
 Application Note

R01AN5522EJ0100 Rev.1.00 Page 1 of 35
Mar.08.21

RL78 Family
Board Support Package Module Using Software Integration System
Summary
The Renesas board support package SIS module (r_bsp) forms the foundation of any project that uses
Software Integration System (SIS) modules. The r_bsp is easily configurable and provides all the code
needed to get the MCU and the board from reset to the main() function. This document describes r_bsp
conventions and explains how to use it, configure it, and create a BSP for your own board.

Device on Which Operation Confirmed
RL78/G23 Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Supported Compilers
• Renesas Electronics C/C++ Compiler Package for RL78 Family
• IAR C/C++ Compiler for Renesas RL78
• LLVM C/C++ Compiler for Renesas RL78

For details of the confirmed operation of each compiler, refer to 7.1, Confirmed Operating Environment.

Limitations apply to some functions. Refer to 4.4, Limitations.

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 2 of 35
Mar.08.21

Contents

1. Overview .. 4
1.1 Terminology ... 4
1.2 File Structure ... 5

2. Functionality .. 7
2.1 MCU Information ... 7
2.2 Initial Settings .. 8
2.3 Global Interrupts .. 10
2.4 Clock Settings .. 10
2.5 Stack Area ... 10
2.6 ID Code ... 10
2.7 Option Bytes .. 10
2.8 RAM/SFR Guard Functionality .. 10
2.9 CPU Functionality .. 11
2.10 Disabling Startup ... 11
2.10.1 Settings to Disable Startup .. 11

3. Configuration ... 12
3.1 Choosing a Platform .. 12
3.2 Platform Configuration ... 12
3.2.1 MCU Product Part Number Information .. 12
3.2.2 Peripheral I/O Redirection Register .. 13
3.2.3 RAM/SFR Guard Functionality .. 14
3.2.4 Data Flash Access Restriction .. 14
3.2.5 Clock Settings ... 15
3.2.6 Option Bytes .. 18
3.2.7 Startup Disable .. 19
3.2.8 Smart Configurator Usage ... 19
3.2.9 API Functions disable Usage .. 19
3.2.10 Parameter check Usage .. 19
3.2.11 Callback Function at Warm Start .. 20
3.2.12 Watchdog timer refresh ... 20

4. API Information .. 21
4.1 Hardware Requirements ... 21
4.2 Hardware Resource Requirements ... 21
4.3 Software Requirements ... 21
4.4 Limitations ... 21
4.4.1 IAR Compiler Limitations ... 21
4.4.2 Watchdog Timer Refresh Limitations .. 21
4.5 Supported Toolchains ... 21

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 3 of 35
Mar.08.21

4.6 Interrupt Vectors Used .. 21
4.7 Header Files .. 21
4.8 Integer Types ... 21
4.9 API Typedef ... 22
4.9.1 Clock Resource ... 22
4.10 Return Values .. 22
4.10.1 Error Codes ... 22
4.11 Code Size .. 23
4.12 “for,” “while,” and “do while” Statements ... 23

5. API Functions .. 24
5.1 Overview .. 24
5.2 R_BSP_StartClock() .. 25
5.3 R_BSP_StopClock() .. 26
5.4 R_BSP_SetClockSource() .. 27
5.5 R_BSP_GetFclkFreqHz() .. 28

6. Project Setup ... 29
6.1 Adding the SIS Module .. 29
6.2 Adding the SIS Module to a Project in e2 studio ... 30
6.2.1 Adding the SIS Module Using Smart Configurator in e2 studio ... 30

7. Appendix .. 34
7.1 Confirmed Operating Environment .. 34

Revision History .. 35

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 4 of 35
Mar.08.21

1. Overview
Before running a user application there are a series of operations that must be performed to get the MCU set
up properly. These operations, and their number, will vary depending on the MCU being used. Common
examples include: setting up stack(s), initializing memory, configuring the CPU and peripheral hardware
clock, and setting up port pins. The steps described in this document must to be followed in order to
configure the above items. The r_bsp is provided in order to make configuration easier.

The r_bsp provides all the elements needed to get the MCU from reset to the start of the user application’s
main() function. The r_bsp also provides common functionality that is needed by many applications.
Examples of this include functions to start and stop the clocks and to get the frequency of the CPU and
peripheral hardware clock.

The necessary steps after a reset are the same for every application, but this does not mean that the settings
will be the same. For example, stack sizes and the clocks used will vary depending on the application. The
r_bsp configuration options are contained in the config header file for easy access.

1.1 Terminology

Term Description
Platform The user’s development board. Used interchangeably with “board.”
BSP Abbreviation of “board support package.”

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 5 of 35
Mar.08.21

1.2 File Structure
The r_bsp file structure is shown below in Figure 1.1. The r_bsp folder contains three folders and two files.

The doc folder contains r_bsp documentation.

The board folder contains the generic folders.

There is a generic folder for each supported MCU.

Figure 1.2 shows the contents of the generic folder.

The mcu folder contains one folder for each supported MCU. The mcu folder also contains the all folder,
which contains source code common to all MCUs supported by the r_bsp.

The platform.h file allows you to choose your current development platform. It is used to select all the header
files from the board and mcu folders required for your project. This is discussed in more detail in later
sections.

