.L #00000000H,R3
L11:
 MOV.L R3,[R5+]
 SUB #01H,R4
 BNE L11
L12:
 RTS

extern int a[100];
void func()
{
 int I;
 for(i = 0 ; i < 100 ; i+=2)
 {
 a[i] = 0;
 a[i+1] = 0;
 }
}

_func:
 MOV.L #00000032H,R4
 MOV.L #_a,R5
L11:
 MOV.L #00000000H,[R5]
 MOV.L #00000000H,04H[R5]
 ADD #08H,R5
 SUB #01H,R4
 BNE L11
L12:
 RTS

char func(int i)
{
 char ch;
 switch (i) {
 case 0:
 ch = ’a'; break;
 case 1:
 ch = ’x'; break;
 case 2:
 ch = ’b'; break;
 }
 return(ch);
}

CC-RX A.　QUICK GUIDE

R20UT3248EJ0110 Rev.1.10 Page 1037 of 1053
Nov 01, 2020

Assembly-language expansion code before improvement

Source code after improvement

Assembly-language expansion code after improvement

A.7.5 Branch

When comparison is performed in order beginning at the top, such as in an else if statement, the execution speed in the
cases at the end gets slow if there is many branching. Cases with frequent branching should be placed near the begin-
ning.

_func:
 CMP #00H,R1
 BEQ L17
L16:
 CMP #01H,R1
 BEQ L19
 CMP #02H,R1
 BEQ L20
 BRA L21
L12:
L17:
 MOV.L #00000061H,R1
 BRA L21
L13:
L19:
 MOV.L #00000078H,R1
 BRA L21
L14:
L20:
 MOV.L #00000062H,R1
L11:
L21:
 MOVU.B R1,R1
 RTS

char chbuf[] = {'a', 'x', 'b'};

char func(int i)
{
 return (chbuf[i]);
}

_f
 MOV.L #_chbuf,R4
 MOVU.B [R1,R4],R1
 RTS

R20UT3248EJ0110 Rev.1.10 Page 1038 of 1053
Nov 01, 2020

CC-RX A.　QUICK GUIDE

[Example]
The return value changes depending on the value of the argument.
Source code before improvement

Assembly-language expansion code before improvement

Source code after improvement

Assembly-language expansion code after improvement

int func(int a)
{
 if (a==1)
 a = 2;
 else if (a==2)
 a = 4;
 else if (a==3)
 a = 0;
 else
 a = 0;
 return(a);
}

_func:
 CMP #01H,R1
 BEQ L11
L12:
 CMP #02H,R1
 BNE L14
L13:
 MOV.L #00000004H,R1
 RTS
L14:
 CMP #03,R1
 BNE L17
L16:
 MOV.L #00000008H,R1
 RTS
L17:
 MOV.L #00000000H,R1
 RTS
L11:
 MOV.L #00000002H,R1
 RTS

int func(int a)
{
 if (a==3)
 a = 8;
 else if (a==2)
 a = 4;
 else if (a==1)
 a = 2;
 else
 a = 0;
 return (a);
}

CC-RX A.　QUICK GUIDE

R20UT3248EJ0110 Rev.1.10 Page 1039 of 1053
Nov 01, 2020

A.7.6 Inline Expansion

The execution speed can be improved by performing inline expansion for functions that are frequently called. A signifi-
cant effect may be obtained by expanding functions that are particularly called in the loop. However, since the program
size is inclined to be increased by inline expansion, inline expansion should be performed when a fast execution speed is
preferred at the expense of the program size.

[Example]
The elements of array a and array b are exchanged.
Source code before improvement

Assembly-language expansion code before improvement

_func:
 CMP #03H,R1
 BEQ L11
L12:
 CMP #02H,R1
 BNE L14
L13:
 MOV.L #00000004H,R1
 RTS
L14:
 CMP #01H,R1
 NE L17
L16:
 MOV.L #00000002H,R1
 RTS
L17:
 MOV.L #00000000H,R1
 RTS
L11:
 MOV.L #00000008H,R1
 RTS

int x[10], y[10];
static void sub(int *a, int *b, int I)
{
 int temp;
 temp = a[i];
 a[i] = b[i];
 b[i] = temp;
}

void func()
{
 int I;
 for(i=0;i<10;i++)
 {
 sub(x,y,i);
 }
}

R20UT3248EJ0110 Rev.1.10 Page 1040 of 1053
Nov 01, 2020

CC-RX A.　QUICK GUIDE

Source code after improvement

Assembly-language expansion code after improvement

__$sub:
 SHLL #02H,R3
 ADD R3,R1
 MOV.L [R1],R5
 ADD R3,R2
 MOV.L [R2],[R1]
 MOV.L R5,[R2]
 RTS
_func:
 PUSHM R6-R8
 MOV.L #00000000H,R6
 MOV.L #_x,R7
 MOV.L #_y,R8
L12:
 MOV.L R6,R3
 MOV.L R7,R1
 MOV.L R8,R2
 ADD #01H,R6
 BSR __$sub
 CMP #0AH,R6
 BLT L12
L13:
 RTSD #0CH,R6-R8

int x[10], y[10];
#pragma inline(sub)
static void sub(int *a, int *b, int I)
{
 int temp;
 temp = a[i];
 a[i] = b[i];
 b[i] = temp;
}

void func()
{
 int I;
 for(i=0;i<10;i++)
 {
 sub(x,y,i);
 }
}

CC-RX A.　QUICK GUIDE

R20UT3248EJ0110 Rev.1.10 Page 1041 of 1053
Nov 01, 2020

A.8 Modification of C Source

By using expanded function object with high efficiency can be created.
Here, two methods are described for shifting to the CCRX from other C compiler and shifting to C compiler from the

CCRX.
<From other C compiler to the CCRX>

- #pragma
C source needs to be modified, when C compiler supports the #pragma. Modification methods are examined accord-
ing to the C compiler specifications.