The readme.txt file provides a summary of information about the r_bsp.

r_bsp

doc board mcu

generic_rl78_g23 Rl78_g23

all

en

ja

readme.txtplatform.h

Figure 1.1 r_bsp File Structure

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 6 of 35
Mar.08.21

Figure 1.2 Structure of Generic Folder

board

generic_rl78_g23

hdwinit.c cstart.asm

hdwinit.h

r_bsp_common.h

r_bsp_rl78_compiler.h

r_bsp.h

r_bsp_config_reference.h

r_bsp_init.c

vecttbl.c

mcu

rl78_g23

mcu_clocks.c

mcu_info.h

start.S

all

cstartup.s mcu_clocks.h

register_access

iodefine.h

ccrl

iccrl

llvm

intrinsics.h

iodefine.h

r_bsp_rl78_generic_rl78g23_extend.mdf

r_bsp_common.c

stkinit.asm

ior7f1100glg.h

ior7f100glg_ext.h

iodefine_ext.h

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 7 of 35
Mar.08.21

2. Functionality
This section describes in detail the functionality provided by the r_bsp.

2.1 MCU Information
One of the main benefits of the r_bsp is that it lets you define the global system settings only once, in a
single place in the project, and those settings are then shared throughout. This information is defined in the
r_bsp and can then be used by the SIS modules and user code. SIS modules use this information to
automatically configure their code to match your system configuration. If the r_bsp did not provide this
information, you would have to specify system information to each SIS module separately.

Configuring the r_bsp is discussed in Section 3. The r_bsp uses this configuration information to set macro
definitions in mcu_info.h. An example of an MCU-specific macro in mcu_info.h is shown below.

Definition Description
BSP_<CLOCK>_HZ Each of these macros corresponds to one of the MCU’s clocks. Each

macro defines the corresponding clock’s frequency in hertz (Hz). For
example, BSP_LOCO_HZ defines the LOCO frequency in Hz, and
BSP_SUB_CLOCK_HZ defines the subsystem clock frequency in Hz.

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 8 of 35
Mar.08.21

2.2 Initial Settings
The _start function is set as the reset vector for the MCU when using the Renesas compiler, and the
PowerON_Reset function is set as the reset vector when using the LLVM compiler. The __iar_program_start
function is set as the reset vector for the MCU when using the IAR compiler. The _start function,
PowerON_Reset_PC function, or function __iar_program_start function (the startup function) performs
various types of initialization processing to get the MCU ready to use the user application. The flowcharts
below show startup function operations and CPU and peripheral hardware clock settings.

Startup function

Set stack addresses

Make CPU and peripheral hardware clock settings
mcu_clock_setup()

• Sets the clock division ratio and multiplication factor.
• Stops clocks that are not used as the clock source.
• Waits for stabilization of the clock used as the clock

source.
• Transitions to the selected clock.

• Sets uninitialized data areas to zero.
• Copies data to the data area to be initialized.

Initialize RAM area

Initialize output pins
output_ports_configure()

Initialize peripheral modules*1

peripheral_modules_enable()

Make illegal memory access detection control
register settings*1

Jump to main function

Initialize interrupts
Interrupts_configure()

Initialize stack area

Enable/disable peripheral I/O redirect functionality

Warm start function (PRE)*1

User_Warm_start_func_pre()

Warm start function (POST)*1

User_Warm_start_func_post()

Make data flash control register settings*1

Note: 1. The operation differs according to the settings in r_bsp_config.h.

Figure 2.1 Flowchart of Startup Function

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 9 of 35
Mar.08.21

Make high-speed system clock initial settings

System clock settings*1

mcu_clock_setup()

Return

Make high-speed on-chip oscillator clock initial settings

Make subsystem clock initial settings

Make middle-speed on-chip oscillator clock initial settings

Set high-speed system clock oscillation stabilization wait time

Activate high-speed system clock

Activate middle-speed on-chip oscillator clock

Make main system clock (fMAIN) settings

Activate subsystem clock

Make subsystem clock (fSUB) settings

Make subsystem clock supply mode settings

Make CPU and peripheral hardware clock settings

Activate high-speed on-chip oscillator

Activate high-speed on-chip oscillator clock

Note: 1. The operation differs according to the settings in r_bsp_config.h.

Figure 2.2 Flowchart of CPU and Peripheral Hardware Clock Settings

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 10 of 35
Mar.08.21

2.3 Global Interrupts
Interrupts are disabled after a reset. Enable interrupts as needed. Use the BSP_ENABLE_INTERRUPT
function to enable interrupts and the BSP_DISABLE_INTERRUPT function to disable them. For details, refer
to 5.1, Overview.

RL78 devices have a fixed vector table. The fixed vector table is located at a static location at the top of the
memory map.

When using the Renesas compiler or LLVM compiler the fixed vector table is defined in iodefine.h, and when
using the IAR compiler it is defined in iorxxx.h.*1

Note: 1. The characters represented by xxx differ depending on the device.

2.4 Clock Settings
CPU and peripheral hardware clock settings are made during r_bsp initialization. Clocks are configured
based upon the user’s settings in the r_bsp_config.h file (see 3.2.5). Clock settings are applied before the C
runtime environment is initialized. When a clock is selected, the code in the r_bsp implements the required
delays to allow the selected clock to stabilize.

2.5 Stack Area
The stacks are configured and initialized by the startup function after a reset. When using the IAR compiler it
is possible to specify the stack size using a GUI.

2.6 ID Code
RL78 MCUs have a 10-byte ID code stored in ROM that protects the MCU’s memory from being read
through a debugger, or in serial boot mode, in an attempt to extract the firmware from the device. ID code
resides in the on-chip debug security ID setting memory. The value of the security ID is specified in the
compile options of the Renesas compiler environment. In the IAR or LLVM environment it is specified in
r_bsp_config.h. For details of ID code options, refer to the Option Bytes and On-Chip Debug Function
chapters in your MCU’s hardware manual.

2.7 Option Bytes
The option bytes are located in the flash memory of RL78 MCUs. The option bytes are referenced
automatically after power-on or a reset, and the specified function settings are applied. Option bytes can be
used to specify settings for the watchdog timer or voltage detection circuit, for example. Option byte setting
values are specified in the compile options of the Renesas compiler environment. In the IAR or LLVM
environment they are specified in r_bsp_config.h (see 3.2.6).

2.8 RAM/SFR Guard Functionality
RL78 MCUs are provided with an illegal memory access detection control register that protects the data in
the specified RAM space as well as the data in the control registers of the port, interrupt, clock control,
voltage detection circuit, and RAM parity error detection functions. The setting values can be specified in
r_bsp_config.h.

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 11 of 35
Mar.08.21

2.9 CPU Functionality
API functions are provided for making settings related to CPU functionality such as enabling and disabling
interrupts. Refer to Section 5 for details.

2.10 Disabling Startup
To disable startup, manually delete the startup assembler code. The names of the files containing the startup
assembler code for each environment are as follows:

• Renesas compiler: cstart.asm
• LLVM compiler: start.S
• IAR compiler: cstartup.s

Additionally, you will need to add your own startup code.

2.10.1 Settings to Disable Startup
Make settings as described below to disable BSP startup processing.

(1) Configuration File Settings
Specify your own startup processing in r_bsp_config.h. Some BSP API functions and peripheral SIS modules
reference the contents of r_bsp_config.h. Note that some SIS modules may not function correctly if there are
discrepancies between the details of the startup processing you created and the contents of r_bsp_config.h.

The BSP information referenced by the peripheral SIS modules is generated based on r_bsp_config.h, so it
is necessary to ensure that the details of the startup processing you created and the contents of
r_bsp_config.h match.

Figure 2.3 illustrates configuration file settings.

BSP
r_bsp_config.h

User’s startup processing

Clock settings, etc.Clock settings, etc. Make sure the settings
are the same.

mcu_info.h

Reference

Reference

Refe
ren

ce

Reference

Clock settings, etc. Peripheral module

Peripheral module

Figure 2.3 Configuration File Settings

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 12 of 35
Mar.08.21

3. Configuration
Two header files are used to configure the r_bsp. One is used to choose the platform, and the other to
configure the chosen platform.

3.1 Choosing a Platform
The r_bsp provides board support packages for a variety of MCUs. Choosing the platform to be used is
accomplished by modifying the platform.h file located in the r_bsp folder.

Version 1.00 only supports the RL78/G23, so the platform selection step is unnecessary.

3.2 Platform Configuration
After selecting a platform, you must configure it. The file r_bsp_config.h contains the platform settings. Each
platform has a configuration file called r_bsp_config_reference.h, which is located in the platform’s board
folder.

The contents of each r_bsp_config.h file differs according to the MCU associated with it, but many of the
options are the same. The following sections provide details on these configuration options. Note that each
macro starts with the common prefix “BSP_CFG_,” which makes them easy to search for and identify.

When using Smart Configurator, the configuration options can be set on the software component
configuration screen. Setting values are automatically reflected in r_bsp_config.h when adding modules to a
user project.

3.2.1 MCU Product Part Number Information
The MCU’s product part number information makes it possible to provide a variety of information about the
MCU along with the r_bsp. Information related to the MCU’s product part number is defined at the beginning
of the configuration file. All of these macros start with “BSP_CFG_MCU_PART.” Some MCUs have more
product part number–related information than others, but the standard definitions are listed below.

Table 3.1 Product Part Number Definitions

Definition Value Description
BSP_CFG_MCU_PART_ROM_SI
ZE

See comments above
#define in r_bsp_config.h.

Defines the ROM size.

BSP_CFG_MCU_PART_PIN_NU
M

Defines the pin count.

BSP_CFG_MCU_PART_HAS_DA
TA_FLASH

Defines whether or not the device
incorporates flash memory.

BSP_CFG_MCU_PART_ROM_T
YPE

Defines the device type.

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 13 of 35
Mar.08.21

3.2.2 Peripheral I/O Redirection Register
RL78 MCUs provide functionality to switch the ports assigned to alternate functions. After a reset the r_bsp
makes MCU pin assignment settings using the pin assignment configuration macros in r_bsp_config.h.

Table 3.2 Peripheral I/O Redirection Register Definitions

Definition Value Description
BSP_CFG_PIOR0 See comments above

#define in r_bsp_config.h.
Defines ports to which alternate
functions are assigned.
TI02/TO02, TI03/TO03, TI04/TO04,
TI05/TO05, TI06/TO06, TI07/TO07

BSP_CFG_PIOR1 Defines ports to which alternate
functions are assigned.
INTP10, INTP11, TxD2, RxD2,
SCL20, SDA20, SI20, SO20, SCK20,
TxD0, RxD0, SCL00, SDA00, SI00,
SO00, SCK00

BSP_CFG_PIOR2 Defines ports to which alternate
functions are assigned.
SCLA0, SDAA0

BSP_CFG_PIOR3 Defines ports to which alternate
functions are assigned.
PCLBUZ0

BSP_CFG_PIOR4 Defines ports to which alternate
functions are assigned.
PCLBUZ1, INTP5

BSP_CFG_PIOR5 Defines ports to which alternate
functions are assigned.
INTP1, INTP3, INTP4, INTP6, INTP7,
INTP8, INTP9, TxD1, RxD1, SCL10,
SDA10, SI10, SO10, SCK10

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 14 of 35
Mar.08.21

3.2.3 RAM/SFR Guard Functionality
RL78 MCUs are provided with functionality to protect the data in the specified RAM space as well as the data
in the control registers of the port, interrupt, clock control, voltage detection circuit, and RAM parity error
detection functions. After a reset the r_bsp makes MCU guard area settings using the guard functionality
configuration macros in r_bsp_config.h.