- Expanded Specifications
It should be modified when other C compilers are expanding the specifications such as adding keywords etc. Modified
methods are examined according to the C compiler specifications.

Note #pragma is one of the pre-processing directives supported by ANSI. The character string next to
#pragma is made to be recognized as directives to C compiler. If that directive does not supported by the
compiler, #pragma directive is ignored and the compiler continues the process and ends normally.

<From the CCRX to other C compiler>

- The CCRX, either deletes key word or divides # fdef in order shift to other C compiler as key word has been added as
expanded function.

Example 1. Disable the keywords

Example 2. Change to other type

; The _sub code was reduced as a result of inline expansion
_func:
 MOV.L #0000000AH,R1
 MOV.L #_y,R2
 MOV.L #_x,R3
L11:
 MOV.L [R3],R4
 MOV.L [R2],R5
 MOV.L R4,[R2+]
 MOV.L R5,[R3+]
 SUB #01H,R1
 BNE L11
L12:
 RTS

#ifndef __RX
 #define interrupt /*Considered interrupt function as normal function*/
 #endif

 #ifdef __RX
 #define bit char /*Change bit type variable to char type variable*/
 #endif

C - 1

Revision Record

Rev. Date Description

Page Summary

1.00 Nov 28, 2014 - First Edition issued

1.01 Sep 14, 2015 14 The description of the license is added.

21,
and

others

The following compile options are added.
-misra2012
-stack_protector/-stack_protector_all

21,
and

others

The following compile options are made usable in the Professional Edition.
-misra2004
-ignore_files_misra
-check_language_extension

150,
153

The following description is deleted.
- The utf8 option is valid only when the lang=c99 option has been specified.

156
and

others

The assembler option -utf8 is added.

219 The function of the linker option -crc is expanded.

324,
335

#pragma stack_protector and #pragma no_stack_protector are added.

783,
and

others

Unnecessary messages are deleted.

785,
and

others

The following message numbers are added.
E0511178
M0523086
W0511179

1.02 Jul 01, 2016 44 The following MISRA-C:2012 rules are added.
2.6 2.7 9.2 9.3 12.1 12.3 12.4 14.4 15.1 15.2 15.3 15.4 15.5 15.6
15.7 16.1 16.2 16.3 16.4 16.5 16.6 16.7 17.1 17.7 18.4 18.5 19.2
20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.11 20.12
20.13 20.14

220 [Description] is changed.

272,
and

others

The library generator option -secure_malloc is added.

340,
and

others

Added an alias for each existing intrinsic function, which prefixes "__" to its name.

344,
and

others

The intrinsic functions are added.
__bclr
__bset
__bnot

344,
and

others

The description of the intrinsic functions is changed.

C - 2

1.02 Jul 01, 2016 617,
618

The following library functions are changed.
calloc, free, malloc, realloc

832,
844

The following message numbers are added.
F0523088
W0520171

1.03 Dec 01, 2016 15 The description of "License" is changed.

15 "Standard and Professional Editions" is added.

15,
16

"Free Evaluation Editions" is added.

45 The following MISRA-C:2012 rules are added.
2.2 3.2 5.1 5.6 5.7 5.8 5.9 8.3 8.9 8.14 9.1 9.4 9.5 12.2 17.6 18.7
21.1 21.2 21.3 21.4 21.5 21.6 21.7 21.8 21.9 21.10 21.11 21.12

63 [Description] is changed.

73 [Remarks] is changed.

75 [Remarks] is changed.

215 [Description] is changed.

231 [Description] is changed.

281 [Description] is changed.

307-
315

The descriptions of the following implementation-defined items are changed.
4.1.3 Table 4.1, Table 4.3, Table 4.4, Table 4.5, Table 4.7, Table 4.9,
 Table 4.10, Table 4.11, Table 4.12, Table 4.13, Table 4.14,
 Table 4.15, Table 4.16

343 The description is changed.

552,
554,
568

The tables are changed.

574 [Return values] is changed.

837 F0523073 is changed.

840 F0563020 is added.

866,
867

"Standard Library Error Messages" is added.

875,
876

"V2.06 and Later Versions (Compatibility with V2.05 and earlier)" is added.

1.04 Jun 01, 2017 45 The following MISRA-C:2012 rules are added.
12.5 13.1 13.2 13.5 17.5 17.8 21.13 21.15 21.16

24,
48,
66

The -avoid_cross_boundary_prefetch option is added.

57 [Description] is changed.

58 [Description] is changed.

Rev. Date Description

Page Summary

C - 3

1.04 Jun 01, 2017 198,
207,
214

The -end_record option is added.

209 -show=relocation_attribute and end_record is added to Specifiable Option.

234,
235

[Format], [Description] and [Remarks] is changed.

294 Table 3.2 is changed.

295 "Linkage Map Information" is changed.

296 The description of (7) is changed.

299 The description of (4) is changed.

319 The description of "Scalar Type (C), Basic Type (C++)" is changed.

326,
327

The description of "Memory Allocation in Big Endian" is changed.