Table 3.3 RAM/SFR Guard Functionality Definitions

Definition Value Description
BSP_CFG_INVALID_MEMORY_
ACCESS_DETECTION_ENABLE

See comments above
#define in r_bsp_config.h.

Defines whether or not illegal memory
access detection is performed.

BSP_CFG_RAM_GUARD_FUNC Defines the size of the RAM guard
space.

BSP_CFG_PORT_FUNCTION_G
UARD

Defines whether or not guarding is
applied to port function control
registers.

BSP_CFG_INT_FUNCTION_GUA
RD

Defines whether or not guarding is
applied to interrupt function registers.

BSP_CFG_CHIP_STATE_CTRL_
GUARD

Defines whether or not guarding is
applied to clock control, voltage
detection circuit, and RAM parity error
detection function control registers.

3.2.4 Data Flash Access Restriction
RL78 MCUs are provided with functionality to enable or disable access to the data flash. After a reset the
r_bsp makes data flash access settings using the data flash access restriction functionality configuration
macros in r_bsp_config.h.

Table 3.4 Data Flash Access Restriction Definitions

Definition Value Description
BSP_CFG_DATA_FLASH_ACCE
SS_ENABLE

See comments above
#define in r_bsp_config.h.

Defines whether access to the data
flash is enabled or disabled.

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 15 of 35
Mar.08.21

3.2.5 Clock Settings
The available clocks vary among RL78 MCUs, but the same basic concepts apply to all. After a reset the
r_bsp initializes the MCU clocks using the clock configuration macros in r_bsp_config.h.

Table 3.5 Clock Setting Definitions

Definition Value Description
BSP_CFG_HISYSCLK_SOURCE 0 = Port

1 = Connected
crystal/ceramic oscillator
2 = External clock input

Defines the oscillation source of the
high-speed system clock.

BSP_CFG_HISYSCLK_OPERATI
ON

(X1 oscillation mode)
0 = X1 oscillator operating
1 = X1 oscillator stopped
(External clock input mode)
0 = External clock from
EXCLK pin is valid
1 = External clock from
EXCLK pin is invalid
(Port mode)
0 = I/O port
1 = I/O port

Defines high-speed system clock
operation control.

BSP_CFG_SUBCLK_SOURCE 0 = Input port
1 = Connected crystal
oscillator
2 = External clock input

Defines the oscillation source of the
subsystem clock.

BSP_CFG_SUBCLK_OPERATIO
N

(XT1 oscillation mode)
0 = XT1 oscillator operating
1 = XT1 oscillator stopped
(External clock input mode)
0 = External clock from
EXCLKS pin is valid
1 = External clock from
EXCLKS pin is invalid
(Port mode)
0 = Input port
1 = Input port

Defines subsystem clock operation
control.

BSP_CFG_MOCO_SOURCE 0 = Middle-speed on-chip
oscillator stopped
1 = Middle-speed on-chip
oscillator operating

Defines whether the middle-speed
on-chip oscillator clock operates or is
stopped.

BSP_CFG_OCOCLK_SOURCE 0 = High-speed on-chip
oscillator clock
1 = Middle-speed on-chip
oscillator clock

Defines the clock source used as the
main on-chip oscillator clock (fOCO).

BSP_CFG_MAINCLK_SOURCE 0 = Main on-chip oscillator
clock (fOCO)
1 = High-speed system clock
(fMX)

Defines the clock source used as the
main system clock (fMAIN).

BSP_CFG_SUBSYSCLK_SOUR
CE

0 = Subclock
1 = Low-speed on-chip
oscillator clock

Defines the clock source used as the
subsystem clock.

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 16 of 35
Mar.08.21

Definition Value Description
BSP_CFG_FCLK_SOURCE 0 = Main system clock (fMAIN)

1 = Subsystem clock (fSUB)
Defines the clock source used as the
CPU and peripheral hardware clock
(fCLK).

BSP_CFG_XT1_OSCMODE 0 = Low-power oscillation 1
(default)
1 = Normal oscillation
2 = Low-power oscillation 2
3 = Low-power oscillation 3

Defines the oscillation mode of the
XT1 oscillator circuit.

BSP_CFG_FMX_HZ High-speed system clock
frequency (unit: Hz)

Defines the frequency of the high-
speed system clock.

BSP_CFG_X1_WAIT_TIME_SEL 0 = 28/fX
1 = 29/fX
2 = 210/fX
3 = 211/fX
4 = 213/fX
5 = 215/fX
6 = 217/fX
7 = 218/fX

Defines the oscillation stabilization
time of the X1 clock.

BSP_CFG_ALLOW_FSUB_IN_S
TOPHALT

0 = Supply of subsystem
clock to peripheral functions
enabled
1 = Supply of subsystem
clock to peripheral functions
other than realtime clock
stopped

Defines supply of the subsystem
clock in STOP mode and in HALT
mode when the CPU is operating on
the subsystem clock.

BSP_CFG_RTC_OUT_CLK_SOU
RCE

0 = Subsystem clock
1 = Low-speed on-chip
oscillator clock

Defines the operating clock of the
realtime clock, 32-bit interval timer,
UART0 and UART1 serial interfaces,
remote control signal reception
function, and clock output/buzzer
output control circuit.