346 The description of "Specification of Function for generating a code for detection of
stack smashing" is changed.

796,
844,
851,
864

The following messages are added.
C0511200, C0519996, C0519997, C0554098, C0564001,
F0563103, W0511180, W0511185, W0561015, W0561016

851,
863,
864

The following messages are changed.
W0511179, W0561004, W0561017

1.05 Dec 01, 2017 23,
28,
38

The -no_warning compile option is added.

24,
49,
68

The -insert_nop_with_label compile option is added.

24,
49,
69-
71

The -control_flow_integrity compile option is added.

34 The description of [Default] is added.

35 The descriptions of [Description] and [Remarks] are changed.

79 The description of [Default] is added.

81 The description of [Default] is added.

204,
213,
229

The -fix_record_length_and_align optimizing linkage editor (rlink) option is added.

204,
213,
238

The -cfi optimizing linkage editor (rlink) option is added.

Rev. Date Description

Page Summary

C - 4

1.05 Dec 01, 2017 204,
213,
239

The -cfi_add_func optimizing linkage editor (rlink) option is added.

204,
213,
240

The -cfi_ignore_module optimizing linkage editor (rlink) option is added.

215 "fix_record_length_and_align" is added to No. 4 of "Specifiable Option".

215 The description of Notes 3 is changed.

224 The descriptions of [Description] and [Remarks] are changed.

228 The entire description is changed.

244,
245

The "cfi" suboption is added to table 2.17.

245,
246

The "cfi" suboption is added to the table in [Remarks].

299 Item No. 30 is added to table 2.19.

304 Item No. 10 is added to table 3.2.

310 The section of "CFI Information" is added.

342 The following macros are added to table 4.22.
__STDC_IEC_559__, __STDC_IEC_559_COMPLEX__, and
__STDC_ISO_10646__

430 Item No. 8 is added to table 5.35.

570-
572

The descriptions of definitions in <float.h> are reviewed.

806,
843,
844,
851-
853,
857,
871,
872

The following messages are added.
E0511117, E0562366, E0563602, F0563003, F0563150,
F0563431, F0563600, F0563601, M0560700, W0561014, and
W0561184

842-
844,
851,
852,
857
872,
874

The following messages are changed.
E0562311, E0562340, E0562405, E0562417, F0563004,
F0563102, M0560005, W0561130, and W0561325

840-
874

The following messages are deleted.
E0562021, E0562112, E0562113, E0562203, E0562220,
E0562223, E0562224, E0562323, E0562324, E0562402,
E0562406, E0562407, E0562408, E0562500, F0563311,
F0563312, F0563313, M0560001, M0560512, W0561008,
W0561015, W0561180, W0561500, W0561501, and W0561502

888 The description of Note is changed.

Rev. Date Description

Page Summary

C - 5

1.06 Jun 01, 2018 19 The description of ISA_RX is changed.

50 [Remarks] is changed.

52 [Default] is changed.

53 [Default] is changed.

94 [Description] and [Remarks] are changed.

99 [Description] is changed.

103 [Description] is changed.

118 [Format], [Description] and [Remarks] are changed.

120 [Description] is changed.

146 [Description] and [Remarks] are changed.

184 [Format], [Description] and [Remarks] are changed.

204,
213,
237

The -split_vect optimizing linkage editor (rlink) option is added.

215 The following specifiable options are deleted.
padding, vectn, vect, and split_vect

222 [Format], [Description] and [Remarks] are changed.

232 [Remarks] is changed.

235 [Description] is changed.

241 [Format], [Description] and [Example] are changed.

319 The description of "Function definitions - storage of formal parameters" is changed.

343,
344

The following macros are added to table 4.22.
__RXV3 and __RX_ISA_VERSION__

349,
350

The description of "Interrupt Function Creation" is changed.

385 The descriptions of [Remarks] of set_extb and get_extb are changed.

410 The description of .RVECTOR is changed.

432 The following macros are added to table 5.35.
__RXV3 and __RX_ISA_VERSION__

434 The description of "Instructions" is changed.

435,
436

The description of "Register Configuration" is changed.

466-
581

The following instructions are added.
BFMOV, BFMOVZ, EMACA, EMSBA, EMULA, FSQRT, FTOU, MACLH,
MOVCO, MOVLI, MSBHI, MSBLH, MSBLO, MULLH, MVFACGU,
MVFACLO, MVTACGU, RACL, RDACL, RDACW, RSTR, SAVE, and UTOF

488-
585

The following instructions are changed.
FADD, FMUL, FSUB, MACHI, MACLO, MULHI, MULLO, MVFACHI,
MVFACMI, MVFC, MVTACHI, MVTACLO, MVTC, POPC, PUSHC, RACW,
RTE, RTFI, STNZ, STZ, and XOR

Rev. Date Description

Page Summary

C - 6

1.06 Jun 01, 2018 587 Table 6.1 is changed.

597,
598

The following reentrants are added.
fabs, fabsf, and fabsl

652 Table 7.10 is changed.

653-
655

Table 7.11 is changed.

792 The description of "Overview" is changed.

792 The description of Notes 1 is changed.

796 The description of "Coding Example of Initial Setting Routine" is changed.

796 The description of "Low-Level Interface Routines" is changed.

813 The description of "Example of Low-Level Interface Routine for Reentrant Library" is
changed.

817 The description of Notes 1 is changed.

818 The description of "resetprg.c: Initial Setting Routine (Reset Vector Function)" is
changed.

820 [Reference] is changed.

875,
912,
914

The following messages are added.
E0552011, W0561143, and W0561331

848,
875,
884,
889

The following messages are changed.
E0511154, E0552010, E0562410, and F0523073

857,
889

The following messages are deleted.
E0520412, F0523054, F0523055, and F0523056

928 "Version of Compiler Package" is added.