BSP_CFG_HOCO_DIVIDE (When FRQSEL3 = 0)
0 = fIH: 24 MHz
1 = fIH: 12 MHz
2 = fIH: 6 MHz
3 = fIH: 3 MHz
(When FRQSEL3 = 1)
0 = fIH: 32 MHz
1 = fIH: 16 MHz
2 = fIH: 8 MHz
3 = fIH: 4 MHz
4 = fIH: 2 MHz
5 = fIH: 1 MHz

Defines the frequency of the high-
speed on-chip oscillator.
Use an option byte (000C2H) to
specify the setting of FRQSEL3. See
2.7 for the setting procedure.

BSP_CFG_WAKEUP_MODE 0 = Normal activation
1 = Fast activation

Defines the high-speed on-chip
oscillator activation setting when
STOP mode is canceled and when
transitioning to SNOOZE mode.

BSP_CFG_MOSC_DIVIDE 0 = fMX
1 = fMX/2
2 = fMX/4
3 = fMX/8
4 = fMX/16

Defines the frequency dividing ratio of
the high-speed system clock.

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 17 of 35
Mar.08.21

Definition Value Description
BSP_CFG_MOCO_DIVIDE 0 = 4 MHz

1 = 2 MHz
2 = 1 MHz

Defines the frequency of the middle-
speed on-chip oscillator.

BSP_SUBWAITTIME Loop count
(unit: number of times)

Defines the subsystem clock
oscillation stabilization wait time.
Defined as the loop count using the
main system clock.*1

BSP _FIHWAITTIME Loop count
(unit: number of times)

Defines the high-speed on-chip
oscillator clock oscillation stabilization
wait time.
Defined as the loop count using the
main system clock.*1

BSP_FIMWAITTIME Loop count
(unit: number of times)

Defines the middle-speed on-chip
oscillator clock oscillation stabilization
wait time.
Defined as the loop count using the
main system clock.*1

BSP_FILWAITTIME Loop count
(unit: number of times)

Defines the low-speed on-chip
oscillator clock oscillation stabilization
wait time.
Defined as the loop count using the
main system clock.*1

BSP_CFG_FIH_START_ON_STA
RTUP

0 = High-speed on-chip
oscillator clock stops
1 = High-speed on-chip
oscillator clock starts

Defines the operation of the high-
speed on-chip oscillator clock at
initialization.

Note: 1. The loop count refers to a loop consisting of a “for” statement that executes a single NOP
instruction.
The actual source code is as follows:

/* WAIT_LOOP */

for (w_count = 0U; w_count <= BSP_SUBWAITTIME; w_count++)

{

 BSP_NOP();

}

However, since the actual number of cycles will differ according to factors such as the optimization
option, you will need to specify a setting that matches your environment.

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 18 of 35
Mar.08.21

3.2.6 Option Bytes
You can select the behavior after a reset by setting option bytes. For example, you can specify settings for
the watchdog timer and voltage detection circuit.

The option byte setting values are defined r_bsp_config.h when using the IAR environment. When using
another environment, specify these settings in the project properties.

Table 3.6 Option Byte Definitions

Definition Value Description
OPTBYTE0_VALUE
OPTBYTE1_VALUE
OPTBYTE2_VALUE
OPTBYTE3_VALUE

Option byte value Specifies the setting value of the
corresponding option byte.
These macro definitions are used by
the IAR environment only. For the
Renesas compiler or LLVM
environment, specify these settings in
the compile options.

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 19 of 35
Mar.08.21

3.2.7 Startup Disable

Table 3.7 Startup Disable Definitions

Definition Value Description
BSP_CFG_STARTUP_DISABLE 0 = BSP startup enabled

1 = BSP startup disabled
Defines whether initial clock setting
processing is enabled or disabled.
When “disabled” is selected, initial
clock setting processing is disabled.
To disable startup entirely, manually
delete the startup assembler code
and add your own startup processing.

3.2.8 Smart Configurator Usage

Table 3.8 Smart Configurator Usage Definitions

Definition Value Description
BSP_CFG_CONFIGURATOR_SE
LECT

0 = Smart Configurator not
used
1 = Smart Configurator used

Defines whether or not Smart
Configurator is used in the current
project. When
BSP_CFG_CONFIGURATOR_SELE
CT = 1, the Smart Configurator
initialization function is called.

3.2.9 API Functions disable Usage

Table 3.9 API Functions disable Usage Definitions

Definition Value Description
BSP_CFG_API_FUNCTIONS_DI
SABLE

0 = API Functions enable
1 = API Functions disable

Defines whether API Functions is
disabled.
When
BSP_CFG_API_FUNCTIONS_DISAB
LE = 1, cannot use API Functions, but
can reduce the memory size.

3.2.10 Parameter check Usage

Table 3.10 Parameter check Usage Definitions

Definition Value Description
BSP_CFG_PARAM_CHECKING_
ENABLE

0 = Parameter check is
invalid
1 = Parameter check is valid

Defines whether parameter check is
enabled.
Returns an error for incorrect setting
when switching fCLK source.

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 20 of 35
Mar.08.21

3.2.11 Callback Function at Warm Start

Table 3.11 Warm Start Callback Function Definitions

Definition Value Description
BSP_CFG_USER_WARM_STAR
T_CALLBACK_PRE_INITC_ENA
BLED

0 = User function is not called
before C runtime
environment is initialized
1 = User function is called
before C runtime
environment is initialized

Defines whether or not a user
function is called before the C runtime
environment is initialized.

BSP_CFG_USER_WARM_STAR
T_PRE_C_FUNCTION

Function called before C
runtime environment is
initialized

Defines the user function called
before the C runtime environment is
initialized.

BSP_CFG_USER_WARM_STAR
T_CALLBACK_POST_INITC_EN
ABLED

0 = User function is not called
after C runtime environment
is initialized
1 = User function is called
after C runtime environment
is initialized

Defines whether or not a user
function is called after the C runtime
environment is initialized.

BSP_CFG_USER_WARM_STAR
T_POST_C_FUNCTION

Function called after C
runtime environment is
initialized

Defines the user function called after
the C runtime environment is
initialized.

3.2.12 Watchdog timer refresh

Table 3.12 Watchdog timer refresh Definitions

Definition Value Description
BSP_CFG_WDT_REFRESH_EN
ABLE

0 = WDT operation disabled.
1 = WDT operation enabled.

Window Open Period of
Watchdog timer is 100%

2 = WDT operation enabled.
 Window Open Period of
Watchdog timer is 50%.

Defines how to use the watchdog
timer.
Please also set this config as the
same setting in Watchdog Timer
config.

BSP_CFG_USER_WDT_REFRE
SH_INIT_FUNCTION

Function to set the interval
interrupt of the watchdog
timer.

Defines the function to be called
when calling the user function before
setting the clock.

BSP_CFG_USER_WDT_REFRE
SH_SETTING_FUNCTION

Function to set the refresh
permission flag of the
watchdog timer.

Defines a function that sets a flag that
allows the watchdog timer to refresh
while waiting for clock oscillation to
stabilize.

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 21 of 35
Mar.08.21

4. API Information
The driver API conforms to Renesas API naming conventions.

4.1 Hardware Requirements
Not applicable.

4.2 Hardware Resource Requirements
Not applicable.

4.3 Software Requirements
None

4.4 Limitations
4.4.1 IAR Compiler Limitations
When using the IAR compiler, use r_bsp_config.h to make option byte settings.

4.4.2 Watchdog Timer Refresh Limitations
When the window open period of the watchdog timer is set to 50%, the refresh timing assumes an interval
interrupt.
Do not refresh at any timing other than interval interrupts.

4.5 Supported Toolchains
The operation of this SIS module has been confirmed with the toolchains listed in 7.1, Confirmed Operating
Environment.

4.6 Interrupt Vectors Used
This SIS module does not use interrupt vectors.

4.7 Header Files
All API calls are included by incorporating the file platform.h, which is supplied with the driver’s project code.

4.8 Integer Types
This project uses ANSI C99 “Exact width integer types” in order to make the code clearer and more portable.
These types are defined in stdint.h.

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 22 of 35
Mar.08.21

4.9 API Typedef
4.9.1 Clock Resource
This typedef defines commands that can be used with the R_BSP_StartClock(), R_BSP_StopClock(), and
R_BSP_SetClockSource() functions.

The typedef used with the RL78/G23 is shown below:

/* clock mode */
typedef enum
{
 HIOCLK, // High-speed on-chip oscillator
 SYSCLK, // High-speed system clock
 SXCLK, // Subsystem clock
 MIOCLK, // Middle-speed on-chip oscillator
 LOCLK // Low-speed on-chip oscillator
} e_clock_mode_t;

4.10 Return Values
4.10.1 Error Codes
This typedef defines the error codes that can be returned by the R_BSP_StartClock(), R_BSP_StopClock(),
and R_BSP_SetClockSource() functions.

The typedef used with the RL78/G23 is shown below:

/* Error identification */
typedef enum
{
 /* Refer to table below for members. */
} e_bsp_err_t;

Member Description
BSP_OK Success.
BSP_ARG_ERROR An invalid argument was input.
BSP_ERROR1 The specified clock is not oscillating.
BSP_ERROR2 When switching between clock resources, a clock resource that is not

oscillating may have been switched to.
BSP_ERROR3 An unsupported state transition was specified. Refer to the user’s manual.

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 23 of 35
Mar.08.21

4.11 Code Size
The ROM size and RAM size of the module are listed in the table below. Code sizes for the RL78/G23 are
listed as representative of the RL78/G2x Series.

The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration
options described in Section 3, Configuration.

The values in the table below are confirmed under the following conditions:

Module revision: r_bsp v1.00

Compiler version: Renesas Electronics C/C++ Compiler Package for RL78 Family V1.09.00

 LLVM C/C++ Compiler for Renesas RL78 7.0.0.202004

 IAR C/C++ Compiler for Renesas RL78 version 4.20

Configuration options: Default settings

ROM, RAM, and Stack Code Sizes

Device Category

Memory Used
Renesas Compiler LLVM IAR Compiler
With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

RL78/G23 ROM 1049 953 T.B.D T.B.D 1400 1234

RAM 0 T.B.D 0

4.12 “for,” “while,” and “do while” Statements
This module uses “for” and “do while” statements (loop processing) for wait processing to allow register
values to take effect, for example. These instances of loop processing are indicated by the comment
keyword “WAIT_LOOP.” Therefore, if you wish to incorporate fail-safe processing into the instances of loop
processing, you can locate them in the source code by searching for the keyword “WAIT_LOOP.”

A code sample is shown below:

for statement:
HIOSTOP = 0;
/* WAIT_LOOP */
for (w_count = 0U; w_count <= BSP_FIHWAITTIME; w_count++)
{
 BSP_NOP();
}

do while statement:
MSTOP = 0;
/* WAIT_LOOP */
do{
 tmp_stab_wait = OSTC;
 tmp_stab_wait &= STAB_WAIT;
}while(tmp_stab_wait != STAB_WAIT);

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 24 of 35
Mar.08.21

5. API Functions

5.1 Overview
The module uses the following functions:

Function Description
R_BSP_StartClock Starts oscillation of the specified clock.
R_BSP_StopClock Stops oscillation of the specified clock.
R_BSP_GetFclkFreqHz Returns the CPU and peripheral hardware clock frequency.
R_BSP_SetClockSource Changes the clock source of the CPU and peripheral hardware clock to the

specified clock.
BSP_DISABLE_INTERR
UPT

Disables acceptance of all maskable interrupts. This is a macro function.