1.07 Dec 01, 2018 23,
29,
42

The -truncated_address_initializer compile option is added.

23,
29,
51

The -misra_intermodule compile option is added.

24,
65

The description of the -nouse_div_inst compile option is changed.

26,
110

The description of the -fpu compile option is changed.

26,
111

The description of the -nofpu compile option is changed.

26,
79,
112

The -dpfpu compile option is added.

Rev. Date Description

Page Summary

C - 7

1.07 Dec 01, 2018 26,
79,
113

The -nodpfpu compile option is added.

58 [Description] of the compile option -stuff is changed.

97 [Description] of the compile option -library is changed.

128 [Default] of the compile option -dbl_size is changed.

143 [Description] of the compile option -base is changed.

147 [Default] and [Description] of the compile option -pid are changed.

168,
173

The description of the -chkpm assembler command option is changed.

168,
174

The description of the -chkfpu assembler command option is changed.

168,
175

The description of the -chkdsp assembler command option is changed.

168,
170,
176

The -chkdpfpu assembler command option is added.

168,
182

The description of the -fpu assembler command option is changed.

168,
183

The description of the -nofpu assembler command option is changed.

168,
177,
184

The -dpfpu assembler command option is added.

168,
177,
185

The -nodpfpu assembler command option is added.

168,
177,
186

The -bank assembler command option is added.

168,
177,
187

The -nobank assembler command option is added.

195 [Remarks] of the assembler command option -cpu is changed.

215,
225,
275,
282

The -lib_rename optimizing linkage editor option is added.

311 The following options are added to table 2.19.
create_unfilled_area, stack_protector, stack_protector_all, misra2004,
misra2012, and misra_intermodule

335 Table 4.7 is changed.

356 The following macro is added to table 4.22.
__DPFPU

Rev. Date Description

Page Summary

C - 8

1.07 Dec 01, 2018 362,
363,
365

The description of "Interrupt Function Creation" is changed.

377,
400-
402

The following Intrinsic Functions are added.
__set_dpsw, __get_dpsw, __set_decnt, __get_decnt, __set_depc, and __get_depc

404 The description of "ASSEMBLY LANGUAGE SPECIFICATIONS" is changed.

407 The description of "General Instruction Addressing" is changed.

410 The description of "Specific Instruction Addressing" is changed.

448 The following macro is added to table 5.35.
__DPFPU

449 "Instructions" is deleted.

449,
450

The following sections are added to table 6.1.
C_8, D_8, and B_8

658 The description of "Initialization of Control Registers" is changed.

661 "Coding Example of Initial Setting Routine" is changed.

683,
684

"resetprg.c: Initial Setting Routine (Reset Vector Function)" is changed.

695 The description of "Application Code Generation (pic and pid Options)" is changed.

715,
764,
775

The following messages are added.
E0520069, W0520070, and W0551017

738,
764

The following messages are changed.
E0523065 and W0520069

1.08 Apr 01, 2019 26,
79,
114,
312

The -tfu compile option is added.

357 The following macros are added to table 4.22.
__TFU and __TFU_MATHLIB

367 Examples 7 is added.

379,
408

The __set_depc intrinsic function is deleted.

379,
409,
410

The following intrinsic functions are added.
__init_tfu, __sincosf, and __atan2hypotf

406-
408

The descriptions of [Remarks] of __set_dpsw, __get_dpsw, __set_decnt,
__get_decnt, and __get_depc are changed.

469,
470

The following "Reentrant" are changed.
atan2, cos, sin, fabs, atan2f, cosf, sinf, and fabsl

471 Notes 2 is added.

471 The following "Reentrant" are changed.
atan2l, cosl, sinl, sqrtl, and fabsl

Rev. Date Description

Page Summary

C - 9

1.08 Apr 01, 2019 475 Notes 1 and Notes 2 are added.

490,
503

The descriptions of the hypot, hypotf, and hypotl library function are changed.

557 The descriptions of [Format] of bsearch and qsort are changed.

680 "Initializing the Trigonometric Function Unit" is added.

683 "Coding Example of Initial Setting Routine" is changed.

760,
772,
777

The following messages are added.
E0523129, E0562600, and F0523129

1.09 Nov 01, 2019 12 The description of "Copyrights" is changed.

47 For the -misra2012 compile option, [Remarks] is changed and [Example] is added.

47 The following MISRA-C:2012 rules are added:
8.13, 14.2, 14.3

23,
51,
56

The -g_line compile option is added.

114 [Description] of the tfu compile option is changed.

214,
217,
224,
227,
282

The ALLOW_DUPLICATE_MODULE_NAME optimizing linkage editor (rlink) option
is added

313 Table 2.19 is changed.

334 "Implementation Defined Items" is deleted, and "Implementation-defined behavior of
C90" is added.

339 "Implementation-defined behavior of C99" is added.

369,
370

The description of "Section Switch" is changed.

513 The descriptions of functions are changed.

569 HUGE_VAL and HUGE_VALL are added to "HUGE_VALF" in the "Definition Name"
row of the table.

702 In "cacosf / cacos / cacosl", [Return values] and [Remarks] are changed.

703 In "casinf / casin / casinl", [Return values] and [Remarks] are changed.

704 In "catanf / catan / catanl", [Return values] is changed.

708 In "cacoshf / cacosh / cacoshl", [Return values] and [Remarks] are changed.

740 The description of maxdiv is entirely changed.

Rev. Date Description

Page Summary

C - 10

1.10 Nov 01, 2020 Front
cover

The target CPU cores are added.