BSP_ENABLE_INTERRU
PT

Enables acceptance of all maskable interrupts. This is a macro function.

BSP_NOP Executes a NOP instruction. This is a macro function.

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 25 of 35
Mar.08.21

5.2 R_BSP_StartClock()
This function starts oscillation of the specified clock.

Format
 e_bsp_err_t R_BSP_StartClock(e_clock_mode_t mode);

Parameters
mode

 Specifies the clock on which oscillation will start (see 4.9.1).

Return Values
BSP_OK /* Specified clock is oscillating correctly. */

BSP_ARG_ERROR /* An invalid argument was input. */

Properties
Prototyped in r_bsp_common.h.

Description
This function starts oscillation of the specified clock.

In order to use this function to start oscillation on the high-speed system clock or subsystem clock, it is
necessary to make the correct settings in the clock operating mode control register (CMC).

For example, even if the high-speed system clock is entered as an argument for this function, the high-speed
system clock will not oscillate if EXCLK/OSCSEL is specified as the port.

The CMC register can only be read once after a reset, so make sure to enable it in the initial settings if you
plan to use the high-speed system clock or subsystem clock.

Example
e_bsp_err_t err;

/* Start High-speed on-chip oscillator */
err = R_BSP_StartClock(HIOCLK);

if (err != BSP_OK)
{
 /* NG processing */
}

Special Note:
None

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 26 of 35
Mar.08.21

5.3 R_BSP_StopClock()
This function stops oscillation of the specified clock. However, operation cannot be guaranteed if oscillation
of a clock used as the CPU and peripheral hardware clock is stopped.

Format
 e_bsp_err_t R_BSP_StopClock(e_clock_mode_t mode);

Parameters
mode

 Specifies the clock on which oscillation will stop (see 4.9.1).

Return Values
BSP_OK /* Oscillation-stop processing performed for specified clock. */

BSP_ARG_ERROR /* An invalid argument was input. */

Properties
Prototyped in r_bsp_common.h.

Description
This function stops oscillation of the specified clock.

The function does not do error checking for the specified clock, so operation cannot be guaranteed if
oscillation of a clock used as the CPU and peripheral hardware clock is stopped.

Example
e_bsp_err_t err;

/* Stop High-speed on-chip oscillator */
err = R_BSP_StopClock(HIOCLK);

if (err != BSP_OK)
{
 /* NG processing */
}

Special Note:
None

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 27 of 35
Mar.08.21

5.4 R_BSP_SetClockSource()
This function changes the clock resource supplied to the CPU and peripheral hardware clock.

In order to change the clock resource to the high-speed system clock or subsystem clock, the same clock
must be enabled in the initial settings.

The clock operating mode control register (CMC), which controls the same clock, can only be read once after
a reset.

As a result, it cannot be enabled during operation if it was disabled in the initial settings.

Format
 e_bsp_err_t R_BSP_SetClockSource(e_clock_mode_t mode);

Parameters
mode

 Specifies the clock resource to be supplied to the CPU and peripheral hardware clock (see 4.9.1).

Return Values
BSP_OK /* The CPU and peripheral hardware clock was switched to the specified clock. */

BSP_ERROR1 /* The specified clock is not oscillating. */

BSP_ERROR2 /* A state transition was specified in which, when switching the resource of the CPU
and peripheral hardware clock, a clock resource that is not oscillating may have
been switched to. */

BSP_ERROR3 /* An unsupported state transition was specified. */

BSP_ARG_ERROR /* An invalid argument was input. */

Properties
Prototyped in r_bsp_common.h.

Description
This function changes the clock resource supplied to the CPU and peripheral hardware clock.

Example
e_bsp_err_t err;

/* Start clock operation (HIOCLK) */
err = R_BSP_StartClock(HIOCLK);

if(err != BSP_OK)
{
 /* NG processing */
}
/* Change clock source */
err = R_BSP_SetClockSource(HIOCLK);

if (err != BSP_OK)
{
 /* NG processing */
}

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 28 of 35
Mar.08.21

Special Note:
None

5.5 R_BSP_GetFclkFreqHz()
This function returns the frequency of the CPU and peripheral hardware clock.

Format
uint32_t R_BSP_GetFclkFreqHz(void);

Parameters
None

Return Values
Frequency of CPU and peripheral hardware clock

Properties
Prototyped in r_bsp_common.h.

Description
This function returns the frequency of the CPU and peripheral hardware clock. For example, there might be a
setting in r_bsp_config.h to specify 20 MHz as the frequency of the CPU and peripheral hardware clock. In
this case, if you changed the frequency of the CPU and peripheral hardware clock to 5 MHz after the r_bsp
had finished making clock settings, the function’s return value would be “5000000.”

Example
uint32_t fclk_freq;

fclk_freq = R_BSP_GetFclkFreqHz();

Special Note:
None

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 29 of 35
Mar.08.21

6. Project Setup
This section describes how to add the r_bsp to your project.

6.1 Adding the SIS Module
This module must be added to each project in which it is used. Renesas recommends the method using
Smart Configurator described in (1) or (3) below.

(1) Adding the SIS module using Smart Configurator in e2 studio

You can add the SIS module to your project automatically by using Smart Configurator in e2 studio. Refer
to the application note RL78 Smart Configurator Use’s Guide: e2 studio (R20AN0579) for details.