18 The tool usage information file is added to Table 2.1.

25,
79,
84,
118

The -branch_chaining compile option is added.

25,
79,
82,
83,
85,
119

The -nobranch_chaining compile option is added.

31 [Description] of the -preinclude compile option is changed.

131 [Description] of the -dbl_size compile option is changed.

218,
281

A typographical error is corrected (stack information file).

218,
279,
295

The -verbose optimizing linkage editor (rlink) option is added.

922 The following registers are added to Table 9.1:
DCMR, DPSW, DECNT, and DEPC

960 The following message is added:
E0552020

1015 Notes are added.

Rev. Date Description

Page Summary

CC-RX User's Manual

Publication Date: Rev.1.00 Nov 28, 2014
 Rev.1.10 Nov 01, 2020

Published by: Renesas Electronics Corporation

CC-RX

R20UT3248EJ0110

	1. GENERAL
	1.1 Overview
	1.2 Copyrights
	1.3 Special Features
	1.4 Limits
	1.4.1 Limits of Compiler
	1.4.2 Limits of Assembler

	1.5 License
	1.6 Standard and Professional Editions
	1.7 Free Evaluation Editions

	2. COMMAND REFERENCE
	2.1 Overview
	2.2 Input/Output Files
	2.3 Environment Variables
	2.4 Operating Instructions
	2.5 Options
	2.5.1 Compile Options
	Source Options
	-lang
	-include
	-preinclude
	-define
	-undefine
	-message
	-nomessage
	-change_message
	-no_warning [V2.08.00 or later]
	-file_inline_path
	-comment
	-truncated_address_initializer [V3.01.00 or later]
	-check
	-misra2004 [Professional Edition only]
	-misra2012 [Professional Edition only] [V2.04.00 or later]
	-ignore_files_misra [Professional Edition only]
	-check_language_extension [Professional Edition only]
	-misra_intermodule [Professional Edition only] [V3.01.00 or later]

	Object Options
	-output
	-noline
	-debug
	-nodebug
	-g_line [V3.02.00 or later]
	-section
	-stuff
	-nostuff
	-instalign4
	-instalign8
	-noinstalign
	-nouse_div_inst
	-create_unfilled_data
	-stack_protector/-stack_protector_all [Professional Edition only] [V2.04.00 or later]
	-avoid_cross_boundary_prefetch [V2.07.00 or later]
	-insert_nop_with_label [V2.08.00 or later]
	-control_flow_integrity [Professional Edition only] [V2.08.00 or later]

	List Options
	-listfile
	-nolistfile
	-show

	Optimize Options
	-optimize
	-goptimize
	-speed
	-size
	-loop
	-inline
	-noinline
	-file_inline
	-case
	-volatile
	-novolatile
	-const_copy
	-noconst_copy
	-const_div
	-noconst_div
	-library
	-scope
	-noscope
	-schedule
	-noschedule
	-map
	-smap
	-nomap
	-approxdiv
	-enable_register
	-simple_float_conv
	-fpu
	-nofpu
	-dpfpu [V3.01.00 or later]
	-nodpfpu [V3.01.00 or later]
	-tfu [V3.01.00 or later]
	-alias
	-float_order
	-branch_chaining [V3.03.00 or later]
	-nobranch_chaining [V3.03.00 or later]
	-ip_optimize
	-merge_files
	-whole_program

	Microcontroller Options
	-isa
	-cpu
	-endian
	-round
	-denormalize
	-dbl_size
	-int_to_short
	-signed_char
	-unsigned_char
	-signed_bitfield
	-unsigned_bitfield
	-auto_enum
	-bit_order
	-pack
	-unpack
	-exception
	-noexception
	-rtti
	-fint_register
	-branch
	-base
	-patch
	-pic
	-pid
	-nouse_pid_register
	-save_acc

	Assemble and Linkage Options
	-asmcmd
	-lnkcmd
	-asmopt
	-lnkopt

	Other Options
	-logo
	-nologo
	-euc
	-sjis
	-latin1
	-utf8
	-big5
	-gb2312
	-outcode
	-subcommand

	2.5.2 Assembler Command Options
	Source Options
	-include
	-define
	-chkpm
	-chkfpu
	-chkdsp
	-chkdpfpu [V3.01.00 or later]

	Object Options
	-output
	-debug
	-nodebug
	-goptimize
	-fpu
	-nofpu
	-dpfpu [V3.01.00 or later]
	-nodpfpu [V3.01.00 or later]
	-bank [V3.01.00 or later]
	-nobank [V3.01.00 or later]
	-create_unfilled_area

	List Options
	-listfile
	-nolistfile
	-show

	Microcontroller Options
	-isa
	-cpu
	-endian
	-fint_register
	-base
	-patch
	-pic
	-pid
	-nouse_pid_register

	Other Options
	-logo
	-nologo
	-subcommand
	-euc
	-sjis
	-latin1
	-big5
	-gb2312
	-utf8 [V2.04.00 or later]

	2.5.3 Optimizing Linkage Editor (rlink) Options
	Input Options
	-Input
	-library
	-binary
	-define
	-entry
	-noprelink
	-ALLOW_DUPLICATE_MODULE_NAME [V3.02.00 or later]

	Output Options
	-form
	-debug
	-sdebug
	-nodebug
	-record
	-end_record [V2.07.00 or later]
	-rom
	-output
	-map
	-space
	-message
	-nomessage
	-msg_unused
	-byte_count
	-fix_record_length_and_alignment [V2.08.00 or later]
	-crc
	-padding
	-vectn
	-vect
	-split_vect [V3.00.00 or later]
	-jump_entries_for_pic
	-cfi [Professional Edition only] [V2.08.00 or later]
	-cfi_add_func [V2.08.00 or later]
	-cfi_ignore_module [V2.08.00 or later]
	-create_unfilled_area

	List Options
	-list
	-show

	Optimize Options
	-optimize
	-nooptimize
	-samesize
	-symbol_forbid
	-samecode_forbid
	-section_forbid
	-absolute_forbid

	Section Options
	-start
	-fsymbol
	-aligned_section

	Verify Options
	-cpu
	-contiguous_section

	Other Options
	-s9
	-stack
	-compress
	-nocompress
	-memory
	-rename
	-lib_rename [V3.01.00 or later]
	-delete
	-replace
	-extract
	-strip
	-change_message
	-hide
	-total_size
	-verbose [V3.03.00 or later]

	Subcommand File Option
	-subcommand

	Options Other Than Above
	-logo
	-nologo
	-end
	-exit

	2.5.4 Library Generator Options
	Library Options
	-head
	-output
	-nofloat
	-reent
	-lang
	-simple_stdio
	-secure_malloc [Professional Edition only] [V2.05.00 or later]
	-logo
	-nologo

	Compiler Options That Become Invalid

	3. OUTPUT FILES
	3.1 Assemble List File
	3.1.1 Source Information
	3.1.2 Object Information
	3.1.3 Statistics Information
	3.1.4 Compiler Command Specification Information
	3.1.5 Assembler Command Specification Information

	3.2 Link Map File
	3.2.1 Structure of Linkage List
	3.2.2 Option Information
	3.2.3 Error Information
	3.2.4 Linkage Map Information
	3.2.5 Symbol Information
	3.2.6 Symbol Deletion Optimization Information
	3.2.7 Cross-Reference Information
	3.2.8 Total Section Size
	3.2.9 Vector Information
	3.2.10 CRC Information
	3.2.11 CFI Information

	3.3 Library List
	3.3.1 Structure of Library List
	3.3.2 Option Information
	3.3.3 Error Information
	3.3.4 Library Information
	3.3.5 Module, Section, and Symbol Information within Library

	3.4 S-Type and HEX File Formats
	3.4.1 S-Type File Format
	3.4.2 HEX File Format

	4. COMPILER LANGUAGE SPECIFICATIONS
	4.1 Basic Language Specifications
	4.1.1 Unspecified Behavior
	4.1.2 Undefined Behavior
	4.1.3 Implementation-defined behavior of C90
	4.1.4 Implementation-defined behavior of C99
	4.1.5 Internal Data Representation and Areas
	4.1.6 Operator Evaluation Order
	4.1.7 Conforming Language Specifications

	4.2 Extended Language Specifications
	4.2.1 Macro Names
	4.2.2 Keywords
	4.2.3 #pragma Directive
	4.2.4 Using Extended Specifications
	4.2.5 Using a Keyword
	4.2.6 Intrinsic Functions
	4.2.7 Section Address Operators

	5. ASSEMBLY LANGUAGE SPECIFICATIONS
	5.1 Description of Source
	5.1.1 Description
	5.1.2 Names
	5.1.3 Coding of Labels
	5.1.4 Coding of Operation
	5.1.5 Coding of Operands
	5.1.6 Expression
	5.1.7 Coding of Comments
	5.1.8 Selection of Optimum Instruction Format
	5.1.9 Selection of Optimum Branch Instruction
	5.1.10 Substitute Register Names (for the PID Function)

	5.2 Directives
	5.2.1 Outline
	5.2.2 Link Directives
	5.2.3 Assembler Directives
	5.2.4 Address Directives
	5.2.5 Macro Directives
	5.2.6 Specific Compiler Directives

	5.3 Control Instructions
	5.3.1 Outline
	5.3.2 Assembler List Directive
	5.3.3 Conditional Assembly Directives
	5.3.4 Extended Function Directives

	5.4 Macro Names
	5.5 Reserved Words

	6. SECTION SPECIFICATIONS
	6.1 List of Section Names
	6.1.1 C/C++ Program Sections

	6.2 Assembly Program Sections
	6.3 Linking Sections

	7. LIBRARY FUNCTIONAL SPECIFICATION
	7.1 Supplied Libraries
	7.1.1 Terms Used in Library Function Descriptions
	7.1.2 Notes on Use of Libraries

	7.2 Header Files
	7.3 Reentrant Library
	7.4 Library Function
	7.4.1 <stddef.h>
	7.4.2 <assert.h>
	assert

	7.4.3 <ctype.h>
	isalnum
	isalpha
	iscntrl
	isdigit
	isgraph
	islower
	isprint
	ispunct
	isspace
	isupper
	isxdigit
	tolower
	toupper
	isblank