(2) Adding the SIS module using Smart Configurator in CS+

You can add the SIS module to your project automatically by using the standalone version of Smart
Configurator in CS+. Refer to the application note RL78 Smart Configurator Use’s Guide: CS+
(R20AN0580) for details.

(3) Adding the SIS module using Smart Configurator in IAREW

You can add the SIS module to your project automatically by using the standalone version of Smart
Configurator. Refer to the application note RL78 Smart Configurator Use’s Guide: IAREW (R20AN0581)
for details.

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 30 of 35
Mar.08.21

6.2 Adding the SIS Module to a Project in e2 studio
How to add a the SIS module to a project in e2 studio is described below.

6.2.1 Adding the SIS Module Using Smart Configurator in e2 studio
This explanation uses e2 studio (2021-01).

1. Create a new project in e2 studio.
When creating your project, check the box next to “Use Smart Configurator” to launch Smart Configurator.

2. Follow the procedure described in 6.1, Adding the SIS Module, to add the SIS module to your project in

e2 studio.

3. Right-click the project and click “Properties.”

4. On the Tool Settings tab, select Compiler → Source.

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 31 of 35
Mar.08.21

5. SIS module include paths generated by Smart Configurator have been specified.

6. On the Tool Settings tab, select Linker → Device.

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 32 of 35
Mar.08.21

7. Enter settings for the option bytes area.

8. Right-click the project and click “Build Project.”

9. Right-click the project and click “Debug” → “Configure Debugger.”

10. Click “Renesas GDB Hardware Debugging” → “Project Name Hardware Debug.”

11. On the Debugger tab, set “Debug hardware:” to “E2 Lite (RL78).”

12. On the Tool Connection Setting tab, set the main clock frequency and subclock frequency.

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 33 of 35
Mar.08.21

13. On the Connection Settings tab, set “Power Target From The Emulator (MAX 200mA)” to “Yes.”

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 34 of 35
Mar.08.21

7. Appendix

7.1 Confirmed Operating Environment
The environment in which the operation of the module has been confirmed is shown below.

Table 7.1 Confirmed Operating Environment (Rev. 1.00)

Item Description
Integrated development
environment

Renesas Electronics e2 studio (2021-01)
IAR Systems IAR Embedded Workbench for Renesas RL78 4.20.1

C compiler Renesas Electronics C/C++ compiler for R78 Family V.1.09.0
LLVM for Renesas RL78 Build Support 0.1.0.v20200629-1555

Module revision Rev.1.00
Board used RL78/G23-64p Fast Prototyping Board

(Product type: RTK7RLG230CLG000BJ)

RL78 Family Board Support Package Module Using Software Integration System

R01AN5522EJ0100 Rev.1.00 Page 35 of 35
Mar.08.21

Revision History

Rev. Date
Description
Page Summary

1.00 Mar. 08, 2021 First edition issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor
devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the
level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal
elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal
become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal
produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the
input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these
addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.

© 2020 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	Supported Compilers
	1. Overview
	1.1 Terminology
	1.2 File Structure

	2. Functionality
	2.1 MCU Information
	2.2 Initial Settings
	2.3 Global Interrupts
	2.4 Clock Settings
	2.5 Stack Area
	2.6 ID Code
	2.7 Option Bytes
	2.8 RAM/SFR Guard Functionality
	2.9 CPU Functionality
	2.10 Disabling Startup
	2.10.1 Settings to Disable Startup
	(1) Configuration File Settings

	3. Configuration
	3.1 Choosing a Platform
	3.2 Platform Configuration
	3.2.1 MCU Product Part Number Information
	3.2.2 Peripheral I/O Redirection Register
	3.2.3 RAM/SFR Guard Functionality
	3.2.4 Data Flash Access Restriction
	3.2.5 Clock Settings
	3.2.6 Option Bytes
	3.2.7 Startup Disable
	3.2.8 Smart Configurator Usage
	3.2.9 API Functions disable Usage
	3.2.10 Parameter check Usage
	3.2.11 Callback Function at Warm Start
	3.2.12 Watchdog timer refresh

	4. API Information
	4.1 Hardware Requirements
	4.2 Hardware Resource Requirements
	4.3 Software Requirements
	4.4 Limitations
	4.4.1 IAR Compiler Limitations
	4.4.2 Watchdog Timer Refresh Limitations

	4.5 Supported Toolchains
	4.6 Interrupt Vectors Used
	4.7 Header Files
	4.8 Integer Types
	4.9 API Typedef
	4.9.1 Clock Resource

	4.10 Return Values
	4.10.1 Error Codes

	4.11 Code Size
	4.12 “for,” “while,” and “do while” Statements

	5. API Functions
	5.1 Overview
	5.2 R_BSP_StartClock()
	Format
	Parameters
	Return Values
	Properties
	Description
	Example
	Special Note:

	5.3 R_BSP_StopClock()
	Format
	Parameters
	Return Values
	Properties
	Description
	Example
	Special Note:

	5.4 R_BSP_SetClockSource()
	Format
	Parameters
	Return Values
	Properties
	Description
	Example
	Special Note:

	5.5 R_BSP_GetFclkFreqHz()
	Format
	Parameters
	Return Values
	Properties
	Description
	Example
	Special Note:

	6. Project Setup
	6.1 Adding the SIS Module
	6.2 Adding the SIS Module to a Project in e2 studio
	6.2.1 Adding the SIS Module Using Smart Configurator in e2 studio

	7. Appendix
	7.1 Confirmed Operating Environment

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