	7.4.4 <float.h>
	7.4.5 <limits.h>
	7.4.6 <errno.h>
	7.4.7 <math.h>
	acos / acosf / acosl
	asin / asinf / asinl
	atan / atanf / atanl
	atan2 / atan2f / atan2l
	cos / cosf / cosl
	sin / sinf / sinl
	tan / tanf / tanl
	cosh / coshf / coshl
	sinh / sinhf / sinhl
	tanh / tanhf / tanhl
	exp / expf / expl
	frexp / frexpf / frexpl
	ldexp / ldexpf / ldexpl
	log / logf / logl
	log10 / log10f / log10l
	modf / modff / modfl
	pow / powf / powl
	sqrt / sqrtf / sqrtl
	ceil / ceilf / ceill
	fabs / fabsf / fabsl
	floor / floorf / floorl
	fmod / fmodf / fmodl
	acosh / acoshf / acoshl
	asinh / asinhf / asinhl
	atanh / atanhf / atanhl
	exp2 / exp2f / exp2l
	expm1 / expm1f / expm1l
	ilogb / ilogbf / ilogbl
	log1p / log1pf / log1pl
	log2 / log2f / log2l
	logb / logbf / logbl
	scalbn / scalbnf / scalbnl / scalbln / scalblnf / scalblnl
	cbrt / cbrtf / cbrtl
	hypot / hypotf / hypotl
	erf / erff / erfl
	erfc / erfcf / erfcl
	lgamma / lgammaf / lgammal
	tgamma / tgammaf / tgammal
	nearbyint / nearbyintf / nearbyintl
	rint / rintf / rintl
	lrint / lrintf / lrintl / llrint / llrintf / llrintl
	round / roundf / roundl
	lround / lroundf / lroundl / llround / llroundf / llroundl
	trunc / truncf / truncl
	remainder / remainderf / remainderl
	remquo / remquof / remquol
	copysign / copysignf / copysignl
	nan / nanf / nanl
	nextafter / nextafterf / nextafterl
	nexttoward / nexttowardf / nexttowardl
	fdim / fdimf / fdiml
	fmax / fmaxf / fmaxl
	fmin / fminf / fminl
	fma / fmaf / fmal

	7.4.8 <mathf.h>
	acosf
	asinf
	atanf
	atan2f
	cosf
	sinf
	tanf
	coshf
	sinhf
	tanhf
	expf
	frexpf
	ldexpf
	logf
	log10f
	modff
	powf
	sqrtf
	ceilf
	fabsf
	floorf
	fmodf

	7.4.9 <setjmp.h>
	setjmp
	longjmp

	7.4.10 <stdarg.h>
	va_start
	va_arg
	va_end
	va_copy

	7.4.11 <stdio.h>
	fclose
	fflush
	fopen
	freopen
	setbuf
	setvbuf
	fprintf
	vfprintf
	printf
	vprintf
	sprintf
	sscanf
	snprintf
	vsnprintf
	vfscanf
	vscanf
	vsscanf
	fscanf
	scanf
	vsprintf
	fgetc
	fgets
	fputc
	fputs
	getc
	getchar
	gets
	putc
	putchar
	puts
	ungetc
	fread
	fwrite
	fseek
	ftell
	rewind
	clearerr
	feof
	ferror
	perror

	7.4.12 <stdlib.h>
	atof
	atoi
	atol
	atoll
	strtod
	strtof
	strtold
	strtol
	strtoul
	strtoll
	strtoull
	rand
	srand
	calloc
	free
	malloc
	realloc
	bsearch
	qsort
	abs
	div
	labs
	ldiv
	llabs
	lldiv

	7.4.13 <string.h>
	memcpy
	strcpy
	strncpy
	strcat
	strncat
	memcmp
	strcmp
	strncmp
	memchr
	strchr
	strcspn
	strpbrk
	strrchr
	strspn
	strstr
	strtok
	memset
	strerror
	strlen
	memmove

	7.4.14 <complex.h>
	cacosf / cacos / cacosl
	casinf / casin / casinl
	catanf / catan / catanl
	ccosf / ccos / ccosl
	csinf / csin / csinl
	ctanf / ctan / ctanl
	cacoshf / cacosh / cacoshl
	casinhf / casinh / casinhl
	catanhf / catanh / catanhl
	ccoshf / ccosh / ccoshl
	csinhf / csinh / csinhl
	ctanhf / ctanh / ctanhl
	cexpf / cexp / cexpl
	clogf / clog / clogl
	cabsf / cabs / cabsl
	cpowf / cpow / cpowl
	csqrtf / csqrt / csqrtl
	cargf / carg / cargl
	cimagf / cimag / cimagl
	conjf / conj / conjl
	cprojf / cproj / cprojl
	crealf / creal / creall

	7.4.15 <fenv.h>
	feclearexcept
	fegetexceptflag
	feraiseexcept
	fesetexceptflag
	fetestexcept
	fegetround
	fesetround
	fegetenv
	feholdexcept
	fesetenv
	feupdateenv

	7.4.16 <inttypes.h>
	imaxabs
	imaxdiv
	strtoimax / strtoumax
	wcstoimax / wcstoumax

	7.4.17 <iso646.h>
	7.4.18 <stdbool.h>
	7.4.19 <stdint.h>
	7.4.20 <tgmath.h>
	7.4.21 <wchar.h>
	fwprintf
	vfwprintf
	swprintf
	vswprintf
	wprintf
	vwprintf
	fwscanf
	vfwscanf
	swscanf
	vswscanf
	wscanf
	vwscanf
	fgetwc
	fgetws
	fputwc
	fputws
	fwide
	getwc
	getwchar
	putwc
	putwchar
	ungetwc
	wcstod / wcstof / wcstold
	wcstol / wcstoll / wcstoul / wcstoull
	wcscpy
	wcsncpy
	wmemcpy
	wmemmove
	wcscat
	wcsncat
	wcscmp
	wcsncmp
	wmemcmp
	wcschr
	wcscspn
	wcspbrk
	wcsrchr
	wcsspn
	wcsstr
	wcstok
	wmemchr
	wcslen
	wmemset
	mbsinit
	mbrlen

	7.5 EC++ Class Libraries
	7.5.1 Stream Input/Output Class Library
	7.5.2 Memory Management Library
	7.5.3 Complex Number Calculation Class Library
	7.5.4 String Handling Class Library

	7.6 Unsupported Libraries

	8. STARTUP
	8.1 Overview
	8.2 File Contents
	8.3 Startup Program Creation
	8.3.1 Fixed Vector Table Setting
	8.3.2 Initial Setting
	8.3.3 Coding Example of Initial Setting Routine
	8.3.4 Low-Level Interface Routines
	(Routine name)
	long open (const char *name, long mode, long flg)
	long close (long fileno)
	long read (long fileno, unsigned char *buf, long count)
	long write (long fileno, const unsigned char *buf, long count)
	long lseek (long fileno, long offset, long base)
	char *sbrk (size_t size)
	long *errno_addr (void)
	long wait_sem (long semnum)
	long signal_sem (long semnum)

	8.3.5 Termination Processing Routine

	8.4 Coding Example
	8.5 Usage of PIC/PID Function
	8.5.1 Terms Used in this Section
	8.5.2 Function of Each Option
	8.5.3 Restrictions on Applications
	8.5.4 System Dependent Processing Necessary for PIC/PID Function
	8.5.5 Combinations of Code Generating Options
	8.5.6 Master Startup
	8.5.7 Application Startup

	9. FUNCTION CALL INTERFACE SPECIFICATIONS
	9.1 Function Calling Interface
	9.1.1 Rules Concerning the Stack
	9.1.2 Rules Concerning Registers
	9.1.3 Rules Concerning Setting and Referencing Parameters
	9.1.4 Rules Concerning Setting and Referencing Return Values
	9.1.5 Examples of Parameter Allocation

	9.2 Method for Mutual Referencing of External Names between Compiler and Assembler
	9.2.1 Referencing Assembly-Language Program External Names in C/C++ Programs
	9.2.2 Referencing C/C++ Program External Names (Variables and C Functions) from Assembly-Language Programs
	9.2.3 Referencing C++ Program External Names (Functions) from Assembly-Language Programs

	10. MESSAGES
	10.1 GENERAL
	10.2 MESSAGE FORMATS
	10.3 MESSAGE TYPES
	10.4 MESSAGE NUMBERS
	10.5 MESSAGES
	10.5.1 Internal Errors
	10.5.2 Errors
	10.5.3 Fatal Errors
	10.5.4 Informations
	10.5.5 Warnings
	10.5.6 Standard Library Error Messages

	11. Usage Notes
	11.1 Notes on Program Coding
	11.2 Notes on Compiling a C Program with the C++ Compiler
	11.3 Notes on Options
	11.4 Preventing E0562330 Errors in Cases Where Optimization by the Optimizing Linkage Editor is Enabled
	11.5 Compatibility with an Older Version or Older Revision
	11.5.1 V.1.01 and Later Versions (Compatibility with V.1.00)
	11.5.2 V.2.00 and Later Versions (Compatibility with Versions between 1.00 and 1.02)
	11.5.3 V.2.03 and Later Versions (Compatibility with Versions between 1.00 and 2.02)
	11.5.4 V2.06 and Later Versions (Compatibility with V2.05 and earlier)
	11.5.5 Version of Compiler Package

	11.6 W0523041 message [C/C++ compiler]
	11.7 Using MVTC or POPC instructions [Assembler]
	11.8 Using the -delete option for linkage [Optimizing linkage editor]
	11.9 Path names

	A. QUICK GUIDE
	A.1 Variables (C Language)
	A.1.1 Changing Mapped Areas
	A.1.2 Defining Variables Used at Normal Processing and Interrupt Processing
	A.1.3 Generating a Code that Accesses Variables in the Declared Size
	A.1.4 Performing const Declaration for Variables with Unchangeable Initialized Data
	A.1.5 Defining the const Constant Pointer
	A.1.6 Referencing Addresses of a Section

	A.2 Functions
	A.2.1 Filling Assembler Instructions
	A.2.2 Performing In-Line Expansion of Functions
	A.2.3 Performing (Inter-File) In-Line Expansion of Functions

	A.3 Using Microcomputer Functions
	A.3.1 Processing an Interrupt in C Language
	A.3.2 Using CPU Instructions in C Language

	A.4 Variables (Assembly Language)
	A.4.1 Defining Variables without Initial Values
	A.4.2 Defining a cost Constant with an Initial Value
	A.4.3 Referencing the Address of a Section

	A.5 Startup Routine
	A.5.1 Allocating Stack Areas
	A.5.2 Initializing RAM
	A.5.3 Transferring Variables with Initial Values from ROM to RAM

	A.6 Reducing the Code Size
	A.6.1 Data Structure
	A.6.2 Local Variables and Global Variables
	A.6.3 Offset for Structure Members
	A.6.4 Allocating Bit Fields
	A.6.5 Optimization of External Variable Accesses when the Base Register is Specified
	A.6.6 Specified Order of Section Addresses by Optimizing Linkage Editor at Optimization of External Variable Accesses
	A.6.7 Interrupt

	A.7 High-Speed Processing
	A.7.1 Loop Control Variable
	A.7.2 Function Interface
	A.7.3 Reducing the Number of Loops
	A.7.4 Usage of a Table
	A.7.5 Branch
	A.7.6 Inline Expansion

	A.8 Modification of C Source

	Revision Record

